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A spatial model of cognitive distance in cities
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ABSTRACT

Spatial cognition is fundamental to the behaviour and activity of humans in urban
space. Humans perceive their environments with systematic biases and errors, and
act upon these perceptions, which in turn form urban patterns of activity. These
perceptions are influenced by a multitude of factors, many of them relating to the
static urban form. Yet much of geographic analysis ignores the influence of urban
form, instead referring most commonly to the Euclidean arrangement of space. In
this paper we propose a novel spatial modelling framework for estimating cognitive
distance in urban space. This framework is constructed from a wealth of research
describing the effect of environmental factors on distance estimation, and produces
a quantitative estimate of the effect based on standard GIS data. Unlike other cost
measures, the cognitive distance estimate integrates systematically observed dis-
tortions and biases in spatial cognition. As a proof-of-concept, the framework is
implemented for 26 cities worldwide using open data, producing a novel compara-
tive measure of ‘cognitive accessibility’. The paper concludes with a discussion of the
potential of this approach in analysing and modelling urban systems, and outlines
areas for further research.

KEYWORDS

Spatial Cognition; GIScience; Cognitive Geography; Cognitive Distance;
Accessibility.

1. Introduction

Distance is an intrinsic component of all spatial processes and fundamental to all
human activity in geographical spaces. People make use of the concept of distance
to plan journeys, undertake activities, and interact with their environment (Montello,
1997). However, whereas in most analytical contexts the convention is that distance
is measured on a Euclidean plane, human behaviour and social systems are instructed
by a notion of distance that involves a subjective or psychological dimension. At a
fundamental level, humans perceive the external, phenomenal environment, giving
shape to a behavioural environment within which they act (Kirk et al., 1963). In
modern-day, geographical analysis we make no such distinction.

The study of human perception of distance has typically taken one of two forms. As
a cognitive (Canter & Tagg, 1975) (or subjective distance (Thompson, 1963)) which
is ‘the impression of distance formed in the mind’ between places that are not visible
from each other (Walmsley & Jenkins, 1992, p. 24), or, alternatively, as perceptual
distance (Baird, 1970) which regards estimation of distance to places directly visible
from the observer’s position. Even though misrepresented distances had been already
reported by Brennan (1948) to describe consumers preferences, a more explicit in-
terest for the notion of cognitive distance arose in behavioural geography between



the 1960s and 1970s. The dissatisfaction with simplistic assumptions regarding the
human-environment interaction, based on the principles of homo economicus and the
perception of an objective external world (Golledge & Timmermans, 1990; Portugali,
2011), triggered the development of alternative models to explain spatial behaviour.
The reporting of misjudgements in distance assessment amongst shoppers from San
Francisco (Thompson, 1963) inaugurated a series of studies which described overesti-
mation of distances under a variety of contexts and circumstances (Canter & Tagg,
1975; Pocock & Hudson, 1978).

This vein of research was further enriched by studies on the ‘mental image’ of the
city, and the relationship between urban form, its elements and cognitive representa-
tions (Appleyard, 1970; Horton & Reynolds, 1971; Lynch, 1960). Behavioural geog-
raphers investigated how external properties of the environment mould the internal
representation and the formulation of spatial relationships, such as cognition of spatial
separation (Briggs, 1973). Moreover, by highlighting the role of action as a medium
between people and the city, Chapin (see: Chapin, 1968; Chapin & Brail, 1969) intro-
duced the concept of action space, the environment wherein an individual engages in
most of her activities. Such a space generates stronger and more detailed mental repre-
sentations, affecting route and destination choices but also magnifying miscomputation
of distances and distortions in spatial relations. In a similar manner, Hägerstrand’s
Time Geography approach (Hägerstrand, 1970) stressed the importance of the tem-
poral dimension and other external constraints, like (cognitive) distance, which may
affect people’s activity trajectories.

At the end of the last century, collaborations with environmental psychologists
(Kitchin et al., 1997) and the shift of paradigm in cognitive science have led geogra-
phers to partly abandon the study of the what and where to dedicate more attention to
the how and why (Golledge, 2002). This change of perspective have prompted a more
explicit study of cognitive processes and internal representations of space. Cognition
of distance has been included in the general domain of spatial distortions research
(Montello, 1997; Tversky, 1992) and is seen as part of processes of simplification and
organisation of the external world knowledge. Along with Euclidean information, the
human mind makes use and assimilates spatial information by means of hierarchical
organisation (e.g. Hirtle & Jonides, 1985; McNamara et al., 1989; Stevens & Coupe,
1978), change of perspective (e.g. Tversky, 1981) and environmental cues, as landmarks
(e.g. Hommel et al., 2000; Jansen-Osmann & Berendt, 2005). These three principles
involve the perceptual and attentive cognitive systems and are behind the general
cognitive functioning (Gibson, 1979; Neisser, 1976; Rosch, 1973), and may result in
distance distortions (Tversky, 1992).

Even though it has been shown that cognitive distance reflects real distances (e.g.:
Jansen-Osmann & Berendt, 2005) and that people are able to store and process metric
information about the environment (Ishikawa & Montello, 2006; Montello, 1998), the
study of cognitive distance remains valuable. The concept is informative of individual
behaviour, as it discloses hints about the cognitive organisation of spatial knowledge
(Montello, 1997) and the relationship between internal and external representation
(Portugali, 1996); but furthermore, as a behaviour determinant, it provides insights for
analysing movement patterns and the human-environment interaction at the macro-
level. The cognition of distance is at the basis of spatial decision-making (Hägerstrand,
1970), navigation (Cadwallader, 1976), and wayfinding behaviour (Brunyé et al., 2015).
Research in neuroscience and neuropsychology has also shown that distance is explic-
itly encoded in the human brain and it involves the activation of different areas in the
hippocampus formation (Morgan et al., 2011), depending on the spatial task performed
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(e.g. Chen et al., 2019; Howard et al., 2014) and the familiarity with the environment
(Patai et al., 2019).

