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Abstract. A k-associahedron is a simplicial complex whose facets, called k-
triangulations, are the inclusion maximal sets of diagonals of a convex poly-
gon where no k + 1 diagonals mutually cross. Such complexes are conjectured
for about a decade to have realizations as convex polytopes, and therefore
as complete simplicial fans. Apart from four one-parameter families includ-
ing simplices, cyclic polytopes and classical associahedra, only two instances
of multiassociahedra have been geometrically realized so far. This paper re-
ports on conjectural realizations for all 2-associahedra, obtained by heuristic
methods arising from natural geometric intuition on subword complexes. Ex-
periments certify that we obtain fan realizations of 2-associahedra of an n-gon
for n ∈ {10, 11, 12, 13}, further ones being out of our computational reach.
keywords. Multiassociahedra ·multitriangulations · subword complexes · fans
MSC classes. 52B11, 52B12, 52B40, 05E45.

1. Introduction

For integers k and n, we consider a convex polygon P with n+2k+1 vertices and
call a k-triangulation (or multitriangulation for unspecified k) of P any inclusion
maximal set of diagonals such that no k+ 1 of them mutually cross (see Figure 1).
As any diagonal with at most k − 1 vertices of P on one side belongs to any k-
triangulation, we only consider the other diagonals, called k-relevant diagonals, as
part of a k-triangulation. The k-associahedron ∆k,n (or multiassociahedron for un-
specified k) is then the simplicial complex whose facets are the k-triangulations of P.
It was introduced by V. Capoyleas and J. Pach in [CP92] where multitriangulations
were studied as geometric graphs, after which the complex itself was independently
shown to be pure by T. Nakamigawa [Nak00], and A. W. M. Dress, J. H. Koolen
and V. Moulton [DKM02]. It was also proved to be a piecewise linear sphere of
dimension (kn−1) in an unpublished paper of J. Jonsson [Jon03]. Many structural
aspects of multitriangulations, in particular their decomposition into stars, were
then studied by V. Pilaud and F. Santos [PS09] in order to approach several open
problems. Among them V. Pilaud and F. Santos recall a question first asked by
J. Jonsson [Jon05] about geometric realizations of multiassociahedra.
Question 1. Are multiassociahedra boundary complexes of some convex polytopes?

Some instances of multiassociahedra turn out to be classical in polytope the-
ory and therefore give a positive answer to this question in the following cases
(see [PS09] for details, and [Zie95] for a general background on polytopes).

• For n = 0, the complex ∆k,0 is reduced to a single point (the empty set).
• For n = 1, the complex ∆k,1 is the boundary of a k-simplex.
• For n = 2, the complex ∆k,2 is the boundary complex of a cyclic polytope.
• For k = 1, the complex ∆1,n is the complex of usual triangulations called
(classical) associahedron, which was initially realized as a convex polytope
by M. Haiman [Hai84] and C. Lee [Lee89], followed by many other explicit
realizations ([Lod04, HL07, CSZ14] to cite a few, see Figures 2 and 3).

TM was supported by a French doctoral grant Gaspard Monge of the École Polytechnique.
1

ar
X

iv
:1

60
8.

08
49

1v
2 

 [
m

at
h.

C
O

] 
 1

5 
Ju

n 
20

17



2 THIBAULT MANNEVILLE

1 9

8

7

6
5

3

4

2

1 9

8

7

6
5

3

4

2

1

2

3

4
5

6

7

8

9

Figure 1. Three 2-triangulations of a 9-gon (2-relevant diagonals appear red).

[Lod04, HL07] [HL07] [CFZ02, HL07, CSZ14] [CSZ14]

Figure 2. Several geometrically non equivalent polytopal realizations of the 3-
dimensional classical associahedron. Figure from [CSZ14], with permission.

Apart from these classical realizations, a first oriented matroid theory approach
allowed J. Bokowski and V. Pilaud to realize ∆2,3 as a convex polytope in [BP09].
Using the framework of sorting networks as introduced by V. Pilaud and M. Pocchi-
ola [PP12], V. Pilaud and F. Santos then constructed brick polytopes in [PS12] as an
attempt to realize multiassociahedra. If these objects turned out to be interesting
by themselves, none of them realized more multiassociahedra. C. Stump observed
in [Stu11] the connection between multitriangulations and subword complexes as
depicted by A. Knutson and E. Miller in [KM04, KM05]. C. Ceballos, J.-P. Labbé
and C. Stump then extended multiassociahedra to multi cluster complexes in any
Coxeter type and developed combinatorial tools for subword complexes in [CLS14].
Finally N. Bergeron, C. Ceballos and J.-P. Labbé used Gale duality in [BCL15] to
realize as fans all complexes ∆k,3 for k ∈ N, so as ∆2,4 and ∆3,4.

Using again subword complexes, we provide the first fan realizations of the com-
plexes ∆2,n for n ∈ {5, 6, 7, 8} and conjectural rays for any complex ∆2,n with n ∈ N
(see Question 2). All computations involved in this work were done with the soft-
ware Sagemath [Dev15] (with available source code1). We consider a convex (n+5)-
gon with vertices cyclically labeled from 1 to n + 5 and denote the diagonal be-
tween i ∈ [n + 5] and j ≥ i by (i, j). We denote by (e1, . . . , en, f1, . . . , fn) the
canonical basis of R2n and associate to each 2-relevant diagonal (i, j) a vector v(i,j)
in R2n as follows (see Theorem 4 and Figure 8, and Figure 17).
a) v(1,4) = en−fn and v(1,j+4) = (2n+2−j)(ej−ej+1)+en+fj−fn for j ∈ [n−1];
b) v(2,j+4) = ej +(2n+2− j)(ej−ej+1)+ fj for j ∈ [n−1] and v(2,n+4) = en+ fn;
c) v(3,j+5) = −ej for j ∈ [n];
d) v(4,j+6) = ej + (2n+ 2− j)(ej − ej+1)− fj for j ∈ [n− 1];
e) v(i+4,i+j+6) = j ei− (j− 1)(ei+j + ei+j+1) + (2n+ 4− i)(ei+j −ei+1) + fi− fi+j

for i ∈ [n− 2] and j ∈ [n− i− 1].
Theorem 1. The vectors v(i,j) are the rays of a complete simplicial fan in R2n

which realizes the multiassociahedron ∆2,n for n ∈ [8].
Question 2. Are the vectors v(i,j) the rays of a complete simplicial fan in R2n which
realizes the multiassociahedron ∆2,n for any n ≥ 1?
We explain later why we state Question 2 as a question rather than as a conjecture.

1https://arxiv.org/abs/1608.08491

https://arxiv.org/abs/1608.08491
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Figure 3. Two realizations of the 3-dimensional classical associahedron by
C. Hohlweg and C. Lange [HL07] (see also Figure 2 left). The left one is initially
due to J.-L. Loday [Lod04]. Figure from [LP13], with permission.

Theorem 1 was checked computationally using the characterization of complete
simplicial fans of Proposition 2. The rest of the paper will therefore mostly be a
report on the heuristic process leading to the candidate rays. We describe in Sec-
tion 2 the notions and properties about simplicial complexes, polyhedral geometry
and subword complexes that we need. In Section 3 we obtain by a new method the
realization of the associahedron by J.-L. Loday [Lod04]. This method is the starting
point of our heuristic construction of 2-associahedra as fans, which is presented in
Section 4. Finally we briefly discuss some further aspects of our work in Section 5.

2. Preliminaries

Our work relies on the interpretation of multiassociahedra as type A subword
complexes, as stated in Theorem 4 (see Section 2.3). Our main tools will be combi-
natorial operations on them studied by M. Gorsky in [Gor13, Gor14], and that we
will try to translate geometrically. We present all the notions we need on simplicial
complexes, polyhedral geometry and subword complexes in Sections 2.1, 2.2 and 2.3
respectively. The reader familiar with them can proceed directly with Section 2.4.

