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Ranking and Sparsifying a
Connection Graph
Fan Chung, Wenbo Zhao, and Mark Kempton

Abstract. Many problems arising in dealing with high-dimensional data sets involve
connection graphs in which each edge is associated with both an edge weight and
a d-dimensional linear transformation. We consider vectorized versions of PageRank
and effective resistance that can be used as basic tools for organizing and analyzing
complex data sets. For example, generalized PageRank and effective resistance can be
utilized to derive and modify diffusion distances for vector diffusion maps in data and
image processing. Furthermore, the edge-ranking of the connection graphs determined
by vectorized PageRank and effective resistance are an essential part of sparsification
algorithms that simplify and preserve the global structure of connection graphs. In
addition, we examine consistencies in a connection graph, particularly in the appli-
cations of recovering low-dimensional data sets and the reduction of noise. In these
applications, we analyze the effect of deleting edges with high edge rank.

1. Introduction

In this paper, we consider a generalization of graphs, called connection graphs,
in which each edge of the graph is associated with a weight and also a “rota-
tion” (which is a linear orthogonal transformation acting on a d-dimensional
vector space for some positive integer d). The adjacency matrix and the dis-
crete Laplace operator are linear operators acting on the space of vector-valued

C© Taylor & Francis Group, LLC
ISSN: 1542-7951 print 87



88 Internet Mathematics

functions (instead of the usual real-valued functions) and therefore can be rep-
resented by matrices of size dn × dn, where n is the number of vertices in the
graph.

Connection graphs arise in numerous applications, in particular for data and
image processing involving high-dimensional data sets. To quantify the affinities
between two data points, it is often not enough to use only a scalar edge weight.
For example, if the high-dimensional data set can be represented or approximated
by a low-dimensional manifold, the patterns associated with nearby data points
are likely to related by certain rotations [Singer and Wu 12]. There are many
recent developments of related research in electron cryomicroscopy [Hadani and
Singer 11, Singer et al. 11], angular synchronization of eigenvectors [Cucuringu
et al. 12, Singer 11], and vector diffusion maps [Singer and Wu 12]. In many ar-
eas of machine learning, high-dimensional data points in general can be treated
by various methods, such as principal component analysis [Jolliffe 02], to reduce
vectors into some low-dimensional space and then use the connection graph with
rotations on edges to provide additional information for proximity. In computer
vision, there has been a great deal of recent work dealing with trillions of photos
that are now available on the Web [Agarwal et al. 09]. Feature-matching tech-
niques [Lowe 99] can be used to derive vectors associated with the images. Then
information networks of photos can be built that are precisely connection graphs
with rotations corresponding to the angles and positions of the cameras in use.
The use of connection graphs can be further traced to earlier work in graph
gauge theory for computing the vibrational spectra of molecules and examining
the spins associated with vibrations [Chung and Sternberg 92].

Many information networks arising from massive data sets exhibit the small-
world phenomenon. Consequently, the usual graph distance is no longer very
useful. It is crucial to have an appropriate metric for expressing the proximity
between two vertices. Various notions of diffusion distances have been defined
[Singer and Wu 12] and used for manifold learning and dimension reduction.
Here we consider two basic notions, connection PageRank and connection resis-
tance (which are generalizations of the usual PageRank and effective resistance).
Both connection PageRank and connection resistance can then be used to mea-
sure relationships between vertices in a connection graph. To illustrate the use
of both metrics, we derive edge-ranking using connection PageRank and con-
nection resistance. In the applications to electron cryomicroscopy, edge-ranking
can help eliminate the superfluous or erroneous edges that appear because of
various types of “noise.” We will use here connection PageRank and connection
resistance as tools for the basis of algorithms that can be used to construct a spar-
sifier that has fewer edges but preserves the global structure of the connection
network.
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The notion of PageRank was first introduced in [Brin and Page 98] for Google’s
Web search algorithms. Although PageRank was originally designed for the Web
graph, the concepts work well for any graph for quantifying the relationships
between pairs of vertices (or pairs of subsets) in any given graph. There are
very efficient and robust algorithms for computing and approximating PageRank
[Andersen et al. 06, Berkhin 06, Jeh and Widom 03, Borgs et al. 12]. In this
paper, we further generalize PageRank for connection graphs and give efficient
and sharp approximation algorithms for computing the connection PageRank,
similar to the algorithm presented in [Borgs et al. 12].

Effective resistance plays a major role in electrical network theory and can be
traced back to the classical work [Kirchhoff 47]. Here we consider a generalized
version of effective resistance for connection graphs. To illustrate the use of
connection resistance, we examine a basic problem on graph sparsification. Graph
sparsification was introduced in [Benczúr and Karger 96, Karger 99, Karger 94,
Karger 00] for approximately solving various network design problems. The heart
of graph-sparsification algorithms is a sampling technique for randomly selecting
edges. The goal is to approximate a given graph G on n vertices by a sparse
graph G̃, called a sparsifier, with fewer edges on the same set of vertices such
that every cut in the sparsifier G̃ has size within a factor 1 ± ε of the size of
the corresponding cut in G for some constant ε. In [Spielman and Teng 04],
the authors constructed a spectral sparsifier with O(n logc n) edges for some
large constant c. In [Spielman and Srivastava 08], the authors gave a different
sampling scheme using effective resistances to construct an improved spectral
sparsifier with only O(n log n) edges. In this paper, we will construct a connection
sparsifier using the weighted connection resistance. Our algorithm is similar to
that found in [Spielman and Srivastava 08].

In recent work [Bandeira et al. 12], the authors study the O(d) synchronization
problem in which each vertex of a connection graph is assigned a rotation in the
orthogonal group O(d). Our work differs from theirs in that here, we examine the
problem of assigning a vector in Rd to each vertex, rather than an orthogonal
matrix in O(d) (see the remark following the proof of Theorem 2.2). In other
words, our connection Laplacian is an operator acting on the space of vector-
valued functions. However, their work is closely related to our work in this paper.
In particular, they define the connection Laplacian and use its spectrum to give
a measure of how close a connection graph is to being consistent.

1.1. A Summary of Our Results

Our results can be summarized as follows: We review definitions for the con-
nection graph and the connection Laplacian in Section 2. The connection
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Laplacian is also studied in [Singer and Wu 12, Bandeira et al. 12]. In par-
ticular, we discuss the notion of “consistency” in a connection graph (which is
considered to be the ideal situation for various applications). We give a character-
ization for a consistent connection graph using the eigenvalues of the connection
Laplacian.

We introduce the connection PageRank in Section 3. We follow the method
of [Borgs et al. 12] to develop a sublinear-time algorithm for computing an ap-
proximate connection PageRank vector. We define the connection resistance in
Section 4 and then examine various properties of the connection resistance. We
use the connection resistance to give an edge-ranking algorithm and a sparsifi-
cation algorithm for connection graphs in Section 5.

In Section 6, we propose a method for reducing noise in data by delet-
ing, with high probability, edges having large edge rank. Using probabilis-
tic and spectral techniques as in [Chung and Radcliffe 11], we prove that
for a connection graph, the eigenvalue related to consistency can be substan-
tially reduced by deleting edges with high rank. Consequently, the resulting
graph is an improved approximation for recovering a consistent connection
graph.