Parallel to developments in the understanding of spatial cognition, quantitative ge-
ography and GIScience have emerged as established fields of research, underpinned
by common principles of spatial representation. Central to spatial analysis is the en-
coding of geometric features on a Euclidean plane, differentiating objects within this
space as points, lines, or polygons. Euclidean space has the benefit of being readily
measurable on the Earth’s surface and a reasonable proxy for spatial friction and in-
teraction (Wilson, 1971). The ubiquity of the Euclidean approach translates to the all
spatial data, models, and maps in common use, yet the ubiquity of adoption does not
make it suitable in all applications. Uncertain or fuzzy perceived, semantic, and social
constructs in space - such as neighbourhood regions and salient locations - are not
adequately represented by the crisp precision of GIS definitions (Burrough & Frank,
1996) and the use of such features may result in misleading analysis (Kwan, 2012).
Models of spatial phenomena in health and transportation may integrate metric dis-
tance decay with non-Euclidean or non-metric spatial components (e.g. time, cost). It
is well understood that translation errors occur in during the reading and cognition of
2D maps and cartography (Lobben, 2004).

In view of these limitations, a range of alternative non-Euclidean models of space
have been presented, capturing alternatively time and connectivity. The most estab-
lished set of methods is found in time geography, where Euclidean space is augmented
by a third temporal dimension in the form of a path or prism (Kwan, 2004, 2013),
along or within which spatio-temporal accessibility measures can be computed. This
representation is highly suited for describing the activity of humans and mobile ob-
jects, but does not capture perceptual and non-Euclidean distortion of space. Another
source of spatial data is derived from topological connectivity between spatial features,
where graph adjacency may be spatial and/or non-spatial in nature. Within this con-
text, the computation of regional properties may arise from a variety of topological
factors, from flow between features (e.g. goods, people, resources), strength of spatial
connectivity (e.g. based on angle or distance) (Hillier & Iida, 2005; Turner, 2007), or
infrastructural connection (Derrible & Kennedy, 2010). The properties of connectivity
have important implications for describing the characteristics of urban systems. There
remains, however, little exploration of how the systematic biases and limitations inher-
ent to human spatial cognition can be integrated into spatial models of distance and
connectivity. With such a measure, opportunities would arise to compute ‘cognitive’
measures of spatial accessibility,

The aim of this paper is to outline a quantitative framework for integrating cognitive
distance into computational representations of space. The framework is built on a
wealth of research into cognitive distance, developed over the last few decades, and
proposes a preliminary set of measures and weights that link environmental features
to their systematic impact on cognitive geographic distance. As we will demonstrate
in this paper, the production of such a measure allows us to consider how cognitive
distances vary in aggregate by spatial context. Through a case study application, we
will explore variation in cognitive distance across a subset of cities.

In the next section we will draw together the wealth of prior research into the
relationship between humans, environment features, and distance perception. Taking
these lessons on, the third section will present the proposed framework for augmenting
Euclidean distance according to the exposure to environmental features. In the fourth
section, a case study implementation of the framework is described within the context
of ‘cognitive accessibility’, drawing on globally available GIS data sources. The paper
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will conclude with thoughts on the future directions and potential of this research. The
framework we present, at this stage, is intended as only an initial integration of these
previously disparate fields. It is hoped that, by highlighting the relationship between
human cognition and the representation of geographic space through GIS, further
advances in our understanding of how urban space impacts human behaviour can be
made. The definitions made within this paper should therefore be read as a starting
point for further verification, validation, and development through collaboration across
the geography and psychology research communities.

2. Urban form and cognitive distance

In building a framework for encoding cognitive distances within geospatial representa-
tions, one can draw upon a wealth of past empirical studies. These studies were, for the
most part, conducted with small numbers of participants within controlled settings.
As such, it cannot be claimed that any comprehensive study, able to define cognitive
distance estimation at all scales and contexts, exists. However, they provide a set of
guiding principles for developing a geocomputational framework to cognitive distance.
Research around cognitive distance is widely influenced by the conceptualisation of
spatial perception offered by Lynch (1960), decomposing the urban environment in
five elements - paths, nodes, districts, landmarks and edges. We here embrace this ap-
proach, although other semantic representations of the urban environment have been
proposed (e.g. Berta et al., 2016; Dibble et al., 2019).

The central relationship between environmental features and cognitive distance can
be considered to relate to a few fundamental theories. Milgram (1973) argued that the
more information associated with a geographical area, that is the more features con-
tained in a region, the greater the perceived extent of the area. Likewise, a route with
a high number of features would be represented as longer, in comparison to routes of
equal length but featured by fewer environmental stimuli. The effect is known as the
information storage hypothesis (Sadalla et al., 1980) or feature accumulation effect
(Montello & Freundschuh, 1995). Furthermore, the presence of geographical features
along a route relates to a tendency to represent knowledge about the external space
in a hierarchical manner (Hirtle & Jonides, 1985). According to the route segment-
ing hypothesis (Montello, 1997), environmental features or groups of features induce a
representation of space organised in blocks or homogeneous stretches (Jansen-Osmann
& Berendt, 2005) that cause distortions in distance knowledge. The influence of dif-
ferent environmental features - including intersections, barriers, landmarks and turns
- revolve around these two cognitive processes.

2.1. Intersections and landmarks

Sadalla et al. (1980) demonstrated that estimated distances increased with the number
of intersections encountered within both artificial and urban settings. In the same
fashion, Kahl et al. (1984) found that children would estimate routes fragmented by
several interruptions as longer than continuous routes. The results of these studies
are aligned with the route segmentation hypothesis: intersections form one basis for
chunking a route, a process that consists in organising a complex route into more
easily memorable segments or blocks, so as to increase cognitive efficiency (Allen,
1982; Klippel et al., 2003). A similar argument applies to landmarks: relevant buildings
belonging to the same group (e.g. proximity, functions, colour, etc.) would be perceived

4



as closer than what they are, whereas elements of different classes are estimated to be
more distant than in reality (see: Hirtle & Jonides, 1985; Hommel et al., 2000).