2.1. Simplicial complexes. Given a finite set V, a simplicial complex (or a com-
plex) C on V is a subset of the power set of V closed under taking subsets: C ⊆ 2V
and f ⊆ g ∈ C =⇒ f ∈ C. Usually one requires C to contain all singletons. The
elements of V, and by extension the corresponding singletons, are the vertices of C.
The pairs in C are the edges of C and form together with the vertices a graph called
the 1-skeleton of C. The elements of C are its faces, the inclusion-maximal of which
are called facets. We will always describe any explicit complex by its list of facets,
which is equivalent to the whole data. We will moreover denote a complex whose
single facet is an edge {x, y} directly by xy, and we will use the notation x both
for the vertex x and for the singleton {x}. If C = 2V , then C is called a simplex. In
particular any face of a simplicial complex is the unique facet of a simplex, therefore
the faces of C are also called the simplices of C. The dimension of a face f ∈ C is
the quantity dim(f) := |f |−1 while the dimension of C is dim(C) := maxf∈C dim(f).
The complex C is pure if all its facets have the same cardinality d+ 1 ≥ 1, in which
case C is also a d-complex. The faces of dimension (d − 1) of a d-complex are
called its ridges. Given a face f of C, the star stC(f), the link lkC(f) and the
deletion delC(f) of f in C are the complexes respectively defined by

stC(f) := {f ′ ∈ C | f ∪ f ′ ∈ C},
lkC(f) := {f ′ ∈ C | f ∩ f ′ = ∅ and f ∪ f ′ ∈ C},

delC(f) := {f ′ ∈ C | f 6⊆ f ′}.
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x
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C1 = opsC1
(x) =

x
C2 = opsC2

(x) =

x0

x1

Figure 4. Two 1-dimensional complexes C1 and C2 (left) and their one-point-
suspensions opsC1(x) and opsC2(x) with respect to a given vertex x (right).

Any simplicial complex C can be associated to a topological space called its topo-
logical realization, unique up to homeomorphism, obtained by gluing topological
simplices along faces given by C. The complex C is a simplicial sphere (or just
a sphere) if it is pure of dimension d and its topological realization is homeomorphic
to the standard sphere in Rd+1. Any ridge of a simplicial sphere is the intersection
of exactly two facets of this simplicial sphere.

We now describe the classical operations on simplicial complexes that we need.
Given two complexes C1 and C2, the join of C1 and C2 is the complex

C1 ∗ C2 := {f t f ′ | f ∈ C1, f
′ ∈ C2}

where the complexes C1 and C2 are considered with disjoint sets of vertices and t
denotes the disjoint union. The suspension of a complex C is the join of C with a
complex consisting in two singletons, called suspension vertices. Given a vertex x
of C, the one-point-suspension of C with respect to x is the complex

opsC(x) :=
(

delC(x) ∗{x0, x1}
)
∪
(

lkC(x) ∗x0x1
)

where x0 and x1 are two new vertices, also called suspension vertices in opsC(x).
This operation extends the usual suspension: in the particular case where the
vertex x is only contained in the face {x} of C, then we consider by convention that
the right part of the union is empty and the left part is just the suspension of the
complex where the disconnected vertex x has been forgotten. So the suspension of
a complex is obtained by adding an artificial disconnected vertex to it and taking
the one-point-suspension with respect to this vertex. Figure 4 illustrates the one-
point-suspension operation on two complexes. For a complex C and a face f of C,
the stellar subdivision of the face f in C is the complex

stellC(f) := delC(f) ∪ {f ′ ∪ {a} | f 6⊆ f ′ ∈ stC(f)} = delC∪stC(f) ∗{a}(f)

where a is a new vertex, called subdivision vertex. Intuitively the stellar subdivision
corresponds to “putting a vertex in the middle of the face f” and adding the faces
necessary to preserve the topology of the complex (see Figure 5 for examples).

2.2. Polyhedral geometry. We now briefly recall some notions of polyhedral ge-
ometry. We refer to the textbooks [Zie95, Lecture 1] and [DRS10, Section 2.1.1.] for
a complete presentation. Given a set V of vectors in Rn, we will denote by R≥0V
the positive span of V in Rn. A polyhedral cone (or just a cone) is a subset of Rn
equivalently defined as the positive span of finitely many vectors or as the inter-
section of finitely many closed linear halfspaces. The dimension of a cone is the
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Figure 5. A 2-dimensional complex C1 = {{1, 2, 3}, {1, 3, 4}} (top left) and the
stellar subdivision of the facet {1, 2, 3} in it (top right), and a 3-dimensional
complex C2 = {{1, 2, 3, 4}, {1, 3, 4, 5}, {1, 4, 5, 6}} (bottom left) and the stellar
subdivision of the edge {1, 3} in it (bottom right).

dimension of its linear span. The faces of a cone are its intersections with its sup-
porting hyperplanes, that is the linear hyperplanes that do not strictly separate two
of its elements. Faces of a cone still are cones and the 1-dimensional faces of a cone
are its rays. A cone is simplicial if it is generated by an independent set of vectors.
A simplicial cone is generated by its rays and any subset of rays generates a face.

A (polyhedral) fan is a set of cones closed by taking faces and such that any two of
them intersect in a common face. The full dimensional faces of the fan are its facets.
A fan is simplicial if all its cones are, and it is complete if the union of its cones
covers the whole space Rn. A simplicial fan F can naturally be seen as an abstract
simplicial complex CF whose vertices are the rays of its cones and whose faces are
the subsets of rays generating the cones of F . An abstract simplicial complex C is
then realizable as a fan (or a geodesic sphere) if there exists a complete simplicial
fan F such that C is isomorphic to CF . The fan F is then called a fan realization of
the complex C. To realize a complex as a complete simplicial fan, we only need to
find suitable coordinates for the rays corresponding to its vertices. These vectors
then support a complete simplicial fan if a certain condition on adjacent facets (that
is which differ by a single element of the complex) is satisfied.

Proposition 2 (see e.g. [DRS10, Corollary 4.5.20.]). Let C be a sphere with vertex
set V and V := (vx)x∈V be a set of vectors in Rn. The set of cones {R≥0Vf | f ∈ C},
where Vf := {vx |x ∈ f}, forms a complete simplicial fan if and only if

(1) there exists a facet F of C such that VF is a basis of Rn and such that the
open cones R>0VF and R>0VF ′ are disjoint for any other facet F ′ of C;

(2) for any two adjacent facets F, F ′ of C with F r {x} = F ′ r {x′}, the
coefficients α, α′ in the unique (up to rescaling) linear dependence

αvx + α′ vx′ +
∑

y∈F∩F ′
βy vy = 0

on VF∪F ′ have the same sign (different from 0).

Realizing a complex as a complete simplicial fan is in fact weaker than as a
polytope, but we will skip details on that part since this paper does not deal with
polytopal realizations. We conclude this section with some realizability results.
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v1

v2

f

F =

opsCF (v1) ∼=

stellCF (f) ∼=

CF ∗{u1, u2} ∼=

Figure 6. A complete 2-dimensional simplicial fan F with a distinguished
face f = R≥0{v1,v2} (top left), a complete 2-dimensional simplicial fan real-
izing the complex stellCF (f) (top right), a complete 3-dimensional simplicial fan
realizing the complex opsCF (v1) (bottom left), and a complete 3-dimensional sim-
plicial fan realizing the suspension of the complex CF (bottom right). The new
fans are obtained by the generic transformations on F described after Lemma 3.

Lemma 3 (folklore). One-point-suspensions and stellar subdivisions of simplicial
complexes realizable as polytopes (resp. complete simplicial fans, resp. spheres) still
are realizable as simplicial polytopes (resp. complete simplicial fans, resp. spheres).