2. Preliminaries

For positive integers m,n, d, we consider a family of matrices, which we de-
note by F(m,n, d;R), consisting of all md × nd matrices with real-valued
entries. A matrix in F(m,n, d;R) can also be viewed as an m × n ma-
trix whose entries are represented by d × d blocks. A rotation is a ma-
trix that is used to perform a rotation in Euclidean space. Namely, a ro-
tation O is a square matrix, with real entries, satisfying OT = O−1 and
det(O) = 1. The set of d × d rotation matrices forms the special orthogonal
group SO(d). It is easy to check that all eigenvalues of a rotation O are of
norm 1. Furthermore, a rotation O ∈ SO(d) with d odd has an eigenvalue 1
(see [Golub and Van Loan 96]).

2.1. The Connection Laplacian

Suppose G = (V,E,w) is an undirected graph with vertex set V , edge set E, and
edge weights wuv = wvu > 0 for edges (u, v) in E. Suppose each oriented edge
(u, v) is associated with a rotation matrix Ouv ∈ SO(d) satisfying OuvOvu =
Id×d . Let O denote the set of rotations associated with all oriented edges in G.
The connection graph, denoted by G = (V,E,O,w), has G as the underlying
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graph. The connection matrix A of G is defined by

A (u, v) =

{
wuvOuv if (u, v) ∈ E,

0d×d if (u, v) �∈ E,

where 0d×d is the zero matrix of size d × d. In other words, for |V | = n, we
view A ∈ F(n, n, d;R) as a block matrix each block of which is either a d × d

rotation matrix Ouv multiplied by a scalar weight wuv or a d × d zero matrix. The
matrix A is symmetric, since OT

uv = Ovu and wuv = wvu . The diagonal matrix
D ∈ F(n, n, d;R) is defined by the diagonal blocks D (u, u) = duId×d for u ∈ V .
Here du is the weighted degree of u in G, i.e., du =

∑
(u,v )∈E wuv .

The connection Laplacian L ∈ F(n, n, d;R) of a graph G is the block matrix
L = D − A . Recall that for a given orientation of edges of the underlying graph
G on n vertices and m edges, the combinatorial Laplacian L can be written as
L = BT WB, where W is an m × m diagonal matrix with We,e = we , and B is
the edge–vertex incidence matrix of size m × n such that

B(e, v) =

⎧⎪⎪⎨⎪⎪⎩
1 if v is e’s head,

−1 if v is e’s tail,

0 otherwise.

A useful observation for the connection Laplacian is the fact that it can be
written in a similar form. Let B ∈ F(m,n, d;R) be the block matrix given by

B (e, v) =

⎧⎪⎪⎨⎪⎪⎩
Ouv v is e’s head,

−Id×d v is e’s tail,

0d×d otherwise.

Also, let the block matrix W ∈ F(m,m, d;R) denote a diagonal block matrix
given by W (e, e) = weId×d . We remark that given an orientation of the edges,
the connection Laplacian can alternatively be defined as

L = B T W B .

This can be verified by direct computation.
We have the following useful lemma regarding the Dirichlet sum of the con-

nection Laplacian as an operator on the space of vector-valued functions on the
vertex set of a connection graph.

Lemma 2.1. For every function f : V → Rd , we have

fLfT =
∑

(u,v )∈E

wuv ‖f(u)Ouv − f(v)‖2
2 , (2.1)
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where f(v) here is regarded as a row vector of dimension d. Furthermore, an
eigenpair (λi, φi) has λi = 0 if and only if φi(u)Ouv = φi(v) for all (u, v) ∈ E.

Proof.
For (2.1), observe that for a fixed edge e = (u, v), we have

fB T (e) = f(u)Ouv − f(v).

Thus,

fLfT = (fB T )W (B fT ) = (fB T )W (fB T )T

=
∑

(u,v )∈E

w(u, v) ‖f(u)Ouv − f(v)‖2
2 .

Also, L is symmetric and therefore has real eigenfunctions and real eigenvalues.
The spectral decomposition of L is given by

L G (u, v) =
nd∑
i=1

λiφi(u)T φi(v).

By (2.1)), λ1 ≥ 0 and λi = 0 if and only if φi(u)Ouv = φi(v) for all {u, v} ∈ E,
and the lemma follows.

2.2. The Consistency of a Connection Graph

For a connection graph G = (V,E,O,w), we say that G is consistent if for ev-
ery cycle c = (vk , v1 , v2 , . . . , vk ), the product of rotations along the cycle is the
identity matrix, i.e.,

Ovk v1

k−1∏
i=1

Ovi vi + 1 = Id×d .

In other words, for two vertices u and v, the products of rotations along different
paths from u to v are the same. In the following theorem, we give a characteri-
zation of a consistent connection graph using the eigenvalues of the connection
Laplacian.

Theorem 2.2. Let G be a connected connection graph on n vertices having connection
Laplacian L of dimension nd, and let L be the Laplacian of the underlying graph
G. The following statements are equivalent:

(i) G is consistent.

(ii) The connection Laplacian L of G has d eigenvalues of value 0.
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(iii) The eigenvalues of L are the n eigenvalues of L, each of multiplicity d.

(iv) For each vertex u in G, we can find Ou ∈ SO d such that for every edge
(u, v) with rotation Ouv , we have Ouv = O−1

u Ov .

Proof. (i) =⇒ (ii). For a fixed vertex u ∈ V and an arbitrary d-dimensional vector
x̂, we can define a function f̂ : V → Rd by defining f̂(u) = x̂ initially. Then
we assign f̂(v) = f̂(u)Ouv for all the neighbors v of u. Since G is connected
and G is consistent, we can continue the assigning process to all neighboring
vertices without any conflict until all vertices are assigned. The resulting function
f̂ : V → Rd satisfies

f̂L f̂ T =
∑

(u,v )∈E

wuv

∥∥∥f̂(u)Ouv − f̂(v)
∥∥∥2

2
= 0.

Therefore, 0 is an eigenvalue of L with eigenfunction f̂ . There are d orthogonal
choices for the initial choice of x̂ = f̂(u). Therefore, we obtain d orthogonal
eigenfunctions f̂1 , . . . , f̂d corresponding to the eigenvalue 0.

(ii) =⇒ (iii). Let us consider the underlying graph G. Let fi : V → R denote
the eigenfunctions of L corresponding to the eigenvalue λi for i ∈ [n]. Let f̂k , for
k ∈ [d], be orthogonal eigenfunctions of L for the eigenvalue 0. By Lemma 2.1,
each f̂k satisfies f̂k (u)Ouv = f̂k (v). Our proof of this part follows directly from
the following claim.

Claim 2.3. Functions fi ⊗ f̂k : V → Rd for i ∈ [n], k ∈ [d] are the orthogonal eigen-
functions of L corresponding to eigenvalue λi, where fi ⊗ f̂k (v) = fi(v)f̂k (v).

Proof. First, we need to verify that the functions fi ⊗ f̂k are eigenfunctions of L .
We note that

[fi ⊗ f̂k L ](u) = d(u)fi ⊗ f̂k (u) −
∑
v∼u

wvufi ⊗ f̂k (v)Ovu

= d(u)fi(u)f̂k (u) −
∑
v∼u

wvufi(v)f̂k (v)Ovu

= d(u)fi(u)f̂k (u) −
∑
v∼u

wvufi(v)f̂k (u)

=
(

d(u)fi(u) −
∑
v∼u

wvufi(v)
)

f̂k (u).
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Since fi is an eigenfunction of L corresponding to the eigenvalue λi , we have
fiL = λifi , i.e., (

d(u)fi(u) −
∑
v∼u

wvufi(v)
)

= λifi(u).