Related to the effect of route chunking is that of feature accumulation, which refers
to the effect of increasing recalled distance, with higher exposure to spatial features
(e.g. landmarks along a route). Briggs (1973) hypothesised a relation between the city
structure and the cognition of distances and describes buildings’ vividness and vari-
ation as possible factors influencing distance knowledge. Jansen-Osmann & Berendt
(2005) delved into the interaction between the feature accumulation and the route
segmenting effects. In a set of experiments in virtual reality environments (VRE), par-
ticipants overestimated distances due to accumulation of landmarks or intersections
in a route-learning condition, and due to segmenting features in a map-learning con-
dition. The interaction of such effects may depend on how an individual experiences
a certain environment (e.g. egocentric versus allocentric frames of reference).

2.2. Turns

The influence of turns has recently received attention in relation to the perception of
distances, under the name of the route-angularity effect (Jansen-Osmann & Wieden-
bauer, 2004). Sadalla & Magel (1980) reported that routes that featured seven right-
angle turns were estimated as longer than routes with only two turns in an artificial
environment, due to the scaling hypothesis (see below). However, Jansen-Osmann &
Wiedenbauer (2006) argued that the memory load and uncertainty would determine
to what extent people may rely on heuristics such as chunking the route at turns. This
idea has been supported by a successive study (Hutcheson & Wedell, 2009), accord-
ing to which the number of turns is coded and retrieved as a distance heuristics, in
particular when ‘fine-grained memory for a path distance is disrupted’ (Hutcheson &
Wedell, 2009, p. 519).

2.3. Barriers and regions

While physical and perceptual boundaries support the hierarchical organisation of
the external environment in regions and subjective districts, they may also affect
the cognition of distances. In artificial settings, several researchers (Kosslyn et al.,
1974; McNamara, 1986; Newcombe & Liben, 1982) observed that objects belonging
to different quadrants were perceived as further away by both children and adults, in
comparison to objects located in the same region and alike distance. Along the same
lines, Cohen et al. (1978) evaluated the effects of natural barriers, as trees and hill, on
the perception of ‘ease of travel’. When two locations were separated by such barriers
the subjected tended to overestimate distances. On the contrary, an absence of edges
was associated with underestimated distances.

2.4. Network density and legibility

Kevin Lynch had already discussed the interaction between perceived complexity, ur-
ban morphology and mental imagery in The Image of the City (Lynch, 1960), de-
scribing several cases where passersby where confused by the poor vividness of certain
areas, street-layouts, or the density of similar indistinguishable junctions. In this direc-
tion, aimed at discussing possible intrinsic metric properties of urban mental imagery,
Canter & Tagg (1975) summarised the results of several experiments on distance esti-
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mations in urban environments. Cities with confusing configurations would lead people
to overestimate distances. This is, for example, the case of Tokyo (Japan), ‘such an
intricate city that there is no other overall structure to which reference can be made
when representing it schematically’ (Canter & Tagg, 1975, p. 76). Conversely, cities
featured by rivers, railways, remarkable elements and regular layouts - namely legible
cities - would cause distortions in terms of distance underestimation. In this con-
text, little emphasis is given to configurational aspects in terms of network density
and complexity. The link between imageability and distortion quantification has not
been explored further, perhaps due to the not trivial formalisation of terms such as
imageability and legibility.

2.5. Travel time, speed and mode

The relationship between travel time and distance estimation has been widely stud-
ied in geography due to its intuitive nature (Montello, 1997). Golledge & Zannaras
(1973) argued that the perception of distances is directly influenced by the time that
would be necessary to complete the path between the pairs of considered locations.
MacEachren (1980) showed that travel time had a stronger relationship with distance
estimates, as compared to objective distance combined with environmental factors
(number of intersections, turns, traffic lights). However, Montello (1997) questioned
these results and the nature of this relationship. Other studies have indeed displayed
a negative relationship between time and distance and disregarded the existence of a
casual correlation between these variables (e.g.: Crompton & Brown, 2006; Lederman
et al., 1987).

No less discussed is the perception of distances of active and passive travellers.
Montello (2009) describes two different conceptualisations of active travelling (see also:
Chrastil & Warren, 2012). Active travelling entails taking spatial decisions at first hand
and refers to self-guided movement : a car driver is an active traveller whereas passen-
gers or public transport users are passive travellers. For example, Appleyard (1970)
reported better distance estimates in bus and car drivers than in public transport pas-
sengers; yet, other studies presented conflicting results regarding distance estimation
of drivers and non-drivers (e.g. Lee, 1970; Lowrey, 1973; MacEachren, 1980).

Another perspective discerns active from passive travelling on the basis of the the
effort involved in the completion of the trip. An active traveller is someone who is
self-powered, such as walkers, runners and cyclists, whereas passive travellers exploit
motorised vehicles, either as drivers or passengers. The distinction is important when
studying human perception of distances but, once again, evidence is not unequivocal
(see: Crompton & Brown 2006; Hart 1981, and studies in VR, e.g.: Foreman et al.
2004; Gaunet et al. 2001; Mellet et al. 2010; Ruddle et al. 2011; Sandamas & Foreman
2015).

2.6. Topographic change

To explain Euclidean distance overestimation resulting from the presence of hills, Co-
hen et al. (1978) resorted to the influence of the physical effort required to the subjects
when reaching the destination. Aware of the presence of hill or up-hill sections, indi-
viduals would incorporate a fatigue component into the distance judgement and thus
magnify the estimate. However, as suggested by Okabe et al. (1986), down-hill routes,
trails or section of stairs may require extra-care and therefore induce another kind
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of effort. Indeed, the authors found out that distances were overestimated in adults
and children that walked along uphill, downhill (average slope 8.5◦) and flat trails
100 meters long. In their view, errors derived by walking uphill were associated with
physical effort, errors caused by walking downhill were associated with cognitive effort.
Stefanucci et al. (2005) reached similar conclusions across experiments in real world
and virtual environments, for 20◦ and 25◦ slopes (target distances were between 8 and
14 meters).