Lemma 3 is classical and its proof is left to the reader. We only describe the
actual transformation on the rays of a complete simplicial fan allowing to realize
as well the stellar subdivisions and the one-point-suspensions of the corresponding
complex. We will indeed need them to derive the coordinates of Question 2. Let F
be a complete simplicial fan in Rn and let R be a set of vectors in Rn such that
for each ray ρ of F there is exactly one vector v ∈ R such that ρ = R≥0v. The
vertex set of the simplicial complex CF associated to the fan F can then naturally
be identified with the set R. Let f = {v1, . . . ,v`} be a face of the complex CF .
Then the complex stellCF (f) can be realized as a complete simplicial fan by adding
a ray to the fan F , generated by any vector of the form α1v1 + · · ·+α`v` with α1 >
0, . . . , α` > 0. This new ray corresponds to the subdivision vertex of the stellar
subdivision. The generic choice consists to set all αi’s equal to 1 (see Figure 6).
Let v be a vector in R, then the complex opsCF (v) is of dimension one more than
the complex CF . We consider the vector space Rn+1 :=Rn ⊕ Ren+1 and associate
to a vector v′ ∈ R r {v} the vector v′ ⊕ 0. The suspensions vertices obtained
from v are associated to two vectors v ⊕ αen+1 and v ⊕ βen+1, with αβ < 0. The
generic choice for us will be α = −1 and β = 1. The set of rays that we obtain
in Rn+1 then supports a complete simplicial fan realizing opsCF (v) (see Figure 6).
In the particular case of a suspension, one can artificially add the zero vector 0
to the set R and choose v = 0 in the previous construction (see Figure 6). The
previous descriptions give valid coordinates but certainly not all of them. Yet these
realizations are easy to implement and they will be enough for our purposes.
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s1 s1 s1 s1 s1 s1

s2 s2 s2 s2 s2 s2

s3 s3 s3

Figure 7. The sorting network NQ of the subword complex S(Q) for n = 3
and Q = s1s3s2s2s3s2s1s2s1s2s1s2s3s1s1.

2.3. Subword complexes. For n ≥ 1, we denote the symmetric group of permu-
tations of [n+ 1] by Sn+1, and by S the set of simple transpositions si := (i i+ 1)
(for i ≤ n), that we consider as an alphabet. To avoid confusion, a simple trans-
position will be referred to with an italic letter si when considered as an element
of Sn+1, and with a san serif letter si when considered as a letter in S. Since simple
transpositions generate Sn+1, any permutation π ∈ Sn+1 can be written as a prod-
uct π = si1 · · · si` . The word si1 . . . si` is then called an expression of the permuta-
tion π. It is a reduced expression of π if ` is smallest possible among all expressions,
in which case ` is called the length of π. We denote by w◦ := [n + 1, n, . . . , 1] the
unique longest element in Sn+1, also referred to as the maximal permutation.

Given a word Q = q1 . . . qp in S∗, a subword of Q is a subsequence qi1 . . . qir
(1 ≤ i1 < · · · < ir ≤ p) of its letters. A factor of Q is a subword of Q consisting of
consecutive letters and a prefix (resp. suffix) of Q is a factor containing its first (resp.
last) letter. For any set J ⊆ [p], we denote by QJ the subword of Q consisting of
the letters with index in J . If Q contains a reduced expression of w◦ as a subword,
the subword complex S(Q) (see [KM04]) is the simplicial complex defined by2

S(Q) := {J ⊆ [p] |Q[p]rJ is a reduced expression of w◦}.

We always consider a letter qr in a word Q as both data of its position r in Q and
of the actual letter si in the alphabet S such that qr = si. We identify the vertices of
the subword complex S(Q) to the letters of Q whose position is contained in a facet
of the complex and denote their set by VQ. Observe that the vertices of S(Q) are the
letters of Q which are not contained in all reduced expressions of w◦ contained in Q.
The other letters of the word Q are the non-vertices of S(Q). A convenient way to
think about a subword complex S(Q) consists in encoding the underlying word Q =
q1 . . . qp with a set of segments NQ := {Ir | r ∈ [p]} called its corresponding sorting
network [PP12, PS12]. Each letter qr = si (r ∈ [p], i ∈ [n]) is represented by
a vertical segment Ir whose extremities have respective y-coordinate i and i + 1
in R2. Moreover if two letters qr = si and qr′ = sj (with r < r′) satisfy |i− j| ≤ 1,
then the points in Ir′ have greater x-coordinate than these in Ir (see Figure 7 for an
example). Our definition does not determine the segments, but we consider the sets
of segments satisfying the conditions up to combinatorial equivalence and call any
of them the sorting network of S(Q). The main property of the sorting network NQ
is that it fully describes the combinatorics of the subword complex S(Q) even if
it does not allow to recover the initial order on the letters of Q. Indeed since si
and sj commute when |i− j| ≥ 2, if Q′ is obtained from Q by replacing a factor sisj
by sjsi, then the subword complexes S(Q) and S(Q′) clearly are isomorphic.

2This is in fact a definition of spherical subword complexes of type An.
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Figure 8. The identification of Theorem 4, for n = 4 and k = 2, between the 2-
relevant diagonals (of length at least 2) of a convex polygon with 9 vertices and
the letters of the word c2w◦(c) seen on the corresponding sorting network.

Let c := s1 . . . sn, the c-sorted expression of w◦ (see [Rea06]) is the word

(1) w◦(c) :=
n∏
i=1

n+1−i∏
j=1

sj


where the product denotes the concatenation on words in increasing order of in-
dices, that is w◦(c) = s1s2 . . . sn s1 . . . sn−1 . . . s1s2 s1. We will also use the nota-
tion c[i] := s1 . . . si, so that w◦(c) =

∏n
i=1 c[n+ 1− i]. The c-sorted expression w◦(c)

is a reduced expression of w◦. It will be convenient to consider smaller symmetric
groups Sp (with p ≤ n + 1) as embedded in Sn+1 and still denote by w◦(c[p])
the c-sorted expression of their longest element. The following statement describes
how multiassociahedra arise as instances of subword complexes.
Theorem 4 ([PP12, Stu11]). For k ≥ 0 and n ≥ 1, the multiassociahedron ∆k,n

is isomorphic to the subword complex S(ckw◦(c)). Given a convex polygon Pn+2k+1
with n + 2k + 1 vertices cyclically labeled from 1 to n + 2k + 1, an isomorphism
between the complexes ∆k,n and S(ckw◦(c)) is given by the following identification
of the k-relevant diagonals of Pn+2k+1 with the letters of ckw◦(c).

• for i ≤ k and j ∈ [n], the diagonal (i, i + j + k) is associated to the letter
at position (i− 1)n+ j in the word ckw◦(c), namely its i-th letter sj;
• for i + k ≥ k + 1 and j ∈ [n + 1 − i], the diagonal (i + k, i + j + 2k) is
associated to the letter in position (k + i − 1)n − (i − 1)(i − 2)/2 + j in
the word ckw◦(c), namely the letter sj whose indices are i and j in the
factor w◦(c) of the word ckw◦(c), seen as the product in Equation (1).

The identification given in Theorem 4 is illustrated in Figure 8. We conclude
this section with some pleasant properties of subword complexes. Let Q = si1 . . . si`
be a word, the rotated word of Q is the word Q	 := sn+1−i`si1 . . . si`−1 .
Theorem 5 (rotation map [CLS14]). For any word Q, the subword complexes S(Q)
and S(Q	) are isomorphic. An isomorphism is obtained by identifying all letters
in the common factor of Q and Q	, and the two letters by which they differ.

Let Q−1 denote the mirror image of a word Q and Q−i the concatenation of i
copies of Q−1. Theorems 4 and 5 imply that the multiassociahedron is isomorphic
to all complexes of the form S(ck−iw◦(c)c−i) (for i ∈ [k]). Finally basic properties
of sorting networks imply that any subword complex S(Q) is isomorphic to S(Q−1)
with identification of the vertices given by the mirror symmetry (see [PP12, PS12]).
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Figure 9. The evolution of the vertex status of letters implied in 0-Hecke and
braid moves, seen on the corresponding part of the sorting network NQ. Two red
dashed segments denote vertices not belonging to a common edge while empty
red segment denote vertices in all faces not forbidden by dashed segments. Black
plain segments represent non-vertices. The letters x, y, z and z′ give the identifi-
cations of the exchanged letters by a braid move in the topological realizations
of the corresponding complexes. The numbers for braid moves correspond to the
different Cases in Theorem 8.