Thus,

[fi ⊗ f̂k L ](u) = λifi(u)f̂k (u) = λifi ⊗ f̂k (u),

and fi ⊗ f̂k , 1 ≤ i ≤ n, 1 ≤ k ≤ d, are the eigenfunctions of L with eigenvalue λi .
To prove the orthogonality of the fi ⊗ f̂k , we note that if k �= l, then〈
fi ⊗ f̂k , fj ⊗ f̂l

〉
=

∑
v

〈
fi ⊗ f̂k (v), fj ⊗ f̂l(v)

〉
=

∑
v

fi(v)fj (v)
〈
f̂k (v), f̂l(v)

〉
= 0,

since
〈
f̂k (v), f̂l(v)

〉
= 0 for k �= l. For the case k = l but i �= j, we have〈

fi ⊗ f̂k , fj ⊗ f̂l

〉
=

∑
v

fi(v)fj (v)
〈
f̂k (v), f̂k (v)

〉
=

∑
v

fi(v)fj (v) = 0,

because of 〈fi, fj 〉 = 0 for i �= j. The claim is proved.

(iii) =⇒ (iv). Since 0 is an eigenvalue of L, we can let f̂1 , . . . , f̂d be d or-
thogonal eigenfunctions of L corresponding to the eigenvalue 0. By Lemma 2.1,
f̂k (u)Ouv = f̂k (v) for all k ∈ [d], uv ∈ E. For two adjacent vertices u and v, we
have, for i, j = 1, . . . , d,〈

f̂i(u), f̂j (u)
〉

=
〈
f̂i(u)Ouv , f̂j (u)Ouv

〉
=

〈
f̂i(v), f̂j (v)

〉
.

Therefore, f̂1(v), . . . , f̂d(v) must form an orthogonal basis of Rd for all v ∈ V .
So for v ∈ V , define Ov to be the matrix with rows f̂1(v), . . . , f̂d(v), and if

necessary, normalize and adjust the signs of these vectors to guarantee that
Ov ∈ SO(d). Then Ov is an orthogonal matrix for each d, and for an edge uv ∈ E,
OuOuv = Ov , which implies Ouv = O−1

u Ov .
(iv) =⇒ (i). Let C = (v1 , v2 , . . . , vk , v1) be a cycle in G. Then

Ovk v1

k−1∏
i=1

Ovi vi + 1 = O−1
vk

Ov1

k−1∏
i=1

O−1
vi

Ovi + 1 = Id×d .

Therefore, G is consistent. This completes the proof of the theorem.

We note that item (iv) in the previous result is related to the O(d) synchro-
nization problem studied in [Bandeira et al. 12]. This problem consists in finding
a function O : V (G) → O(d) such that given the offsets Ouv in the edges, the
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function satisfies Ouv = O−1
u Ov . The previous theorem shows that this has an

exact solution if G is consistent. Particularly, [Bandeira et al. 12] investigates
how well a solution can be approximated when the connection graph is not con-
sistent. The formulation in that work gives a measure of how close a connection
graph is to being consistent by looking at the operator on the space of func-
tions O : V (G) → O(d) given by

∑
u∼v wuv‖OuOuv − Ov‖2

2 . In order to investi-
gate this, the authors also considered the operator on the space of vector-valued
functions f : V (G) → R d given by

∑
u∼v wuv‖fuOuv − fv‖2

2 , which is what we
are using to investigate the connection Laplacian.

2.3. Random Walks on a Connection Graph

Consider the underlying graph G of a connection graph G = (V,E,O,w). A
random walk on G is defined by the transition probability matrix P , where
Puv = wuv/du denotes the probability of moving to a neighbor v at a vertex u.
We can write P = D−1A, where A is the weighted adjacency matrix of G, and
D is the diagonal matrix of weighted degree.

In a similar way, we can define a random walk on the connection graph G
by setting the transition probability matrix P = D −1A . While P acts on the
space of real-valued functions, P acts on the space of vector-valued functions
f : V → Rd .

Theorem 2.4. Suppose G is consistent. Then for every positive integer t, vertex
u ∈ V , and function ŝ : V → Rd satisfying ŝ(v) = 0 for all v ∈ V \{u}, we have
‖ŝ(u)‖2 =

∑
v ‖ŝ P t(v)‖2 .

Proof. The proof of this theorem is straightforward from the assumption that G
is consistent. For p̂ = ŝ P t , note that p̂(v) is the summation of all d-dimensional
vectors resulting from rotating ŝ(u) via rotations along all possible paths of
length t from u to v. Since G is consistent, the rotated vectors arriving at v

via different paths are positive multiples of the same vector. Also, the rotations
maintain the 2-norm of vectors. Thus,

‖p̂(v)‖2

‖ŝ(u)‖2

is simply the probability that a random walk in G arrives at v from u after t

steps. The theorem follows.
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3. PageRank Vectors in a Connection Graph

The PageRank vector is based on random walks. Here we consider a lazy walk
on G with transition probability matrix Z = (I + P )/2. In [Andersen et al. 06],
a PageRank vector prα,s is defined by a recurrence relation involving a seed
vector s (as a probability distribution) and a positive jumping constant α < 1
(or transportation constant). Namely, prα,s = αs + prα,s(1 − α)Z.

For the connection graph G , the PageRank vector p̂rα,ŝ : V → Rd is defined
by the same recurrence relation involving a seed vector ŝ : V → Rd and a positive
jumping constant α < 1:

p̂rα,ŝ = αŝ + (1 − α)p̂rα,ŝZ,

where Z = 1
2 (Ind×nd + P ) is the transition probability matrix of a lazy random

walk on G . An alternative definition of the PageRank vector is the following
geometric sum of random walks:

p̂rα,ŝ = α

∞∑
t=0

(1 − α)t ŝ Zt = αŝ + (1 − α)p̂rα,ŝZ. (3.1)

By Theorem 2.4 and (3.1), we obtain the following useful fact concerning Page-
Rank vectors for a consistent connection graph.

Proposition 3.1. Suppose that a connection graph G is consistent. Then for every
u ∈ V , α ∈ (0, 1), and function ŝ : V → Rd satisfying ‖ŝ(u)‖2 = 1 and ŝ(v) = 0
for v �= u, we have

∥∥p̂rα,ŝ(v)
∥∥

2 = prα,χu
(v). Here χu : V → R denotes the char-

acteristic function for the vertex u, so χu (v) = 1 for v = u, and χu (v) = 0 oth-
erwise. In particular,

∑
v∈V

∥∥p̂rα,ŝ(v)
∥∥

2 = ‖prα,χu
‖1 = 1.

Proof. Since the function ŝ satisfies ‖ŝ(u)‖2 = 1 and ŝ(v) = 0 for v �= u, by Theo-
rem 2.4, for a fixed v ∈ V , we conclude that [ŝZt ](v) assumes a single value for
all t > 0. By the geometric sum expression of the PageRank vector, we have∥∥p̂rα,ŝ(v)

∥∥
2 =

∥∥∥∥∥α
∞∑

t=0

(1 − α)t [ŝZt ](v)

∥∥∥∥∥
2

= α
∞∑

t=0

(1 − α)t
∥∥[ŝZt ](v)

∥∥
2

= α

∞∑
t=0

(1 − α)t [χuZt ](v) = prα,χu
(v).

Thus, ∑
v∈V

∥∥p̂rα,ŝ(v)
∥∥

2 = ‖prα,χu
‖1 = 1.
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Algorithm 1. p̂ = ApproximatePR(v, ŝ, α, ε, ρ).

1. Initialze p̂ = 0 and set k = log 1
1−α

( 4
ε ) and r = 1

ερ2 32d log(n
√

d).