2.7. Route distance

The navigation task at hand is shown to have an additional effect on distance cog-
nition, as the context and distance between origin and destination are relevant. One
important finding suggests that people tend to overestimate shorter distances and un-
derestimate longer ones (Lloyd, 1989), (scaling hypothesis). This study, which asked
participants to estimate distances between landmarks that they had been asked to
memorise, identified significant differences in estimation error between pairs of loca-
tions at short and long distances. These results were consistent for both Euclidean and
route distance estimates. The study demonstrated as a secondary effect that distance
estimates within urban settings were worse than those in rural areas, further validat-
ing earlier studies showing that the density of spatial features play a role in distance
cognition.

3. Towards a spatial model for cognitive distance

The review has highlighted the variety of environmental and contextual factors that
influence distance perception. Next we address how these findings can be integrated
within a quantitative framework for estimating cognitive distance. The framework
proposes, first, a set of spatial data and, second, a set of weightings that can be used
in calculating cognitive distance.

3.1. Spatial data selection

In order to align with the findings in spatial cognition outlined above, we must first
establish the nature and availability of spatial data by which such distortions are
influenced. Below the features impacting cognitive distance are discussed in terms of
their representation in spatial data.

• Intersections are typically defined as point features in spatial data, located at the
intersection of two or more streets, and may be associated with a road network
hierarchy. While the literature recognises the prominent role of hierarchy in
spatial cognition, it does not draw a clear distinction between different types
of intersection. However, the locations described appear to relate to ‘decision
points’ where the individual faces a form of decision or distraction. As such,
where defining a set of intersections that might influence distance perception,
one should limit the effect of minor road junctions and dead ends.

• Landmarks are less clearly defined both in GIS and in their description in prior
studies. They are typically thought of as ‘well known’ or remembered locations
(Presson & Montello, 1988; Winter et al., 2008), and physically or visually set
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apart from other buildings (Filomena et al., 2019), which suggests their spa-
tial definition integrates structural, visual, and semantic meaning. Some have
advanced quantitative definitions of landmarks based on GIS data (Raubal &
Winter, 2002; Winter et al., 2008) that capture aspects of prominence, position,
and salience (Röser et al., 2012), yet given the subjective nature of landmark
recognition, the limitations of these representations are noted by the authors.

• Similar to landmarks, the definition of features is relatively vague, but can gener-
ally be attributed to locations that increase visual heterogeneity in urban space.
In terms of spatial data, we can potentially identify features from their land use
function (e.g. building class, function). The selection of specific feature types,
with generally greater visual salience, may be one approach for identifying het-
erogeneity in land use, another may be to calculate entropy values for features
relative to surrounding areas (Frank et al., 2005).

• Turns exposure may be captured through route selection through a road network.
In GIS, such a metric may be derived through accessibility measures, where a
shortest path (measured in distance, cost, time, etc.) is constructed between two
locations to indicate interaction and access. Turn-based paths have been devel-
oped elsewhere (Turner, 2007), and are generally defined as angular deviations
between road segments of greater than 60◦.

• Network density and order may be defined according to the regularity or clarity
of organisation of the local network and the proximity of intersections. In terms
of its computational representation, the network may be abstracted from the
standard polyline and node-based road network data. Building on this model, a
measure for local legibility is found in the form of the InterConnection Density
(ICD) metric proposed by O’Neill (1991). While others have linked legibility to
the space syntax form of the road network, and its associated measures (Long
et al., 2007). Nevertheless, a simple measure of node density (e.g. number of
intersections within a given radius) may equally encode the scale of potential
interactions and decisions required from an individual within a certain space.

• Definitions of barriers, edges and regions are readily available within GIS data
sets, however, their applicability to human cognition is less clear. Administrative
boundaries, while commonplace in GIS, do not necessarily align with cognitively
salient boundaries. Instead, boundaries relating to geographic features and func-
tion are more likely to capture the ‘boundary effect’. In this case, the simple
selection of edges at changes in land use (e.g. parks, building morphology) or in
terms of natural barriers (e.g. rivers, major roads, rail) provide some of these
locations. It has been shown how community detection methods can be used on
street networks to define realistic urban neighbourhood boundaries (Filomena
et al., 2019; Manley, 2014).

• Travel speed and transport mode can be incorporated within any path-based
measure as a product of route distance. In this respect, one may wish to dif-
ferentiate the impact of pedestrian distance perception relative to vehicular or
public transport travel modes. In these cases, estimates of travel speed can be
extracted using speed limit data, road width data, or service timetables.

• Topographic data is very readily available within GIS, with numerous global
models of elevation available at highly granular scales. With this data in place,
changes in topography may be assigned to roads based on direction of travel.
Alternative approaches have been recently proposed to better integrate physical
effort into pedestrian movement models (Greenberg et al., 2020).

• The Euclidean route distance can be easily extracted and functions in varying
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distance perception assigned accordingly. Although, it is often the case that
humans do not necessarily use the shortest path in urban areas (Manley et al.,
2015), it allows us to extract a probable route connecting an OD pair, and
evaluate its features accordingly.

As can be surmised from this review, there is variation in the availability of spatial
data sources to adequately capture the features influencing cognitive distance. Further
work is required, and is ongoing, around improving how we extract spatial features in
line with their perception (Filomena et al., 2019).

3.2. Estimating feature effects on cognitive distance

There have been no previous studies defining the compound effect of spatial feature
exposure on cognitive distance, and as such, here we present an approach for drawing
together these effects within an integrated model of cognitive distance. The factors
and their weighting relative to conventional spatial data are shown in Table 1.

There are important points to be considered in the practical application of this
framework. The first is that these estimates have been derived in a variety of geo-
graphic contexts. The absence of systematic experimentation on cognitive distance
means that some estimates are drawn from controlled experiments (both physical
settings and virtual reality), some from real-world environments, and some from non-
urban contexts. This limitation points to a need for further work in this area, but
also cautions our application of the framework. To clarify the extent of existing evi-
dence, we have indicated where evidence is ‘direct’ (presence of ecological evidence),
‘indirect’ (where evidence exists within virtual reality settings), or ‘indicative’ (when
no quantitative evidence is available but established hypotheses indicate an important
role). The varying strength of these findings impact on our final definition of weights.
In cases of direct or indirect evidence existing, we have extracted weights directly from
the studies listed in Table 1. Nevertheless, one should be aware that even in the cases
of there being direct evidence available, these experiments are conducted in specific
geographic contexts (often in the United States), and we have noted some of these
biases. Despite these biases in the evidence base, it is important to recognise that
all experimental and indicative findings are based on established cognitive processes
relating to human spatial cognition, as described earlier.