2.4. Operations on subword complexes. We now focus on three natural oper-
ations on subword complexes. A word Q is obtained by a commutation move from
a word Q′ if there exists two words U1,U2 ∈ S∗ and i, j ∈ [n] such that |i− j| ≥ 2
and Q = U1 sisj U2 and Q′ = U1 sjsi U2. As mentioned in Section 2.3 in this case the
subword complexes S(Q) and S(Q′) clearly are isomorphic since si and sj commute
in the symmetric group Sn. We also consider two operations studied by M. Gorsky
in [Gor13, Gor14], which will be our main combinatorial tools.

• A word Q is obtained by a 0-Hecke move from a word Q′ if there exists two
words U1,U2 ∈ S∗ and i ∈ [n] such that Q = U1 si U2 and Q′ = U1 s2

i U2. In
this case Q′ is obtained by a reverse 0-Hecke move from Q. Alternatively
we will also say that Q′ is obtained by doubling a letter in Q.
• A word Q is obtained by a braid move from a word Q′ if there exists two
words U1,U2 ∈ S∗ and i, j ∈ [n], with |i−j| = 1, such that Q = U1 sisjsi U2
and Q′ = U1 sjsisj U2.

Remark 6. Commutation and braid moves are natural operations to consider since
the corresponding relations sisj = sjsi for |i−j| ≥ 2, and sisjsi = sjsisj for |i−j| =
1, hold in the symmetric group Sn, and can be completed into a presentation of Sn

by adding the relations s2
i = Id for i ∈ [n]. Here the corresponding operation on

words is replaced by s2
i = si, which is in fact the last relation in the classical

presentation of the 0-Hecke algebra of the symmetric group Sn, hence the name
of the corresponding transformation. M. Gorsky calls these moves nil-Hecke moves
in [Gor13] but the corresponding relation in the nil-Hecke algebra would be s2

i = 0.

We say that we apply a braid (resp. 0-Hecke, resp. commutation) move to a sub-
word complex S(Q) when we consider the subword complex S(Q′), where Q and Q′
are related by the same operation. The combinatorial effect of these operations on
the subword complex S(Q) depend on the vertex status of the letters implied in the
transformation (see Figure 9) and were described by M. Gorsky as follows.

Theorem 7 ([Gor13]). Suppose that a word Q′ = U1 q′rq′r+1 U2 is obtained from
a word Q = U1 qr U2 by doubling the letter qr. If qr is a vertex of the subword
complex S(Q), then the subword complex S(Q′) is isomorphic to the one-point-
suspension opsS(Q)(qr) of S(Q) with respect to qr. Otherwise S(Q′) is isomorphic
to the suspension of S(Q). The suspension vertices in S(Q′) are q′r and q′r+1.
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x

y
z

xzy = qrqr+1qr+2 ↔ q′rq
′
r+1q

′
r+2 = yz′x

y

x

z′

Figure 10. The effect of a braid move in Case (5) of Theorem 8, seen as a
local transformation on the topological realization of a 3-dimensional subword
complex S(Q). Only the parts of the complex affected by the transformation
are depicted, namely the star stS(Q)(qr+1) of the vertex qr+1 in S(Q) and the
star stS(Q)(qrqr+2) of the edge qrqr+2 in S(Q). As in Figure 9, the letters x, y, z
and z′ describe the identifications of the exchanged letters in the topological
realizations of the two subword complexes.

Theorem 8 ([Gor14]). Suppose that a word Q′ = U1 q′rq′r+1q′r+2 U2 is obtained
from a word Q = U1 qrqr+1qr+2 U2 by applying a braid move.

(1) If none of the letters qr, qr+1 and qr+2 is a vertex of S(Q), then S(Q)
and S(Q′) have the same vertices and are isomorphic.

(2) If exactly one of the letters qr, qr+1 and qr+2 is a vertex of S(Q), then it
is either qr or qr+2, say qr without loss of generality3. In this case S(Q)
and S(Q′) are isomorphic and an isomorphism is given by identifying their
common vertices and associating qr to q′r+2. In particular q′r and q′r+1 are
non-vertices in S(Q′).

(3) If exactly two of the letters qr, qr+1 and qr+2 are vertices of S(Q), then
these letters are qr and qr+2. If moreover qrqr+2 is an edge of the com-
plex S(Q), then the complex S(Q′) is isomorphic to the stellar subdivi-
sion stellS(Q)(qrqr+2) of the edge qrqr+2 in the complex S(Q). In S(Q′),
the subdivision vertex is q′r+1, the vertex q′r (resp. q′r+2) is identified to the
vertex qr+2 (resp. qr) of S(Q), and all common vertices are identified.

(4) If all letters qr, qr+1 and qr+2 are vertices of S(Q) but do not all belong to a
same facet, and if qrqr+1 is an edge of the subword complex S(Q), then the
roles of S(Q) and S(Q′) are exchanged in the previous case. That is S(Q)
is obtained from S(Q′) by applying a stellar subdivision of the edge q′rq′r+2.

(5) If all letters qr, qr+1 and qr+2 are vertices of S(Q) and belong to a common
facet, then it is also the case for q′r, q′r+1 and q′r+2 in S(Q), and the two
stellar subdivisions stellS(Q)(qrqr+2) and stellS(Q′)(q′rq′r+2) are isomorphic.
The vertex qr (resp. qr+2) of the complex stellS(Q)(qrqr+2) is identified to
the vertex q′r+2 (resp. q′r) of the complex stellS(Q′)(q′rq′r+2), the subdivi-
sions vertex in the complex stellS(Q)(qrqr+2) (resp. stellS(Q′)(q′rq′r+2)) is
identified to q′r+1 (resp. qr+1) and all common vertices are identified.

3Since S(Q) and S(Q−1) are isomorphic.
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Remark 9. Theorem 8 does not seem to cover all possible cases because of the ad-
ditional condition that the edge qrqr+2 (resp qrqr+1) exists in Case (3) (resp. (4)).
In fact this condition is always satisfied. Indeed the word property (see [BB05,
Theorem 3.3.1]) asserts that any expression can be transformed into a reduced one
of the corresponding element by a sequence using only braid moves and simpli-
fications s2 = Id. Now one can show inductively that in any type An spherical
subword complex S(Q), any two letters q`, qr of the word Q which are vertices of
the complex form an edge of the complex or are exchangeable (maybe both) as
follows. The property is clear when Q is already a reduced expression of w◦ since
the complex is then empty. Now using the word property, one can derive, for any
word Q containing an expression for w◦, a sequence of braid, 0-Hecke and com-
mutation moves to move it to a reduced expression of w◦. Then one can do the
proof inductively on the minimal length of such a sequence, applying the induction
hypothesis and Theorems 7 and 8. The induction hypothesis is indeed preserved by
reverse one-point-suspension and basic arguments on sorting networks imply that
it is also preserved by braid moves. Finally it is also standard in this framework
to check that the letters qr and qr+2 (resp. qr+1) are not exchangeable in Case (3)
(resp (4)) of Theorem 8 (see [PS12]), so that qrqr+2 (resp qrqr+1) is in fact auto-
matically an edge of the complex. Figure 9 sums up all cases of Theorems 7 and 8
in a more visual way than with their actual descriptions.

The effects of 0-Hecke and braid moves are already illustrated on the complex it-
self in Figures 4 and 5, except for Case (5) of Theorem 8. Indeed we have described
a relation between the subword complexes S(Q) and S(Q′), but not in terms of
“transforming S(Q) into S(Q′)”. In this case S(Q′) is obtained from S(Q) by a
stellar subdivision of the edge qrqr+2 with subdivision vertex q′r+1, followed by a
reverse stellar subdivision of the same edge where the disappearing vertex is qr+1.
This can somehow be geometrically interpreted as “moving” the vertex qr+1 “from
one side” of the edge qrqr+2 “to the other side” and relabeling it q′r+1 (see Fig-
ure 10). Reverse stellar subdivision is bad behaved with respect to geometry, and
we present in the next sections a tentative construction of 2-associahedra based on
commutation moves, 0-Hecke moves and braid moves avoiding Case (4) of Theo-
rem 8, and as much as possible Case (5) of Theorem 8. The key point is that the
effect induced by moves on the complex both only depends on the local data of the
vertex status of the implied letters, and is itself topologically local.