2. For r times do:
a. Run one realization of the lazy random walk on G starting at the

vertex v: At each step, with probability α, take a “termination”
step by returning to v and terminating, and with probability 1 − α,
randomly choose among the neighbors of the current vertex. At
each step in the random walk, rotate ŝ(v) by the rotation matrix
along the edge. The walk is artificially stopped after k steps if it
has not terminated already.

b. If the walk visited a node u just before making a termination step,
then set p̂(u) = p̂(u) + ŝ(v)

∏j
i=1 Ovi vi + 1 , where

(v = v1 , v2 , . . . , vj−1 , vj = u)

is the path taken in the random walk.

3. Replace p̂ with 1
r p̂.

4. Return p̂.

We will call such a PageRank vector p̂rα,ŝ a connection PageRank vector on u.
We next examine the problem of efficiently computing connection PageRank
vectors. For graphs, an efficient sublinear algorithm is given in [Borgs et al. 12],
in which PageRank vectors are approximated by realizing random walks of some
bounded length. We here develop a version, our Algorithm 1, of their algorithm
to apply to connection graphs. Our proof follows the template of their analysis,
but uses the connection random walk.

For our analysis of the algorithm, we will need the following well-known con-
centration inequalities.

Lemma 3.2. (Multiplicative Chernoff bounds.) Let Xi be i.i.d. Bernoulli random variables
each with expectation μ. Define X =

∑n
i=1 Xi. Then:

� For 0 < λ < 1, Pr(X < (1 − λ)μn) < exp(−μnλ2/2).

� For 0 < λ < 1, Pr(X > (1 + λ)μn) < exp(−μnλ2/4).

� For λ ≥ 1, Pr(X > (1 + λ)μn) < exp(−μnλ/2).
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Theorem 3.3. Let G = (V,E,O,w) be a connection graph and fix a vertex v ∈ V .
Let 0 < ε < 1 be an additive error parameter, 0 < ρ < 1 a multiplicative approx-
imation parameter, and 0 < α < 1 a teleportation probability. Let ŝ : V → Rd be
a function satisfying ‖ŝ(v)‖2 = 1 and ŝ(u) = 0 for u �= v. Then with probability
at least 1 − Θ

( 1
n2

)
, Algorithm 1 produces a vector p̂ that satisfies∥∥p̂(u) − p̂rα,ŝ(u)

∥∥
2 < ρ

∥∥p̂rα,ŝ(u)
∥∥

2 +
ε

4

for vertices u of V for which
∥∥p̂rα,ŝ(u)

∥∥
2 ≥ ε

4 , and satisfying ‖p̂(u)‖2 < ε
2 for

vertices u for which
∥∥p̂rα,ŝ(u)

∥∥
2 ≤ ε

4 . The running time of the algorithm is

O

(
d3 log(n

√
d) log(1/ε)

ερ2 log(1/(1 − α))

)
.

Proof. We have from (3.1) that

p̂rα,ŝ = αŝ
∞∑

t=0

(1 − α)tZt .

We observe that the tth term in this sum is the contribution to the PageRank
vector given by the walks of length t. We will approximate this by looking at
walks of length at most k. Define

p̂
(k)
α,ŝ = αŝ

k∑
t=0

(1 − α)tZt .

We then observe that by choosing k large enough that (1 − α)k < ε/4, we have∥∥∥p̂rα,ŝ − p̂
(k)
α,ŝ

∥∥∥
2

<
ε

4
.

The choice of k = log 1
1−α

( 4
ε ) will guarantee this.

The output p̂ of the algorithm gives an approximation to p̂
(k)
α,ŝ by realizing

walks of length at most k. The algorithm does so by taking the average count
over 32d log(n

√
d)/ερ2 trials. Note that p̂

(k)
α,ŝ(u) is the expected value of the con-

tribution of an instance of a random walk of length k. We will take an arbitrary
entry of p̂(u), say p̂(u)(j), and compare it to p̂

(k)
α,ŝ(u)(j). Assuming that for at

least one j, we have p̂
(k)
α,ŝ(u)(j) > ε/4d, we get by the multiplicative Chernoff

bound that

Pr
(
p̂(u)(j) < (1 + ρ)p̂(k)

α,ŝ(u)(j)
)

< exp(−2 log(n
√

d))
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and

Pr
(
p̂(u)(j) < (1 − ρ)p̂(k)

α,ŝ(u)(j)
)

< exp(−2 log(n
√

d)),

which implies

Pr
(
|p̂(u)(j) − p̂

(k)
α,ŝ(u)(j)| > ρp̂

(k)
α,ŝ(u)(j)

)
< 2 exp(−2 log(n

√
d)).

Note that this difference will be the same for all the entries of p̂(u), and therefore,

Pr
(∥∥∥p̂(u) − p̂

(k)
α,ŝ(u)

∥∥∥
2

> ρ
∥∥∥p̂

(k)
α,ŝ(u)

∥∥∥
2

)
< 2d exp(−2 log(n

√
d)) =

2
n2 .

In a similar manner, if p̂
(k)
α,ŝ(u)(j) ≤ ε/4d, then by the Chernoff bound, we have

Pr
(
p̂(u)(j) >

ε

2d

)
< exp

(
−2 log(n

√
d)
)

,

so

Pr
(
‖p̂(u)‖2 >

ε

2

)
< d exp

(
−2 log(n

√
d)
)

=
1
n2 .

For the running time, note that the algorithm performs 32d log(n
√

d)/ερ2

rounds, where each round simulates a walk of length at most log 1
1−α

( 4
ε ), each

walk multiplying ŝ(v) by the d × d rotation matrices. Thus the running time is

O

(
d3 log(n

√
d) log(1/ε)

ερ2 log(1/(1 − α))

)
,

which completes the proof

4. The Connection Resistance

Motivated by the definition of effective resistance in electrical network theory,
we consider the block matrix

Ψ = B L+
G B T ∈ F(m,m, d;R),

where L+ is the pseudoinverse of L . Note that for a matrix M , the pseudoinverse
of M is defined as the unique matrix M+ satisfying the following four criteria
[Golub and Van Loan 96, Penrose 55]:

(i) MM+M = M ;

(ii) M+MM+ = M+;

(iii) (MM+)∗ = (MM+);
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(iv) (M+M)∗ = M+M .

We define the connection resistance R eff(e) as R eff(v, u) = ‖Ψ(e, e)‖2 . Note that
block Ψ(e, e) is a d × d matrix. We will show that in the case that the connec-
tion graph G is consistent, R eff(u, v) is reduced to the usual effective resistance
Reff(u, v) of the underlying graph G. In general, if the connection graph is not
consistent, the connection resistance is not necessarily equal to its effective re-
sistance in the underlying graph G.

Our first observation is the following lemma.

Lemma 4.1. Suppose G is a consistent connection graph whose underlying graph is
connected. For two vertices u, v of G , let puv = (v1 = u, v2 , . . . , vk = v) be any
path from u to v in G . Define Opu v

=
∏k−1

j=1 Ovj vj + 1 . Let L be the connection
Laplacian of G and let L be the discrete Laplacian of G respectively. Then

L+(u, v) =

{
L+(u, v)Opu v

, i �= j,

L+(u, v)Id×d , i = j.

Proof. We first note that the matrix Opu v
is well defined, since G is consistent.