A secondary important point to consider in the application of the framework is
the nature of exposure to each type of spatial feature. We can define exposure as
being either behavioural or spatial. Behavioural exposures relate to factors that occur
due to specific actions being taken during the traversal of space, with the increase
in cognitive distance a product of the choices made or actions being taken. Spatial
exposure refers to the visual interaction with features residing in the urban realm
that leads to a change in distance perception, and as a secondary outcome of a task
being executed. Those effects experienced through behavioural exposure can only be
captured for a specific routing task (and varied on a route-by-route basis), whereas
locations of spatial exposure can be applied to the static GIS representation. This
differentiation sets cognitive distances aside from conventional GIS-based distance
measures, such as accessibility, and may result in asymmetric distortions in distances
across space. This differentiation is provided for each factor in Table 1.

Given the absence of literature on the relative importance of each factor in influenc-
ing distance estimation, all factors are weighted equally within our model. However, the
execution of weights should account for prior or joint exposure to other features, and

9



thus be computed to account for a cumulative effect. As such, the order of execution
of weight calculations plays a role in determining the composite measure. This order is
determined here by the scale at which each feature imposes an effect - therefore road
segment features (e.g. salient buildings, slope, local network order) are executed first,
then come intersections and turns, followed by major features (e.g. barriers), through
to finally executing route-level factors, such as total route distance and speed.

Within this proposed framework we have outlined the complete landscape of ev-
idence, related them to spatial data sources, and uniformly combined them. An al-
ternative formulation would be to incorporate only factors that have direct previous
evidence. In particular, given the behavioural nature of some factors (e.g. intersections,
slope changes, route distance), their inclusion in route choice decision models could
represent a useful implementation of cognitive distance. Nevertheless, the accumula-
tion of evidence suggests that a variety of features play a role in cognitive distance in
cities, and as such, warrant inclusion in a comprehensive framework.
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Factor Hypothesis Evidence Indications Weight Exposure

Intersections Segmentation
Direct : Sadalla
et al. (1980)

25% increase in estimated distance with
4 additional major intersection (US set-
ting)

Increase path distance by 6.25% for
each major intersection encountered,
reduced effect (4.5% increase) for
medium intersections

Behavioural

Salient Fea-
tures

Accumulation

Indirect :
Jansen-Osmann
& Berendt
(2005)

50% increase in estimated distance be-
tween routes empty of features and
those filled with visually diverse fea-
tures (in virtual reality setting)

Increase segment length by 50% where
more than 10 salient features (non-
residential, named features) occur on a
single segment

Spatial

Landmarks Accumulation
Indicative: Hir-
tle & Jonides
(1985)

Landmarks play a role in organising the
cognitive map

Increase route length by 5% where land-
mark is adjacent

Spatial

Travel Speed Effort
Indicative:
Montello (2009)

Reduced self-powered effort leads to
lower distance estimates (contended
finding)

When travelling by vehicle 0.9% of sum
distance after accounting for other fac-
tors

Behavioural

Network Or-
der

Segmentation
Indirect : Canter
& Tagg (1975)

‘Confusing’ urban structures leads to
higher distance estimation, but no for-
mal measure of structure provided

Areas of high network density (upper
quartile) increases segment distance by
5%

Spatial

Slope
Change

Effort
Direct : Okabe
et al. (1986)

Found 7% increase in estimated dis-
tance uphill and 15% increase downhill
(non-urban setting)

Increase segment lengths by 7% and
15% where elevation change exceeds 5◦

uphill or downhill respectively
Spatial

Turns Segmentation
Direct : Sadalla
et al. (1980)

Turns added 15.06 feet or 9.57% to dis-
tance estimates (US setting)

Increase sum distance by 9.5% for each
turn over 60◦

Behavioural
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Route Dis-
tance

Scaling
Indirect : Lloyd
(1989)

Distance overestimated on short routes
(0.8 inches, approx. 960 feet) and un-
derestimated long routes (-1.5 inches,
approx. -1800 feet) in urban settings
(route categories not provided)

Increase length of short routes by 10%,
reduce length on long routes by 10%

Behavioural

Barriers Segmentation
Indirect : Cohen
et al. (1978)

Found underestimation and overestima-
tion of distances where barriers absent
or present

Reduce total distance by 10% where
barriers absent; increase total distance
by 8% where barriers are present

Spatial

Table 1.: Sources of evidence used in factor weighting
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4. Case study: cognitive accessibility at the city scale

As a demonstration of the concepts that integrate the effects described in section 3
to conventional GIS data, a case study on the development of an objective measure
of ‘cognitive accessibility’ is calculated. This measure aims to capture the ‘cognitive
cost’ of traversing urban space, influenced by interaction with environmental features.
In this study, we aim to produce a measure of relative accessibility, with comparability
across a range of global cities. The measure will be based on the discrepancy between
our cognitive distance estimates and metric distances (Euclidean and route lengths).

4.1. Implementation

For the purposes of this study, we are interested in investigating how our measure of
cognitive accessibility varies across global cities. In the absence of a measure of valida-
tion, we require a set of cities with clear differences in urban design and structure, and
variation in the occurrence of features described earlier. A set of cities were identified
for this initial study, providing global coverage, structural variation (from planned and
grid-like to organic structure), topographic variation, and general familiarity due to
their size and prominence. The final list can be found in Table 2. For each city, a set
of routes will be constructed that capture variation in cognitive distance. These will
be compared against Euclidean and network distances, as indicators of the effect of
the aforementioned factors on cognitive distance.