3. Loday associahedron by suspensions and stellar subdivisions

We keep the product notation
∏ν
j=µ Qj to denote the concatenation of a sequence

of words (Qj)µ≤j≤ν , with the convention that empty products represent the empty
word. We will use the notation c[µ, ν] =

∏ν
j=µ sj for 1 ≤ µ ≤ ν ≤ n. Recall that

with this notation, we have c[µ] = c[1, µ] for µ ∈ N and w◦(c) =
∏n
i=1 c[n+ 1− i].

Moreover in any word, we will from now on denote the positions of the letters
of a distinguished factor w◦(c) by the corresponding pair (i, j) of indices in the
double product formula w◦(c) Eq (1)=

∏n
i=1
∏n+1−i
j=1 sj . A word Q can be moved to a

word Q′ if Q can be transformed into Q′ by applying a sequence of commutation, 0-
Hecke, reverse 0-Hecke and braid moves. If Q can be moved to Q′ using only
commutations moves, then the words Q and Q′ are equivalent under commutation
(or simply equivalent) and we use the notation Q ∼ Q′. Notice that in this case,
the two subword complexes S(Q) and S(Q′) are isomorphic.

Lemma 10. For ` ∈ [n], the c-sorted word w◦(c) can be moved to the word w◦(c)s`
by doubling its letter s1 at position (`, 1) (that is its `-th letter s1) and applying a
sequence of `− 1 braid moves interlaced with some commutation moves.
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Proof. For k ∈ [`−1], we can let the second letter sk of the word skc[k+1, `]c[k, `−1]
commute as much as possible to the left to obtain that it is equivalent to the
word sksk+1skc[k+ 2, `]c[k+ 1, `− 1]. We can then apply a braid move on the pre-
fix sksk+1sk of this last word to obtain the word sk+1sksk+1c[k + 2, `]c[k + 1, `− 1].
Therefore a straightforward induction on k shows that the word s1c[`]c[` − 1] can
be moved to the word c[`]c[`−1]s` applying `−1 braid moves interlaced with some
commutation moves. Multiplying both words by w◦(c[`−2]) on the right, the iden-
tity w◦(c[`]) = c[`]c[`− 1]w◦(c[`− 2]) yields that the word s1w◦(c[`]) can be moved
to the word c[`]c[`− 1]s`w◦(c[`− 2]) by a sequence of `− 1 braid moves interlaced
with some commutation moves. Since the letter s` commutes to all letters of the
word w◦(c[`− 2]), we obtain by the same identity that the word s1w◦(c[`]) can be
moved to the word w◦(c[`])s` by a sequence of `−1 braid moves interlaced with some
commutation moves. This is the result for ` = n since the word s1w◦(c[`]) is ob-
tained from the word w◦(c[`]) by doubling its first letter s1. Since any word w◦(c[`])
(for ` ∈ [n]) is a suffix of the word w◦(c[n]), the result for any ` ∈ [n] finally follows
by multiplying on the left by the suitable prefix. �

Applying Lemma 10 repeatedly, we obtain the following more specific statement.
Corollary 11 (fattening a triangle). The c-sorted word w◦(c) can be moved to the
word w◦(c)c−1 = w◦(c) sn sn−1 . . . s1 by doubling all its letters s1 and applying a
sequence of n(n− 1)/2 braid moves interlaced with some commutation moves.
Proof. We check by induction on n ≥ 1 that all the letters s1 in the word w◦(c) can
be doubled at first before applying the other moves of Lemma 10. The word s1w◦(c)
can be obtained from the word w◦(c) by doubling its first letter s1. We apply the
induction hypothesis to the suffix w◦(c[n−1]) of the word s1w◦(c) = s1c w◦(c[n−1])
to find a sequence of moves starting by doubling all the letters s1 in this factor and
transforming the word s1w◦(c) into the word s1w◦(c)(c[n− 1])−1. We finally apply
Lemma 10 to the prefix s1w◦(c) of this last word, omitting the initial doubling, into
moving it to the word s1w◦(c)sn. Since c−1 = sn(c[n− 1])−1, we are done. �

We will now refer to a distinguished factor w◦(c) in a word Q = U1 w◦(c) U2 as
a triangle in Q, because of the shape of the corresponding sorting network. We
say that we fatten a triangle in Q when we consider a word Q′ = U1 w◦(c)c−1 U2
obtained from Q by applying the sequence of moves of Corollary 11 to its distin-
guished triangle. Let Q = Q1, . . . ,Q` = Q′ be the successive words obtained in this
sequence of moves, where we write Qk = U1TkU2 for k ∈ [`]. Notice that T1 = w◦(c)
and T` = w◦(c)c−1. The operation of fattening a triangle comes together with a
natural correspondence between the letters in the word Q and those in the word Q′.
The letters in the common factors U1 and U2 are indeed naturally identified, and
the letters of the middle factor w◦(c)c−1 of Q′ can be associated to these of the
middle factor w◦(c) of Q using the following labeling rules along moves.

• The letters in the distinguished factor w◦(c) of the word Q are labeled with
their position (given by a pair of indices) in w◦(c) (see Figure 11 left).

• After doubling a letter s1 at position (i, 1) in a distinguished factor Tk
of a word Qk, (k ∈ [` − 1]), we label the two resulting letters s1 in Qk+1
with (i, 1) and (i, 1)′. Indeed Theorem 7 asserts that the new subword com-
plex S(Qk+1) is somehow the same as the previous subword complex S(Qk),
but with two copies of its initial letters s1 (see Figure 11 middle).

• After a braid move on a factor qrqr+1qr+2 of a word Qk (k ∈ [` − 1])
producing a factor q′rq′r+1q′r+2 in the word Qk+1, we label the letter q′r
(resp. q′r+1, resp. q′r+2) in the word Qk+1 with the same label as that of the
letter qr+2 (resp. qr+1, resp. qr) in the word Qk (see Figure 11 right). This
corresponds to the identifications suggested by Theorem 8 (see Figure 9).
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i ∈ [n]

s1

sn

(i, 1)
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s1 s1

i ∈ [n]

s1
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(i, 1)

s1
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s1

(i, 1)′

s1 → s21 sisi+1si → si+1sisi+1

s1 s1
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s1
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si

(i1, j1)

si+1

(i2, j2) si

(i3, j3)

s1 s1

sn

s1

sksi+1

(i3, j3) si

(i2, j2)

si+1

(i1, j1)

Figure 11. The evolution of the labels of the letters in a sequence of moves to
fatten a triangle w◦(c), seen on the corresponding sorting networks. The initial
letters of the triangle w◦(c) are labeled with their position (i, j) (with i ∈ [n], j ∈
[n+ 1− j]) (left). After doubling a letter s1 labeled (i, 1) (top middle), the two
new letters s1 are labeled (i, 1) and (i, 1)′ (bottom middle). The letters obtained
by braid moves are labeled following the identification in Theorem 8 (right).

(1, 1)′(1, 1) (2, 1)′(2, 1) (3, 1)′(3, 1) (1, 1)′(1, 1)

(1, 2) (1, 2)

(1, 3)

(2, 2)

(1, 3)

(2, 1)

(3, 1)

(2, 2)

(2, 1)′

(3, 1)′ (1, 1)

(2, 1)

(1, 2)

(1, 1)′

(1, 1)

(2, 1)

(3, 1) (1, 1)′

(1, 3)

(1, 2) (2, 2)

(2, 1)′

(3, 1)′

(1, 3)

(3, 1)

(2, 2)

(2, 1)′

(3, 1)′

Figure 12. The vertex status and label evolution of letters along a sequence
to fatten a triangle s1s2s3s1s2s1, seen on the sorting networks of the words
in the sequence. After doubling all letters s1, one successively obtains the
words s1s1s2s3s1s2s1s2s1 , s1s2s1s2s3s2s1s2s1 and s1s2s3s1s2s3s1s2s1 by applying
three braid moves and some commutation moves. Red empty (resp. black plain)
segments denote vertices (resp. non-vertices) of the current subword complex.