Also note that if u and v are adjacent, then Opu v
= Ouv . Also observe that

L (u, v) = L(u, v)Opu v
, since if uv is not an edge, L(u, v) = 0, and if u, v is an

edge, Opu v
= Ouv . To verify that L+ is the pseudoinverse of L , we just need to

verify that L+(u, v) satisfies all four criteria above.
To see (i) LL+L = L , we consider two vertices u and v and note that

(LL+L )(u, v) =
∑
x,y

L (u, x)L+(x, y)L (y, v)

=
∑
x,y

L(u, x)L+(x, y)L(y, v)Opu x
Opx y

Opy v

=
∑
x,y

L(u, x)L+(x, y)L(y, v)Opu v
,

where the last equality follows by consistency. Since L+ is the pseudoinverse of
L, we also have LL+L = L, which implies that

L(u, v) =
∑
x,y

L(u, x)L+(x, y)L(y, v).

Thus,

(LL+L )(u, v) = L(u, v)Opu v
= L (u, v),

and the verification of (i) is complete.
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The verification of (ii) is quite similar to that of (i), and we omit it here.
To see (iii) (LL+)∗ = (LL+), we also consider two fixed vertices vi and vj .

Note that

(LL+)(u, v) =
∑

x

L (u, x)L+(x, v) =
∑

x

L(u, x)L+(x, v)Opu x
Opx v

=
∑

x

L(u, x)L+(x, v)Opu v
.

On the other hand,

(LL+)(v, u) =
∑

x

L(v, x)L+(x, u)Opv u
=

∑
x

L(v, x)L+(x, u)OT
pu v

.

Since L+ is the pseudoinverse of L, we also have (LL+)∗ = LL+, which implies
that ∑

x

L(u, x)L+(x, v) =
∑

x

L(v, x)L+(x, u),

and thus (LL+)∗ = (LL+).
The verification of (iv) (L+L )∗ = L+L is also similar to (iii). This completes

the proof of the lemma.

Using the above lemma, we examine the relation between the connection re-
sistance and the effective resistance for a consistent connection graph by the
following theorem.

Theorem 4.2. Suppose G = (V,E,O,w) is a consistent connection graph whose
underlying graph G is connected. Then for every edge (u, v) ∈ G , we have

R eff(u, v) = Reff(u, v).

Proof. Let L be the connection Laplacian of G , and L the Laplacian of the under-
lying graph G. Let us fix an edge e = (u, v) ∈ G . By the definition of effective
resistance, Reff(u, v) is the maximum eigenvalue of the matrix

Ψ(e, e) =
[
Ovu −Id×d

] [L+(u, u) L+(u, v)
L+(v, u) L+(v, v)

][
Ouv

−Id×d

]
,

where Ouv is the rotation from u to v. By Lemma 4.1, we have

L+(u, u) = L+(u, u)Id×d , L+(u, v) = L+(u, v)Opu v
,

L+(v, v) = L+(v, v)Id×d , L+(v, u) = L+(v, u)Opv u
= L+(u, v)Opv u

.
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Algorithm 2. (G̃ = (V, Ẽ, O, w̃)) = Sample(G = (V,E,O,w), p′, q).
1. For every edge e ∈ E, set pe proportional to p′e .

2. Choose a random edge e of G with probability pe , and add e to G̃
with edge weight w̃e = we/qpe . Take q samples independently with re-
placement, summing weights if an edge is chosen more than once.

3. Return G̃ .

Thus, by the definition of the matrix Ψ,

Ψ(e, e) =
(
L+

u,u + L+
v ,v

)
Id×d − L+

u,v (Opv u
Ouv + OvuOpu v

) .

Note that Opu v
Ovu = OuvOT

uv = I, and similarly, OvuOpv u
= I, so

Ψ(e, e) =
(
L+(u, u) + L+(v, v) − 2L+(u, v)

)
Id×d .

Note that (L+(u, u) + L+(v, v) − 2L+(u, v)) is exactly the effective resistance of
e, so

‖Ψ(e, e)‖2 = L+(u, u) + L+(v, v) − 2L+(u, v) = Reff(u, v).

The theorem is proved.

5. Ranking Edges Using the Connection Resistance

A central part of a graph-sparsification algorithm is the sampling technique for
selecting edges. It is crucial to choose the appropriate probabilistic distribution
that can lead to a sparsifier preserving every cut in the original graph. In [Spiel-
man and Srivastava 08], the measure of how well the sparsifier preserves the cuts
is given according to how well the sparsifier preserves the spectral properties of
the original graph. We follow the template of [Spielman and Srivastava 08] to
present a sampling algorithm that will accomplish this. Algorithm 2 is a generic
sampling algorithm for a graph-sparsification problem. We will sample edges
using the distribution proportional to the weighted connection resistances.

Theorem 5.1. For a given connection graph G and some positive ξ > 0, we consider
G̃ = Sample(G, p′, q), where p′e = weR eff(e) and

q =
4nd(log(nd) + log(1/ξ))

ε2 .
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Suppose G and G̃ have connection Laplacians L G and L G̃ respectively. Then
with probability at least 1 − ξ, for every function f : V → Rd , we have

(1 − ε)fL G fT ≤ fL G̃ fT ≤ (1 + ε)fL G fT . (5.1)

Before proving Theorem 5.1, we need the following two lemmas, in particular
concerning the matrix Λ = W 1/2B L+

G B T W 1/2 .

Lemma 5.2. The matrix Λ is a projection matrix, i.e., Λ2 = Λ.

Proof. Observe that

Λ2 =
(

W 1/2B L+
G B T W 1/2

)(
W 1/2B L+

G B T W 1/2
)

= W 1/2B L+
G L G L+

G B T W 1/2 = W 1/2B L+
G B T W 1/2 = Λ.

The lemma follows.

To show that G̃ = (V, Ẽ, O, w̃) is a good sparsifier for G satisfying (5.1), we
need to show that the quadratic forms fL G̃ fT and fL G fT are close. By applying
similar methods as in [Spielman and Srivastava 08], we reduce the problem of
preserving fL G fT to that of gΛgT for some function g. We consider a diagonal
matrix S ∈ F(m,m, d;R), where the diagonal blocks are scalar matrices given
by

S(e, e) =
w̃e

we
Id×d =

Ne

qpe
Id×d ,

and Ne is the number of times an edge e is sampled.

Lemma 5.3. Suppose S is a nonnegative diagonal matrix such that

‖ΛSΛ − ΛΛ‖2 ≤ ε.

Then

∀f : V → Rd , (1 − ε)fL G fT ≤ fL G̃ fT ≤ (1 + ε)fL G fT ,

where L G̃ = B T W 1/2SW 1/2B .

Proof. The assumption is equivalent to

sup
f∈Rm d ,f �=0

∣∣fΛ(S − I)ΛfT
∣∣

ffT
≤ ε.
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Restricting our attention to vectors in Im
(
B T W 1/2

)
, we have

sup
f∈Im(B T W 1 / 2 ),f �=0

∣∣fΛ(S − I)ΛfT
∣∣

ffT
≤ ε.

Since Λ is the identity on Im
(
B T W 1/2

)
, we have fΛ = f for all f ∈

Im
(
B T W 1/2

)
. Also, every such f can be written as f = gB T W 1/2 for g ∈ Rnd .

Thus

sup
f∈Im(B T W 1 / 2 )

f �=0

∣∣fΛ(S − I)ΛfT
∣∣

ffT
= sup

f∈Im(B T W 1 / 2 )
f �=0

∣∣f(S − I)fT
∣∣

ffT

= sup
g∈Rn d

gB T W 1 / 2 �=0

∣∣gB T W 1/2SW 1/2B gT − gB T W B gT
∣∣

gB T W B gT

= sup
g∈Rn d

gB T W 1 / 2 �=0

∣∣gL G̃ gT − gL G gT
∣∣

gL G gT
≤ ε.