4.1.1. Data selection and workflow

The construction of a global measure of cognitive accessibility requires a collection
of data with near global coverage and able to reproduce the factors documented in
Section 3. For this purpose, we make use of OpenStreetMap GIS data, which provides
fine-grained representation of road networks, buildings, and land use at near univer-
sal coverage. We further supplement this data source using SRTM topography data
accessed via Elevation API∗, which again provides global coverage at 5 to 30 metre
resolution.

Access to data on each city was made through use of the OSMNx Python package
(Boeing, 2017), which enabled extraction of both road network and building data
from OpenStreetMap for each city. Furthermore, OSMNx enables the construction of
a topological graph of the road network, and exploitation of the network analysis tools
available in another Python package, NetworkX. Using NetworkX and the network
graph created in OSMNx, shortest paths can be calculated between any locations
within the network. A set of methods for calculating the geometries of routes (i.e.
turns, elevation change, distances) and proximity to spatial features, implementing the
GeoPandas, Fiona, and Shapely Python packages, were written to supplement these
tools. References to intersection and road hierarchies were extracted from ‘Highway’
attribute† within OpenStreetMap road network data. Salient features were defined
as any building object with a defined ‘Amenity’ attribute‡ excluding ‘Residential’
classifications. These classifications are current standards within OpenStreetMap data,
and though may lack completeness, allow exploration and comparison of global trends
for the purposes of this study. The extraction of landmarks follows the methods defined

∗Described at https://elevation-api.io
†Further details on classification: https://wiki.openstreetmap.org/wiki/Key:highway
‡Further details on classification: https://wiki.openstreetmap.org/wiki/Key:amenity
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Figure 1. Plots of cognitive distance against network (1a) and Euclidean (1b) distance, with routes in Delhi
and London highlighted in red and blue respectively

in Filomena et al. (2019), which proposes measures for the physical, cultural and
pragmatic salience of a building. In this study, we classify landmarks as only the top
ten percentile of buildings by this measure.

For each city, we select data within a 1000 metre radius study area around a co-
ordinate at the centre of the city. Within each city study area, 500 random origin-
destination pairs are selected, and Euclidean distance (ed), road network distance
(nd)§, and cognitive distances (pd) will be extracted for each pair. The proportional
differences between network and Euclidean, ned = nd/ed, cognitive distance and Eu-
clidean, ped = pd/ed, and cognitive distance and network distance, pnd = pd/nd, will
be calculated. By capturing the degree of cognitive distraction relative to the shortest
possible distance and shortest possible path, the ped and pnd measure will be indica-
tive of the accessibility of the selected region, and used as a basis for evaluation. Lower
values of ped and pnd mean greater alignment between perceived and Euclidean dis-
tance and therefore higher accessibility. Summary mean distance scores will be taken
for each city, for each of the distance metrics.

4.2. Results

As we can see from Table 2, the ped and pnd metrics successfully differentiate between
cities with strong urban planning features and those with an ‘organic’ or historic urban
form. Cities with higher scores, such as Jakarta, Paris, Tokyo, and London, exhibit a
mix of planned and unplanned spatial regions, having developed over hundreds (or even
thousands) of years without uniform or consistent planning oversight. These regions
exhibit high intersection density consistently over space, meaning walkers are faced
with many options when navigating and encounter more major junctions. Cities with
lower ped and pnd scores, such as Casablanca and Delhi, reflect measures taken in
areas of heavily planned regions (see Figure 2, described below), low street network
density (reducing barrier and location effects), and lack of variance in street type
(reducing intersection effect) within the study space. A more detailed breakdown of
how each factor influences cognitive distance estimates in each city can be found in
Appendix A. In Figure 1, we can see the results for all generated routes, with two
cities highlighted. The figures show how cognitive distance scales exponentially with
Euclidean and network distance. It is noticeable that variance in cognitive distance
increases at higher Euclidean and network distances. We can also note relatively little
difference between ped and pnd in ranking or distribution, indicating that network
distance has only a limited role within this measure.

There are, however, noticeable exceptions to these general rules, which highlight
important aspects of methodology. New York City could be thought to have some of
the most easily accessible environments, yet have relatively high ped and pnd scores.
An important reason for this is that the metric is calculated for only a limited region of
each city, which may not reflect its wider structure or common perception. In the case
of New York, the metric is calculated for a region around the Tribeca neighbourhood,
which has a skewed grid street design influenced by the geography of Manhattan
Island. When the metric is calculated for Midtown, where the grid design is much

§Calculated according to the shortest metric distance path.
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Figure 2. Plots of indicative cognitive distance (red points) and Euclidean (blue points) distances from a
single origin point, in Delhi (2a) and Berlin (2b).

more regular, New York achieves a very low ped score (2.24), ranking it third lowest
within this set of cities. We can also assess variation between areas of the city. Taking
London, we observe higher cognitive distances in areas around Soho relative to the
Bank area. On assessing the cause of these differences (see Appendix A), we see the
difference relates to a higher interaction with major junctions in Soho relative to Bank.
These differences demonstrate how these measures vary within a city, but also how
the values defined for these spaces may not be fully representative of the entire city.
We expect that development and refinement of the approaches discussed in this paper
will result in more robust and useful measures of cognitive accessibility.

Another important facet of these measures relate to the spatial heterogeneity in
cognitive distance estimates, which is masked by the averaged scores for ped and
pnd. The nature of cognitive distance and the heterogeneity of urban space mean
that estimates can vary widely by direction, given the variable configuration of spaces
and location of features. This is best reflected in Figure 2, where we map differences
between Euclidean and cognitive distances of 18 destination points located 1000m
from a single origin centroid for two cities (note that the early analysis used random
origin-destination pairs). The maps demonstrate the difference between quite uniform
cognitive distance estimates (e.g. Delhi) and others where we observe some quite large
differences between adjacent points. These figures also demonstrate how cognitive dis-
tance can fall below Euclidean in some instances, given that these routes are impacted
by the route distance rule, but particularly where the cost of turns and intersection
encounters are low.