Notice that even if there are cases in Theorem 8, the identification between the
letters implied in a braid move always follows ours, independently of their vertex
status (see Figure 9). The letters qr and q′r+2 (resp qr+2 and q′r) are indeed always
identified, and in each case the letter q′r+1 is obtained by some transformation of
the letter qr+1. Figure 12 illustrates the labeling evolution rules on an example.

Lemma 12. Let Q = U1w◦(c)U2 be a word with a distinguished triangle and let Q =
Q1, . . . ,Q` (with Qk = U1TkU2 for k ∈ [`]) be a fattening sequence of this triangle.

• The labels of the letters of T` = w◦(c)c−1 = cw◦(c[n−1])c−1, obtained by the
identification rules, are these of Figure 13. Namely the letter at position i ∈
[n] in the c prefix is labeled (i, 1), the letter indexed (i, j) (with i ∈ [n−1], j ∈
[n−i]) in the factor w◦(c[n−1]) =

∏
1≤i≤n−1

∏
1≤j≤n−i sj is labeled (i, j+1)

and the letter in position i ∈ [n] in the c−1 suffix is labeled (n− i+ 1, 1)′.
• If the word Qk (for k ∈ [`]) contains a factor qrqr+1qr+2 implied in a
braid move, then the labels of qr, qr+1 and qr+2 in Qk are (i, 1)′, (i, j + 1)
and (i+j, 1) respectively for some i ∈ [n−1], j ∈ [n−i+1]. Moreover qrqr+2
is an edge of the subword complex S(Qk), and qr+1 is a vertex of S(Qk) if
and only if the letter with label (i, j + 1) in T1 is a vertex of S(Q).
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s1 s1
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Figure 13. The identification pattern of the letters of a word w◦(c)c−1 (right)
obtained by fattening a triangle w◦(c) (left) by following the labeling rules. The
pattern is given by the labeling on the sorting networks of the two words.
Lemma 12 translates obvious phenomena that can be observed on the example in

Figure 12. The proof is an easy but technical refinement of the proofs of Lemma 10
and Corollary 11. We only give a sketch of it and leave the details to the reader.

Proof (sketch). The proof is by induction on n ≥ 1, the case n = 1 being trivial.
Given a triangle w◦(c) = cw◦(c[n − 1]) in a word Q, we first fatten its subfac-
tor w◦(c[n−1]) into transforming w◦(c) into the factor cw◦(c[n−1])(c(n−1])−1. In
this last factor, the labels of the letters in the prefix c are still the initial ones, while
the labels of the other letters are described by the induction hypothesis. Moreover,
the vertex status of the letters in the prefix c is the same as in the word Q since the
effect of reverse 0-Hecke and braid moves is local, by Theorems 7 and 8. To move
the factor cw◦(c[n− 1])(c[n− 1])−1 = w◦(c)(c(n− 1])−1 to the factor w◦(c)c−1, we
apply Lemma 10 to its w◦(c) prefix in order to insert a new letter sn. It is then
straightforward to adapt the induction in the proof of Lemma 10 into keeping track
of the labels and vertex status of the letters in the final factor w◦(c)c−1, so as of
the prescribed edges. The key point for the induction step is that doubling the first
letter s1 creates an edge between any of the two resulting letters and any other ver-
tex q of the current subword complex (by Theorem 7), and that this edge is never
affected by the stellar subdivisions and reverse stellar subdivisions corresponding
to the braid moves (by Theorem 8) which do not imply both letters. �

Observe that Lemma 12 implies that all the braid moves implied in a fattening
sequence either induce Case (3) or Case (5) of Theorem 8. Therefore Lemma 12
yields a new construction for the classical associahedron, choosing the word Q to
be simply a triangle Q = w◦(c). Indeed no letter is a vertex in S(Q) = {∅}, and
so no letter with label (i, j + 1) (for i ∈ [n − 1], j ∈ [n − i + 1]) is a vertex in the
subword complex S(Q′), where the Q′ is obtained from the word Q by doubling
all its s1 letters. Since those letters are non-vertices in the subword complex S(Q),
all the corresponding reverse 0-Hecke moves induce suspensions by Theorem 7 so
that the subword complex S(Q′) is isomorphic to the boundary complex of the n-
dimensional cross polytope. Finally Lemma 12 implies that all braid moves in
the fattening sequence induce stellar subdivisions of edges, by Theorem 8. We
obtain by Lemma 3 a construction of the classical associahedron by successive
stellar subdivisions of edges of the cross-polytope.

Corollary 13. The n-dimensional simplicial associahedron can be obtained by suc-
cessive stellar subdivisions of edges of the n-dimensional cross-polytope. Equiv-
alently its polar dual can be obtained by successive truncations of codimension-2
faces of the n-dimensional cube.
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Figure 14. The pattern of coordinates obtained for the associahedron (right)
after fattening a triangle (left). The obtained rays are these of the realization of
the associahedron by J.-L. Loday [Lod04] (see Figures 2 left and 3 left).

This is a special case of a result by V. Volodin [Vol10] stating that any flag
nestohedron can be obtained by successive such truncations of a cube. The last
figure in [Vol10] depicts a 3-dimensional associahedron geometrically equivalent to
the realization by J.-L. Loday [Lod04] (see Figure 2 left). Corollary 13 shows that
the realization by J.-L. Loday can be obtained that way in all dimensions. Indeed
while following the sequence Q = Q1, . . . ,Q` to fatten the triangle, we can apply
the generic transformations described after Lemma 3 to realize the successive sus-
pensions and stellar subdivisions of edges of the current subword complex. We first
associate to each letter of the word Q the zero vector 0 in R0, and we take the con-
vention that when applying a reverse 0-Hecke move to a letter q = s1 labeled (i, 1)
in the word Qr, and associated to a ray v in the current fan realizing S(Qr) (say
of dimension d ∈ N), the resulting letters labeled (i, 1) and (i, 1)′ are respectively
associated to the vectors v ⊕ (−f) and v ⊕ f in the new fan realizing the sus-
pension S(Qr+1) ∼= S(Qr) ∗{u1, u2}, where Rd+1 = Rd ⊕ R f . After fattening the
triangle, we therefore obtain the pattern of coordinates of Figure 14 which provides
rays supporting a complete simplicial fan realizing the associahedron. The reader
can refer to [PS12] to check that this fan is isomorphic to the normal fan of the
realization of the associahedron as a convex polytope by J.-L Loday [Lod04].

4. The construction continued to 2-associahedra

4.1. Heuristic construction. Cases (1), (2) and (4) of Theorem 8 are always
avoided by the braid moves of a fattening sequence by Lemma 12. But we need a
geometric transformation implementing the topological effect induced by Case (5),
similar to these after Lemma 3. Consider a braid move changing a factor qrqr+1qr+2
of a word Q by a factor q′rq′r+1q′r+2 of a word Q′. Suppose that the subword
complex S(Q) is realized by a fan FQ in which the vertices qr, qr+1 and qr+2 of S(Q)
are associated to rays generated by some vectors vr,vr+1 and vr+2 respectively,
that we identify to the rays themselves. Recall that we described the topological
effect in Case (5) of Theorem 8 as “moving the vertex qr+1 from one side of the
edge qrqr+2 to the other” (see Figure 10). In fan words, it heuristically means that
the cone R≥0{vr,vr+2} should separate the ray vr+1, associated to qr+1 in the
fan FQ, and the ray v′r+1 associated to q′r+1 in a potential fan realizing the subword
complex S(Q′). This intuitive description can be geometrically translated as follows.

• take any vector v in the interior of the cone R≥0{vr,vr+2}, that is v can
be written in the form αvr + β vr+2 for some α, β > 0;

• move vr+1 in the direction of v in order to cross the cone R≥0{vr,vr+2}.
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−vr+1

vr+1

vr + vr+2

vr

vr+2

v′
r+1

vr + vr+2

vr

vr+2

Figure 15. The geometric transformation on the rays of a complete simplicial
fan corresponding to a braid move in Case (5) of Theorem 8. In this figure only
the relevant rays and cones are represented. The dotted vectors are represented
in order to help understanding the figure but they are not rays of the fan.