Rearranging yields the desired conclusion for all g ∈ Rnd .

We also require the following concentration inequality in order to prove our
main theorems. Various matrix concentration inequalities have been derived; see
[Achlioptas 01, Cristofides and Markström 08, Recht 11, Tropp 11]. Here we will
use the simple version that is proved in [Vershynin 08].

Theorem 5.4. Let X1 ,X2 , . . . , Xq be independent symmetric random k × k matrices
with zero means, Sq =

∑
i Xi, ‖Xi‖2 ≤ 1 for all i a.s. Then for every t > 0, we

have

Pr
[‖Sq‖2 > t

] ≤ k max
(

exp
(
− t2

4
∑

i ‖Var (Xi)‖2

)
, exp

(
− t

2

))
.

A direct consequence of Theorem 5.4 is the following corollary.

Corollary 5.5. Suppose X1 ,X2 , . . . , Xq are independent random symmetric k × k

matrices satisfying

(1) for all 1 ≤ i ≤ q, ‖Xi‖2 ≤ M a.s.,

(2) for all 1 ≤ i ≤ q, ‖Var (Xi)‖2 ≤ M ‖E [Xi ]‖2 .
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Then for every ε ∈ (0, 1), we have

Pr
[∥∥∥∥∑

i

Xi −
∑

i

E [Xi ]
∥∥∥∥

2
> ε

∑
i

‖E [Xi ]‖2

]
≤ k exp

(
−ε2 ∑

i ‖E [Xi ]‖2

4M

)
.

Proof. Let us consider the independent random symmetric matrices

Xi − E [Xi ]
M

for 1 ≤ i ≤ q. Clearly, they are independent symmetric random k × k matrices
with zero means satisfying ∥∥∥∥Xi − E [Xi ]

M

∥∥∥∥
2
≤ 1

for 1 ≤ i ≤ q. We note also that

Var

(
Xi − E [Xi ]

M

)
= Var

(
Xi

M

)
=

Var (Xi)
M 2 .

Thus by applying Theorem 5.4, we have

Pr
[∥∥∥∥∑i Xi − E [Xi ]

M

∥∥∥∥
2

> t

]
= Pr

[∥∥∥∥∑
i

Xi −
∑

i

E [Xi ]
∥∥∥∥

2
> tM

]
≤ k max

(
exp

(
− t2M 2

4
∑

i ‖Var (Xi)‖2

)
, exp

(
− t

2

))
. (5.2)

Note that by condition (2), we obtain∑
i

‖Var (Xi)‖2 ≤ M
∑

i

‖E [Xi ]‖2 .

Thus if we set

t =
ε
∑

i ‖E [Xi ]‖2

M
,

the left term on the right-hand side of (5.2) can be bounded as follows:

t2M 2

4
∑q

i=1 ‖Var (Xi)‖2
≥ (ε

∑q
i=1 ‖E [Xi ]‖2)

2

4M
∑q

i=1 ‖E [Xi ]‖2
=

ε2 ∑q
i=1 ‖E [Xi ]‖2

4M
.

The corollary follows.

Proof of Theorem 5.1. Our algorithm samples edges from G independently with re-
placement, with probabilities pe proportional to weR eff(e). Note that sampling
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q edges from G corresponds to sampling q columns from Λ. So we can write

ΛSΛ =
∑

e

Λ(·, e)S(e, e)Λ(·, e)T =
∑

e

Ne

qpe
Λ(·, e)Λ(·, e)T =

1
q

q∑
i=1

yiy
T
i

for block matrices y1 , . . . , yq ∈ Rnd×d drawn independently with replacement
from the distribution y = 1√

pe
Λ(·, e) with probability pe . Now we can apply

Corollary 5.5. The expectation of yyT is given by

E
[
yyT

]
=

∑
e

pe
1
pe

Λ(·, e)Λ(·, e)T = Λ,

which implies that
∥∥E [

yyT
]∥∥

2 = ‖Λ‖2 = 1. We also have a bound on the norm
of yiy

T
i :

∥∥yiy
T
i

∥∥
2 ≤ max

e

(∥∥Λ(·, e)T Λ(·, e)∥∥2

pe

)
= max

e

(
weR eff(e)

pe

)
.

Since the probability pe is proportional to weR eff(e), i.e.,

pe =
weR eff(e)∑
e weR eff(e)

=
‖Λ(e, e)‖2∑
e ‖Λ(e, e)‖2

,

we have ∥∥yiy
T
i

∥∥
2 ≤

∑
e

‖Λ(e, e)‖2 ≤
∑

e

Tr (Λ(e, e)) = Tr (Λ) ≤ nd.

To bound the variance, observe that∥∥Var
(
yyT

)∥∥
2 =

∥∥∥E [
yyT yyT

]− (
E
[
yyT

])2
∥∥∥

2

≤ ∥∥E [
yyT yyT

]∥∥
2 +

∥∥∥(E [
yyT

])2
∥∥∥

2
.

Since the second term on the right-hand of the above inequality can be bounded
by ∥∥∥(E [

yyT
])2

∥∥∥
2

=
∥∥Λ2

∥∥
2 (as property (1)) = ‖Λ‖2 = 1,

it is sufficient to bound the term
∥∥E [

yyT yyT
]∥∥

2 . By the definition of expectation,
we observe that∥∥E [

yyT yyT
]∥∥

2 =
∥∥∥∥∑

e

pe
1
p2

e

Λ(·, e)Λ(·, e)T Λ(·, e)Λ(·, e)T

∥∥∥∥
2

=
∥∥∥∥∑

e

1
pe

Λ(·, e)Λ(e, e)Λ(·, e)T

∥∥∥∥
2
.
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This implies that∥∥E [
yyT yyT

]∥∥
2

= max
f∈Im(W 1 / 2 B )

∑
e

1
pe

fT Λ(·, e)Λ(e, e)Λ(·, e)T f

fT f

= max
f∈Im(W 1 / 2 B )

∑
e

1
pe

fT Λ(·, e)Λ(e, e)Λ(·, e)T f

fT Λ(·, e)Λ(·, e)T f

fT Λ(·, e)Λ(·, e)T f

fT f

≤ max
f∈Im(W 1 / 2 B )

∑
e

‖Λ(e, e)‖2

pe

fT Λ(·, e)Λ(·, e)T f

fT f
.

Recall that the probability pe is proportional to weR eff(e), i.e.,

pe =
weR eff(e)∑
e weR eff(e)

=
‖Λ(e, e)‖2∑
e ‖Λ(e, e)‖2

.

We have∥∥E [
yyT yyT

]∥∥
2 ≤

∑
e

‖Λ(e, e)‖2

(
max

f∈Im(W 1 / 2 B )

∑
e

fT Λ(·, e)Λ(·, e)T f

fT f

)
=

∑
e

‖Λ(e, e)‖2 ‖Λ‖2 =
∑

e

‖Λ(e, e)‖2 ≤
∑

e

Tr (Λ(e, e))

= Tr (Λ) ≤ nd.

Thus ∥∥Var
(
yyT

)∥∥
2 ≤ nd + 1 ≤ 2nd

∥∥E [
yyT

]∥∥
2 .