4.3. Limitations

Although this measure of cognitive accessibility is offered only as a proof-of-concept,
it is important to address some of the limitations of the approaches described here.
First, as we note above, the selection and parameterisation of feature effects on cogni-
tive distance is only guided by the literature and currently lacks validation. As such,
the findings presented are only indicative of a ‘cognitive’ accessibility measure, but
hopefully something that may provoke further thought and discussion. Secondly, there
are certainly reliability issues associated in the use of OpenStreetMap data, which has
some consistency flaws between cities in terms of feature mapping, attribute detail,
and classification. These limitations have implications for our measures, given the na-
ture of its definition. Finally, as noted above, the selection of ‘survey’ points for this
analysis provides only an indicative measure for each city, which can vary considerably
in their urban structure and design. The inclusion of additional bias effects, mentioned
in the literature review but not implemented here, remain opportunities for further
work.

5. Discussion and conclusions

Spatial cognition has a fundamental role in how humans navigate and use cities. In
shaping how we move and experience the city, spatial cognition may impact the emer-
gence of a swathe of social phenomena in space. Yet, as we have shown in this paper,
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City Euclidean Network Cognitive ned ped pnd

Jakarta 1066.99 1601.25 4211.77 3.95 1.50 2.63

London (Soho) 1003.97 1228.80 3946.91 3.93 1.22 3.21

Glasgow 1024.39 1416.06 3619.36 3.53 1.38 2.56

Paris 1018.03 1310.38 3483.30 3.42 1.29 2.66

Tokyo 951.88 1203.99 3209.91 3.37 1.26 2.67

Singapore 989.53 1267.50 3219.48 3.25 1.28 2.54

Berlin 995.63 1237.13 3151.45 3.17 1.24 2.55

Cairo 1101.04 1434.24 3428.48 3.11 1.30 2.39

Athens 1026.70 1219.67 3111.51 3.03 1.19 2.55

Brasilia 1056.73 1473.54 3135.08 2.97 1.39 2.13

Sydney 989.52 1281.41 2838.64 2.87 1.29 2.22

Bucharest 1014.84 1267.57 2899.11 2.86 1.25 2.29

Lisbon 1021.29 1305.46 2874.77 2.81 1.28 2.20

Mexico City 1031.98 1292.25 2877.48 2.79 1.25 2.23

Cape Town 937.46 1220.92 2593.30 2.77 1.30 2.12

Madrid 1095.48 1315.47 2993.62 2.73 1.20 2.28

Nairobi 951.88 1261.14 2557.17 2.69 1.32 2.03

New York City (Tribeca) 1032.54 1253.03 2746.97 2.66 1.21 2.19

Chicago 991.60 1294.33 2608.43 2.63 1.31 2.02

Rome 935.88 1144.71 2383.34 2.55 1.22 2.08

Buenos Aires 1058.66 1262.00 2673.88 2.53 1.19 2.12

Beijing 1070.86 1580.91 2691.43 2.51 1.48 1.70

La Paz 1025.56 1352.39 2480.43 2.42 1.32 1.83

San Francisco 1014.08 1213.47 2372.24 2.34 1.20 1.95

Lima 993.02 1276.85 2301.51 2.32 1.29 1.80

Casablanca 934.46 1166.85 2055.55 2.20 1.25 1.76

Delhi 1029.13 1348.57 2090.25 2.03 1.31 1.55
Table 2. Global variation in Euclidean, network, and cognitive distance, ordered by proportional difference
between cognitive and Euclidean distance ped
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the concept is difficult to measure and define, with different studies offering different
and non-intersecting views. However, it is important that the GIS community ad-
dresses the different ways in which we measure and model space, particularly where
human behaviour is concerned. The proposals and models outlined in this paper rep-
resent only an initial exploration of this topic, and the intention of this discussion is
to highlight the challenges and raise prospects for extension and further exploration.

The perception of distance potentially mitigates in a number of spatial phenomena,
commonly analysed through Euclidean distance. The detection of clusters and agglom-
erations of activity are captured through spatial proximity or network distance, yet the
presence of spatial features (e.g. attractive landmarks) or barriers (e.g. major roads)
may encourage or restrict continuous interaction, leading to non-uniformity in inter-
actions over space. This is particularly important where activity density is strongly
associated by local spatial perception, such as in the case of criminal activity. Higher
cognitive costs imposed by increased intersection density or the presence of barriers
may limit the continuity of crime hot spots, by increasing cognitive distances from
‘safe’ areas. While the configurational analysis of urban spaces in relation to social
phenomena has a rich history (Hillier & Hanson, 1984), there remain opportunities
for a broader quantitative analysis of urban form, its relation to spatial cognition, and
role in social processes.

Second, we can also consider how the presence of different features affect individual
behaviours too, where our interest lies in modelling human behaviour. Within most
spatial agent-based models individual decisions in relation to space integrate either
Euclidean or network distance as a central cost (with few exceptions, e.g. Manley &
Cheng (2018)). Gärling & Loukopoulos (2007) have shown that choice of transport
mode - walking or driving to a destination - is compounded by the cognitive cost
and not the actual distance. Therefore, by incorporating cognitive distance within our
models of behaviour, we can explore how spatial features might impact on behaviour
and accessibility (Neutens, 2015), and as a result adjust our simulated predictions of
activity or flow across space. Within all cases of distance-based costs, there are oppor-
tunities to address the role of spatial features in promoting or limiting interaction. In
addition, with better understanding of how spatial features expand and contract cog-
nitive distance, there is room to accommodate this into efforts of behavioural changes
at the societal level, for example reducing car dependency and increasing active/public
transport use, as well as informing urban planning processes about the impact of urban
design and zoning on distance perception and thus behaviour.

A third role for cognitive distance is to assist in designing maps for human navi-
gation. While most cartography is mapped to a consistent plane, these maps are not
necessarily useful in aiding human activity. Instead, isometric, ‘heads up’, and aug-
mented reality mapping have all been shown to more quickly convey spatial proximity
and association. Likewise, topological maps, such as the London Underground map,
play with the Euclidean plane to better reflect connectivity. In these ways, there is
an opportunity for integrating cognitive distance within cartography and navigation
aids, by contracting and expanding space according to how they might be experienced.
This presents a quantitative basis to visually emphasise (i.e. expand in scale) areas of
high urban density and heterogeneity, where greater guidance might be required. For
this experimental cartographic approaches may be required. These opportunities may
expand beyond cartography. For example, by enabling a machine to better interpret
human perception of spaces, we may improve the provision of advice and information
to humans about their location (e.g. through navigation aids such as sat-navs).