For the last point, the ray vr+1 should be moved “not to far” from v in order to
ensure it to cross the cone R≥0{vr,vr+2}, but no other cone of the fan. Since the
direction from vr+1 to v is v − vr+1, our intuitive description suggests to replace
the ray vr+1 by the ray v′r+1 := v + ε (v − vr+1), with ε > 0 small enough. Since
we are interested in rays, we can consider their generators up to rescaling and
therefore say that the ray generated by the vector vr+1 could be replaced by the
ray generated by the vector v′r+1 := v − εvr+1. In other words, any vector of the
form αvr+β vr+2−εvr+1 with α, β, ε > 0 and ε small enough would be a legitimate
candidate for v′r+1. We generically choose α = 1, β = 1 and ε = 1 (see Figure 15
for an illustration). Finally, following the identifications between the letters of Q
and Q′, the letter q′r (resp. q′r+2) is associated to the ray vr+2 (resp. vr).

In the sequel, we will consider vectors vq ∈ Rd associated to the letters q of
some words Q (with d = dim(S(Q)) + 1), that we will then abusively call the rays
of the subword complex S(Q), even if the rays in {vq | q is a letter in Q} may not
support a complete simplicial fan realizing S(Q). If they do, we say that these rays
are realizing for S(Q). We only require that non-vertices are associated to the zero
vector 0. The previous description allows to derive a general heuristic formula for
the rays obtained after a fattening sequence. Notice that we already gave after
Lemma 3 some transformations on rays associated to one-point-suspensions and
stellar subdivisions, that correspond to the effect of moves described in Theorem 7
and Case (3) of Theorem 8. We observe that the transformation that we defined for
Case (5) of Theorem 8 is in fact also valid for Case (3) of Theorem 8, since we impose
that non-vertices are associated to the zero vector. So given a word Q = U1w◦(c)U2
containing a distinguished triangle, and to the letters of which rays are associated,
we can use Lemma 12 and the transformations corresponding to moves to derive
rays associated to the letters of the word Q′ = U1w◦(c)c−1U2 obtained by fattening
the distinguished triangle of Q. The rays corresponding to the letters of the word Q
span a vector space isomorphic to Rd (with d = dim(S(Q)) + 1), and we consider a
basis f1, . . . , fn of Rn in direct sum with this vector space, so that each reverse 0-
Hecke move of a fattening sequence lets a coordinate corresponding to one of the fi
appear in the rays of the current subword complex. The resulting pattern for the
rays of the letters in the factor w◦(c)c−1 of the word Q′ is presented in Figure 16.
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Figure 16. The sorting network of a triangle in a word Q, in which the letter in
position (i, j) is labeled with its associated ray v(i,j) ∈ Rd, for d = dim(S(Q))−1
(left) and the sorting network of the factor w◦(c)c−1 in the word Q′ obtained
from Q by fattening the triangle (right). The letters in this factor are again
labeled with their associated ray, obtained from these in the initial triangle fol-
lowing the geometric transformations along the fattening sequence.

s1 : [−1 0 0 0 0 0 0 0 ]
s2 : [ 0 −1 0 0 0 0 0 0 ]
s3 : [ 0 0 −1 0 0 0 0 0 ]
s4 : [ 0 0 0 −1 0 0 0 0 ]
s1 : [ 1 −1 0 0 −1 0 0 0 ]
s2 : [ 0 1 −1 0 0 −1 0 0 ]
s3 : [ 0 0 1 −1 0 0 −1 0 ]
s4 : [ 0 0 0 1 0 0 0 −1]
s1 : [ 0 0 0 0 1 −1 0 0 ]
s2 : [ 0 −1 1 0 1 0 −1 0 ]
s3 : [ 0 −1 0 1 1 0 0 −1]
s4 : [ 1 −1 0 0 1 0 0 0 ]
s1 : [ 0 0 0 0 0 1 −1 0 ]
s2 : [ 0 0 −1 1 0 1 0 −1]
s3 : [ 0 1 −1 0 0 1 0 0 ]
s1 : [ 0 0 0 0 0 0 1 −1]
s2 : [ 0 0 1 −1 0 0 1 0 ]
s1 : [ 0 0 0 1 0 0 0 1 ]

Table 1. The coordinates of the rays associated to the letters of the
word c2w◦(c) obtained by fattening twice a triangle for n = 4. These rays are
the first candidates that we obtain to support a complete simplicial fan realizing
the 2-associahedron ∆2,4. However they do not support such fan.

The pattern of Figure 16 gives an algorithmic way to produce candidates rays
for a fan realization of the subword complex S(Q′) whenever we already know
that the set of rays we started with for the subword complex S(Q) support a
complete simplicial fan realizing it. For 2-associahedra, we only need to fatten
twice a triangle. Indeed, the word w◦(c) can be fattened into the word w◦(c)c−1,
which can be moved by commutations moves to the word cw◦(c). In this last word,
we can fatten the suffix triangle into obtaining the word cw◦(c)c−1, that we can
move once more to c2w◦(c) by commutations moves. The resulting rays for the
subword complex S(c2w◦(c)) are illustrated in Table 1 for n = 4.

We now wonder whether the rays we obtained support a complete simplicial fan
realizing the subword complexes S(c2w◦(c)), and if not “how close” it is to be so.
For this we consider the set Fn of all cones generated by any set of rays which
corresponds to a face of the subword complex S(c2w◦(c)). We recall that a ridge of
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n 1 2 3 4 5 6 7 8
dimension of ∆2,n 1 3 5 7 9 11 13 15

#bad ridges 0 0 0 0 0 0 0 0
# degenerate ridges 0 0 11 282 5, 058 78, 904 1, 144, 499 15, 909, 182

# ridges 3 28 252 2, 376 23, 595 245, 388 2, 654, 652 29, 695, 328
ratio (%) 0 0 4.37 11.87 21.44 32.15 43.11 53.57

# degenerate cones 0 0 2 48 782 10, 992 143, 838 1, 811, 972
# cones 3 14 84 594 4, 719 40, 898 379, 236 3, 711, 916
ratio (%) 0 0 2.38 8.08 16.57 26.88 37.93 48.82

minimal dimension 2 4 5 6 7 8 9 10

Table 2. The statistics for the sets of cones Fn.

the subword complex S(c2w◦(c)) is a face which is the intersection of exactly two
facets. We will abusively refer to the cones of Fn corresponding to facets (resp.
ridges) of the subword complex S(c2w◦(c)) as to the facets (resp. ridges) of Fn. The
rays of Fn lie in R2n and any ridge is contained in two facets, each generated by 2n
vectors, that differ by a single generator. Therefore a ridge R defines exactly 2n+1
rays, and thus at least one linear dependence between them. If the rays associated
to the ridge R are link by a single (up to rescaling) linear dependence not satisfying
Condition (2) of Proposition 2, we say that R is a bad ridge of Fn. If the space of
linear dependences on the rays defined by R has dimension greater than 1, we say
that R is a degenerate ridge of Fn. In this case at least one of the facets containing
the ridge R is not full dimensional. We call such a facet a degenerate cone of Fn.
Proposition 2 suggests to look at the following statistics on the set of cones Fn.

• The rate of bad ridges in Fn, which sort of measures “non tractable issues”.
• The rates of degenerate cones and ridges in Fn, which describe the “global
degeneracy” in Fn. Since the dual graph of the complex S(c2w◦(c)) is
regular, they also give the number of pairs of adjacent degenerate cones.
• The minimal dimension of a facet in Fn, which measures “local degeneracy”.

We gather these statistics in Table 2 for n ≤ 8.

Observation 1. The empirical data suggest that fattening twice a triangle produce
rays that do not realize the 2-associahedron, but “only” up to degeneracies. Indeed
the process does not seem to let bad ridges appear. Yet the indicators for degeneracy
are high, so that the rays we obtain should not be perturbed easily into realizing ones.