To complete the proof, setting q = 4nd
(
log(nd) + log(1/ξ)

)
/ε2 and using the

fact that the dimension of yyT is nd, we have

Pr
[∥∥∥∥1

q

q∑
i=1

yiy
T
i − E

[
yyT

]∥∥∥∥
2

> ε

]
≤ nd exp

(
−ε2 ∑q

i=1

∥∥E [
yiy

T
i

]∥∥
2

4nd

)

≤ nd exp
(
− ε2q

4nd

)
≤ ξ

for some constant 0 < ξ < 1. The theorem follows.

In [Koutis 10], a modification of the algorithm from [Spielman and Srivas-
tava 08] is presented. The oversampling theorem in [Koutis 10] can further be
modified for connection graphs and stated as follows.

Theorem 5.6. (Oversampling.) For a given connection graph G and some positive ξ > 0,
we consider G̃ = Sample(G, p′, q), where p′e = weR eff(e), t =

∑
e∈E p′e , and q =

4t(log(t) + log(1/ξ))/ε2 . Suppose G and G̃ have respective connection Laplacians
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L G and L G̃ . Then with probability at least 1 − ξ, for all f : V → Rd , we have

(1 − ε)fL G fT ≤ fL G̃ fT ≤ (1 + ε)fL G fT .

Proof. In the proof of Theorem 5.1, the key is the bound on the norm
∥∥yiy

T
i

∥∥
2 . If

p′e ≥ weR eff(e), the norm
∥∥yiy

T
i

∥∥
2 is bounded by

∑
e∈E p′e . The theorem follows.

Now let us consider a variation of the connection resistance denoted by
R eff(e) = Tr (Ψ(e, e)). Clearly, we have

R eff(e) = Tr (Ψ(e, e)) ≥ ‖Ψ(e, e)‖2 = R eff(e)

and ∑
e

weR eff(e) =
∑

e

Tr (Λ(e, e)) = Tr (Λ) ≤ nd.

Using Theorem 5.6, we have the following.

Corollary 5.7. For a given connection graph G and some positive ξ > 0, we consider
G̃ = Sample(G, p′, q), where p′e = weR eff(e) and q = 4nd(log(nd) + log(1/ξ))/ε2 .
Suppose G and G̃ = Sample(G, p′, q) have respective connection Laplacians L G

and L G̃ . Then with probability at least 1 − ξ, for all f : V → Rd , we have

(1 − ε)fL G fT ≤ fL G̃ fT ≤ (1 + ε)fL G fT .

We note that edge-ranking can be accomplished using the quantities known
as Green’s values, which generalize the notion of effective resistance by allow-
ing a damping constant. An edge-ranking algorithm for graphs using Green’s
values was studied extensively in [Chung and Zhao 10]. Here we will define a
generalization of Green’s values for connection graphs.

For i = 0, . . . , nd − 1, let φ̂i be the ith eigenfunction of the normalized con-
nection Laplacian D −1/2LD −1/2 corresponding to eigenvalue λi . Define

G β =
nd−1∑
i=0

1
λi + β

φ̂T
i φ̂i .

We remark that G β can be viewed as a generalization of the pseudoinverse of
the normalized connection Laplacian. Define the PageRank vector with a jumping
constant α as the solution to the equation

p̂rβ ,ŝ =
β

2 + β
ŝ +

2
2 + β

p̂rβ ,ŝZ
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with β = 2α/(1 − α). These PageRank vectors are related to the matrix G β via
the following formula, which is straightforward to check:

p̂rβ ,ŝ

β
= sD −1/2G β D 1/2 .

Now for each edge e = {u, v} ∈ E, we define the connection Green’s value ĝβ (u, v)
of e to be the following combination of PageRank vectors:

ĝβ (u, v) = β(χu − χv )D −1/2G β D −1/2(χu − χv )T

=
p̂rβ ,χu

(u)
du

− p̂rβ ,χu
(v)

dv
+

p̂rβ ,χv
(v)

dv
− p̂rβ ,χv

(u)
du

.

This gives an alternative to the effective resistance as a technique for rank-
ing edges. It could be used in place of the effective resistance in the edge-
sparsification algorithm.

6. Eliminating Noise in Data Sets by Deleting Edges of High Rank

In forming a connection graph, the possibility arises of there being erroneous data
or errors in measurements, or other forms of “noise.” This may be manifested
in a resulting connection graph that is not consistent when it is expected that
it would be. It is therefore desirable to be able to identify edges whose rotations
are causing the connection graph to be inconsistent. We propose that a possible
solution to this problem is to randomly delete edges of high rank in the sense of
the edge-ranking. In this section, we will obtain bounds on the eigenvalues of the
connection Laplacian resulting from the deletion of edges of high rank. This will
have the effect of reducing the smallest eigenvalue, thus making the connection
graph “closer” to being consistent, as seen in Theorem 2.2.

To begin, we will derive a result on the spectrum of the connection Laplacian
analogous to the result in [Chung and Radcliffe 11] on the adjacency matrix of
a random graph.

Theorem 6.1. Let G be a given fixed connection graph with Laplacian L . Delete
edges ij ∈ E(G ) with probability pij . Let Ĝ be the resulting connection graph, L̂
its connection Laplacian, and L = E(L̂ ). Then for ε ∈ (0, 1), with probability at
least 1 − ε,

|λi(L̂ ) − λi(L )| ≤
√

6Δ ln(2nd/ε),

where Δ is the maximum degree, assuming Δ ≥ 2
3 ln(2nd/ε).
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To prove this, we need the concentration inequality from [Chung and Rad-
cliffe 11].

Lemma 6.2. Let X1 , . . . , Xm be independent random n × n Hermitian ma-
trices. Moreover, assume that ‖Xi − E(Xi)‖2 ≤ M for all i, and put v2 =
‖∑Var (Xi)‖2 . Let X =

∑
Xi. Then for all a > 0,

Pr(‖X − E(X)‖2 > a) ≤ 2n exp
(
− a2

2v2 + 2Ma/3

)
.

Proof of Theorem 6.1. Our proof follows ideas from [Chung and Radcliffe 11]. For
ij ∈ E(G ), define A ij to be the matrix with rotation Oij in the i, j position,
Oji = OT

ij in the j, i position, and 0 elsewere. Define random variables hij = 1 if
the edge ij is deleted, and 0 otherwise. Let A ii be the diagonal matrix with Id×d

in the ith diagonal position and 0 elsewhere. Then note that

L̂ = L +
∑

i,j∈E

hij A ij −
n∑

i=1

∑
j∼i

hij A ii

and

L = L +
∑

i,j∈E

pij A ij −
n∑

i=1

∑
j∼i

pij A ii .

Therefore,

L̂ − L =
∑

i,j∈E

(hij − pij )A ij −
n∑

i=1

∑
j∼i

(hij − pij )A ii .

To use Lemma 6.2, we must compute the variances. We have

Var
(
(hij − pij )A ij

)
= E

(
(hij − pij )2(A ij )2) = Var (hij − pij ) (A ii + A jj )

= pij (1 − pij )(A ii + A jj ),

and in a similar manner,

Var
(
(hij − pij )A ii

)
= pij (1 − pij )A ii .
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Algorithm 3. (H = (V,E ′, O,w′)) = ReduceNoise(G = (V,E,O,w), p′, q, α).
1. Select q edges in q rounds. In each round, one edge is selected. Each edge

e is chosen with probability pe proportional to its effective resistance.
Then the chosen edge is assigned a weight w′

e = we/(qpe).

2. Delete αq = q′ edges in q′ rounds. In each round, one edge is
deleted. Each edge e is chosen with probability p′e proportional to the
weight w′

e .