The opportunities for a new model of urban space are naturally faced with a range
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of challenges, both conceptual and technical, as highlighted during this paper. A wide
variety of spatial factors may influence distance perception, some of which may be more
easily captured through spatial data than others. This paper draws together some
of these sources, but we readily recognise the limitations of these existing sources
- variously not based in real-world settings, employing small samples sizes, or not
adequately controlling for confounding factors. We also must recognise a wider array
of influencing factors on distance perception. Prior studies have shown, perception
may also be associated with demographic factors (McCormack et al., 2008) and prior
experience of space (Golledge, 1999; Ishikawa & Montello, 2006), which are much
harder to capture through static GIS measures. More recent studies (Ralph et al.,
2020) identify contextual factors relating to fear of crime or fear of getting lost as
impacting distance estimation too. More work is therefore required on both how we
capture the systematic effect of all spatial features on cognitive distance, as well as the
representation of population-based variation. This will mean collecting more data on
distance perception, at large scale and with adequate spatial and demographic variety,
with a view to building more comprehensive models of perceived spatial distance. It
also requires a deeper consideration of how we represent cognitively salient spatial
features within GIS. Quantitative estimates of concepts such as visual salience and
landmark importance are of growing interest (Filomena et al., 2019), but consistent
and agreed definitions of how these characteristics are captured and defined are yet
to be determined. In guiding these efforts, opportunities are presented in extending
existing classifications of urban morphology, that may allow us to circumvent issues
of inconsistent definition (Berta et al., 2016).

As our understanding of human cognition and behaviour improves, the need for
greater unity between our human and computer-based representations of space will
only increase. While Euclidean and network distance measures provide a proxy for
what drives human behaviour, cognitive distances are at the heart of these actions. As
we have demonstrated in this paper, there are pathways for integrating these concepts
within quantitative models of space, as well as global-scale open data and tool kits,
but there are also significant challenges and research opportunities. It is imperative
on the GIS community to consider how we take on this challenge, and advance our
understanding and representation of human behaviour in urban spaces.
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Appendix A

Table showing influence of each spatial feature type on cognitive distance estimates, by city.

City Euclidean Network Cognitive Segment Landmarks I/sections Turns Distance Barriers

Athens 1026.70 1219.67 3111.51 2.95 144.24 574.51 1171.50 -248.60 247.25

Beijing 1070.86 1580.91 2691.43 -265.73 81.05 21.68 1253.21 -190.30 210.61

Berlin 995.63 1237.13 3151.45 -13.03 74.00 428.28 1413.03 -237.80 249.85

Brasilia 1056.73 1473.54 3135.08 -80.02 12.59 436.27 1296.78 -252.31 248.23

Bucharest 1014.84 1267.57 2899.11 -19.04 74.50 318.62 1250.43 -222.91 229.94

Buenos Aires 1058.66 1262.00 2673.88 -30.62 221.47 277.78 954.44 -222.84 211.64

Cairo 1101.04 1434.24 3428.48 -21.11 15.19 244.64 1767.55 -284.99 272.97

Cape Town 937.46 1220.92 2593.30 -45.14 37.63 47.16 1305.49 -175.68 202.92

Casablanca 934.46 1166.85 2055.55 -12.86 21.71 147.24 701.44 -128.40 159.57

Chicago 991.60 1294.33 2608.43 -50.98 32.36 292.05 1025.73 -190.27 205.21

Delhi 1029.13 1348.57 2090.25 -48.65 16.74 0.00 767.57 -157.34 163.36

Glasgow 1024.39 1416.06 3619.36 -46.88 108.18 437.04 1695.00 -275.54 285.51

Jakarta 1066.99 1601.25 4211.77 -24.78 111.68 877.52 1642.11 -329.87 333.87

La Paz 1025.56 1352.39 2480.43 -45.43 25.88 100.97 1032.84 -180.29 194.06

Lima 993.02 1276.85 2301.51 -29.63 85.11 103.53 847.17 -160.63 179.12

Lisbon 1021.29 1305.46 2874.77 -11.59 67.66 237.53 1261.74 -213.35 227.32
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London (Bank) 907.85 1140.92 3310.50 -24.23 28.50 491.12 1645.96 -233.34 261.57

London (Seven
Dials)

1003.97 1228.80 3946.91 -3.93 51.17 898.68 1769.90 -312.44 314.73

Madrid 1095.48 1315.47 2993.62 -49.50 145.64 143.37 1451.43 -251.06 238.27

Mexico City 1031.98 1292.25 2877.48 6.62 105.00 486.02 992.82 -231.67 226.43

Nairobi 951.88 1261.14 2557.17 4.74 13.85 259.03 991.70 -172.54 199.27

New York City
(Midtown)

1012.16 1283.48 2270.69 -0.64 59.81 92.25 823.48 -164.43 176.75

New York City
(Soho)

1036.20 1242.54 2923.96 -1.25 91.40 480.82 1122.50 -245.09 233.04

New York City
(Tribeca)

1032.54 1253.03 2746.97 -10.74 128.43 215.00 1156.83 -214.03 218.45

Paris 1018.03 1310.38 3483.30 -9.96 131.26 508.15 1541.63 -274.80 276.64

Rome 935.88 1144.71 2383.34 -13.29 56.00 105.04 1064.46 -160.54 186.96

San Francisco 1014.08 1213.47 2372.24 -51.29 164.25 116.47 925.63 -183.87 187.58

Singapore 989.53 1267.50 3219.48 -75.93 26.20 589.51 1406.78 -249.99 255.41

Sydney 989.52 1281.41 2838.64 -19.47 88.78 92.00 1388.11 -216.98 224.79

Tokyo 951.88 1203.99 3209.91 -22.85 71.21 234.82 1690.35 -221.24 253.63
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