3. Return H , the connection graph resulting after the edges are deleted.

Therefore,

v2 =
∥∥∥∥ ∑

i,j∈E

pij (1 − pij )(A ii + A jj ) +
n∑

i=1

∑
i∼j

pij (1 − pij )A ii

∥∥∥∥
2

≤ 2
∥∥∥∥ n∑

i=1

⎛⎝ n∑
j=1

pij (1 − pij )

⎞⎠A ii

∥∥∥∥
2

= 2max
i

n∑
j=1

pij (1 − pij )

≤ 2max
i

n∑
j=1

pij ≤ 2Δ.

Each A ij clearly has norm 1, so we can take M = 1. Therefore, by Lemma 6.2,
taking a =

√
6Δ ln(2nd/ε), we see that

Pr
(∥∥∥L̂ − L

∥∥∥
2

> a
)
≤ 2nd exp

(
− a2

2v2 + 2Ma/3

)
≤ 2nd exp

(
−6Δ ln(2nd/ε)

6Δ

)
= ε.

By a consequence of Weyl’s theorem (see, for example, [Horn and Johnson 85]),
since L̂ and L are Hermitian, we have∣∣∣λi(L̂ ) − λi(L )

∣∣∣ ≤ ∥∥∥L̂ − L
∥∥∥

2
.

The result then follows.

We now present our Algorithm 3 to delete edges of a connection graph with
the goal of decreasing the smallest eigenvalue of the connection Laplacian.

Our analysis of this algorithm will combine Theorems 5.1 and 6.1. Given a
connection graph G , define λG to be the smallest eigenvalue of its connection
Laplacian.
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Theorem 6.3. Let ξ, ε, δ ∈ (0, 1) be given. Given a connection graph G with m edges,

m > q =
4nd(log(nd) + log(1/ξ))

ε2 ,

α <1, let H be the connection graph resulting from Algorithm 3. Then with prob-
ability at least (1 − ξ)(1 − δ), the subgraph H satisfies

λH ≤ (1 − α + ε)λG +
√

6Δ ln(2nd/δ),

provided that the maximum degree Δ satisfies Δ ≥ 2
3 ln(2nd/δ).

Proof. We first note that with ξ, ε, and q as specified, the edge-selection procedure
described in step 1 of Algorithm 3 is the same procedure described in Algo-
rithm 2 and in Theorem 5.1. Let G̃ be the weighted graph resulting from the
edge selection, and let L G̃ be its connection Laplacian. Then by Theorem 5.1,
we know that with probability at least ξ, for every f : V → R d , we have

(1 − ε)fL G fT ≤ fL G̃ fT ≤ (1 + ε)fL G fT . (6.1)

Now let H be the connection graph resulting after the deletion process in
step 2 of Algorithm 3, and let L H be its connection Laplacian. We note that
H is a random connection graph resulting from the deletion of edges of a fixed
connection graph, as described in Theorem 6.1. Let L H be the matrix of expected
values of the entries of L H , L H = E(L H ). Note that the deletion procedure deletes
αq of the q edges from G̃ with probability proportional to the weight on each
edge, so that the expected value is L H = L G − αL G̃ . From (6.1), it follows that

fL G fT − (1 + ε)αfL G fT ≤ f(L G − αL G̃ )fT ≤ fL G fT − (1 − ε)αfL G fT ,

and thus

fL G fT − (1 + ε)αfL G fT ≤ fL H fT ≤ fL G fT − (1 − ε)αfL G fT .

In particular, it follows that

fL H fT

ffT
≤ (1 − α + ε)

fL G fT

ffT

for every f : V → R d , and therefore that

λ0(L H ) ≤ (1 − α + ε)λ0(L G ).

Finally, by Theorem 6.1, given δ > 0, we have with probability at least ξ(1 − δ)
that

λH < (1 − α + ε)λG +
√

6Δ ln(2nd/δ).
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Phys. chem. 72 (1847), 497–508.

[Koutis 10] I. Koutis, G. L. Miller, and R. Peng. “Approaching Optimality for Solving
SDD Linear Systems.” In Proceedings of 51st IEEE Symposium on Foundations of
Computer Science, pp. 235–244, 2010.

[Lowe 99] D. G. Lowe. “Object Recognition from Local Scale-Invariant Features.” In
Proceedings of the 7th IEEE International Conference on Computer Vision, pp. 1150–
1157, 1999.

[Penrose 55] R. Penrose. “A Generalized Inverse for Matrices.” Cambridge Philosophical
Society 51 (1955), 406–413.

[Recht 11] B. Recht. “Simpler Approach to Matrix Completion.” Journal of Machine
Learning Research 12 (2011), 3413–3430.

[Singer 11] A. Singer. “Angular Synchronization by Eigenvectors and Semidefinite Pro-
gramming.” Applied and Computational Harmonic Analysis 30, (2011), 20–36.

[Singer and Wu 12] A. Singer and H.-T. Wu. “Vector Diffusion Maps and the Con-
nection Laplacian.” Communications on Pure and Applied Mathematics 65 (2012),
1067–1144.



Chung et al.: Ranking and Sparsifying a Connection Graph 115

[Singer et al. 11] A. Singer, Z. Zhao Y. Shkolnisky, and R. Hadani. “Viewing Angle
Classification of Cryo-electron Microscopy Images Using Eigenvectors.” SIAM Jour-
nal on Imaging Sciences 4 (2011), 723–759.

[Spielman and Srivastava 08] D. A. Spielman and N. Srivastava. “Graph Sparsification
by Effective Resistances.” In Proceedings of 40th ACM symposium on Theory of
Computing, pp. 563–568, 2008.

[Spielman and Teng 04] D. A. Spielman and S.-H. Teng. “Nearly-Linear Time Algo-
rithms for Graph Partitioning, Graph Sparsification, and Solving Linear Systems.”
In Proceedings of the 36th ACM Symposium on Theory of Computing, pp. 81–90,
2004.

[Spielman and Teng 06] D. A. Spielman and S.-H. Teng. “Nearly-Linear Time Algo-
rithms for Preconditioning and Solving Symmetric, Diagonally Dominant Linear
Systems.” Available online (http://www.arxiv.org/abs/cs.NA/0607105), 2006.

[Spielman and Teng 10] D. A. Spielman and S.-H. Teng, “Spectral Sparsification of
Graphs.” SIAM Journal on Computing 40 (2011), 981–1025.

[Tropp 11] J. Tropp. “User-Friendly Tail Bounds for Sums of Random Matrices.” Avail-
able online (http://arxiv.org/abs/1004.4389), 2011.

[Vershynin 08] Roman Vershynin. “A Note on Sums of Independent Random Ma-
trices after Ahlswede–Winter.” Available online (http://www-personal.umich.edu/
∼romanv/teaching/reading-group/ahlswede-winter.pdf), 2008.

[Vu 07] V. Vu. “Spectral Norm of Random Matrices.” Combinatorica 27 (2007), 721–
736.

[Wigderson and Xiao 08] A. Wigderson and D. Xiao. “Derandomizing the Ahlswede–
Winter Matrix-Valued Chernoff Bound Using Pessimistic Estimators, and Applica-
tions.” Theory of Computing 4 (2008), 53–76.

Fan Chung, Department of Department of Computer Science and Engineering, Uni-
versity of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
(fan@ucsd.edu)

Wenbo Zhao, Department of Department of Computer Science and Engineering,
University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
(w3zhao@ucsd.edu)

Mark Kempton, Department of Department of Computer Science and Engineering,
University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
(mkempton@ucsd.edu)