4.2. Degrees of freedom. In view of Observation 1, we need a less naive con-
struction to obtain realizing rays for 2-associahedra. We derive it from making the
one presented in Section 4.1 less generic. Indeed we always used the coefficients
that we called generic in the geometric translations for the different topological
effects of the braid moves. But as we notice after Lemma 3 and at the beginning of
Section 4.1, we may let some of them vary for the new rays of the letters implied
in a reverse 0-Hecke move or in a braid move. This belongs to the following many
degrees of freedom that we could consider for the construction.

coefficients for reverse 0-Hecke moves: For any reverse 0-Hecke move,
we can turn the ray v of the doubled letter into v⊕α f and v⊕β f , for any α
and β satisfying αβ < 0, to realize the corresponding one-point-suspension.
The construction of Section 4.1 generically keeps α = −1 and β = 1.

coefficients for braid moves: According to Lemma 12, a braid move in a
fattening sequence always implies a factor qrqr+1qr+2 with letters qr, qr+1
and qr+2 respectively labeled (i, 1)′, (i, j+1) and (i+j, 1) (for i ∈ [n−1], j ∈
[n− i]). We denote the respective rays associated to these letters vr,vr+1
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and vr+2, and by q′rq′r+1q′r+2 the factor by which qrqr+1qr+2 is replaced
by the braid move. We chose in Section 4.1 to associate the letter q′r+1
to any ray of the form αvr + β vr+2 − εvr+1 with α > 0, β > 0, ε > 0
and ε small enough. In our construction of Section 4.1, we fatten twice a
triangle. The first fattening sequence only contains braid move inducing
stellar subdivisions while the second one only contains braid move inducing
Case (5) of Theorem 8. In the first case there is in fact only two choices
of coefficients since the ray associated to the letter qr+1 is the zero vector.
We will denote by λ(i,j) and ρ(i,j) the respective coefficients of vr and vr+2
in the first fattening sequence, and by α(i,j), β(i,j) and ε(i,j) the respective
coefficients of vr,vr+1 and vr+2 in the second fattening sequence of the
construction. Since the effect of braid moves are local, we can a priori
choose all these coefficients independently whereas the initial construction
of Section 4.1 generically set λ(i,j) = ρ(i,j) = α(i,j) = β(i,j) = ε(i,j) = 1.

choice of the triangle: We did not insist on the triangle that we fatten in
the construction. There is indeed only one choice for the initial word,
which is itself a triangle, but the second fattening sequence is applied to
the suffix triangle of the word cw◦(c). This word can be moved to the
word w◦(c)c−1 by commutation moves so that we could also apply the
second fattening sequence to the prefix triangle of this new word. It is easy
to check that the two sets of rays obtained by both methods are linearly
equivalent. Yet we can use the rotation map described in Theorem 5 to
obtain other non equivalent constructions. Denoting by Q	k the word
obtained by applying k times the rotation map to a word Q, we see that any
word of the form (cw◦(c))	k.n, for k ∈ N, can be moved back to cw◦(c) by
commutation moves. Therefore we could choose a lot of triangles to fatten
(in fact n+ 1) instead of always taking the suffix one without applying any
rotation to the current word, as in the construction of Section 4.1.

starting associahedron: Finally we observe that we could start from any
realizing rays for the subword complex S(cw◦(c)) to apply the second fatten-
ing sequence of the construction. In view of the numerous fan realizations
for the usual associahedron, this is a wide additional degree of freedom.

We did not test exhaustively all the possibilities allowed by these multiple degrees
of freedom. Since the initial motivation of this project was to realize as fans one of
the first unrealized multiassociahedra ∆2,5 and ∆4,4, we mostly made some kind
of “depth first search testing” in that direction. Therefore we will not mention all
combinations that failed out and concentrate on this that actually provided results.
It turns out that letting the coefficients λ(i,j) and ρ(i,j) vary was somehow successful.
So from now on we will denote by Fn(λ(i,j), ρ(i,j)) the set of cones obtained by
fattening twice a suffix triangle of an initial triangle, where the first fattening is
done with coefficients λ(i,j) and ρ(i,j), and the second one with coefficients α(i,j) =
β(i,j) = ε(i,j) = 1. The choice λ(i,j) = 5 and ρ(i,j) = 3 was the best one among
these not letting the coefficients depend on the position of the corresponding letter.
Table 3 gathers the statistics for the set of cones Fn(5, 3) for n ≤ 8. Observe that
the rates of degenerate ridges and cones decreases by a factor of about 2 with this
simple change in the coefficients. In particular we obtain new realizing rays for
the 2-associahedron ∆2,3 (see Table 4). We came out with such coefficients mostly
because we observed that having λ(i,j) and ρ(i,j) relatively prime helped reducing
degeneracies. So we tried to keep them relatively prime while letting them depend
on the position. It turns out that letting them be linear in (i, j) yielded us the
best results, namely for λ(i,j) = 2n+ 4− i− j and ρ(i,j) = λ(i,j) − 1. We gather in
Table 5 the statistics of the sets of cones Fn(2n+ 4− i− j, 2n+ 3− i− j) for n ≤ 8.
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n 1 2 3 4 5 6 7 8
dimension of ∆2,n 1 3 5 7 9 11 13 15

#bad ridges 0 0 0 0 0 0 0 0
# degenerate ridges 0 0 0 78 2, 216 43, 298 724, 546 11, 150, 457

# ridges 3 28 252 2, 376 23, 595 245, 388 2, 654, 652 29, 695, 328
ratio (%) 0 0 0 3.28 9.39 17.63 27.29 37.55

# degenerate cones 0 0 0 12 320 5, 742 87, 714 1, 233, 154
# cones 3 14 84 594 4, 719 40, 898 379, 236 3, 711, 916
ratio (%) 0 0 0 2.02 6.78 14.04 23.13 33.22

minimal dimension 2 4 6 7 8 9 10 11

Table 3. The statistics for the sets of cones Fn(5, 3).

s1 : [−1 0 0 0 0 0 ]
s2 : [ 0 −1 0 0 0 0 ]
s3 : [ 0 0 −1 0 0 0 ]
s1 : [ 5 −3 0 −1 0 0 ]
s2 : [ 0 5 −3 0 −1 0 ]
s3 : [ 0 0 1 0 0 −1 ]
s1 : [ 0 2 0 1 −1 0 ]
s2 : [ 4 −3 1 1 0 −1 ]
s3 : [ 5 −3 0 1 0 0 ]
s1 : [ 0 4 −2 0 1 −1 ]
s2 : [ 0 5 −3 0 1 0 ]
s1 : [ 0 0 1 0 0 1 ]

Table 4. The rays supporting the set of cones F3(5, 3), associated to each letter
of the word c2w◦(c) for n = 3. These rays are realizing, that is the set of
cones F3(5, 3) is a complete simplicial fan realizing the 2-associahedron ∆2,3.

n 1 2 3 4 5 6 7 8
dimension of ∆2,n 1 3 5 7 9 11 13 15

#bad ridges 0 0 0 0 0 0 0 20
# degenerate ridges 0 0 0 39 1, 122 22, 317 381, 533 6, 026, 814

# ridges 3 28 252 2, 376 23, 595 245, 388 2, 654, 652 29, 695, 328
ratio (%) 0 0 0 1.64 4.76 9.09 14.37 20.30

# degenerate cones 0 0 0 6 160 2, 904 45, 173 650, 734
# cones 3 14 84 594 4, 719 40, 898 379, 236 3, 711, 916
ratio (%) 0 0 0 1.01 3.39 7.10 11.91 17.53

minimal dimension 2 4 6 7 8 9 10 11

Table 5. The statistics for the sets of cones Fn(2n+4−i−j, 2n+3−i−j). With
this choice of coefficients, some bad ridges appear in the construction for n = 8.

Observation 2. It is possible to let the coefficients λ(i,j) and ρ(i,j) vary in order to
still obtain sets of cones Fn(λ(i,j), ρ(i,j)) with degeneracies but almost no bad ridges.
Moreover some choices let the degeneracy indicator decrease remarkably. Indeed the
choice λ(i,j) = 2n+ 4− i− j and ρ(i,j) = 2n+ 3− i− j again decreases by a factor
of about 2 these indicators by comparison to the choice λ(i,j) = 5 and ρ(i,j) = 3.
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s1 : [ −1 0 0 0 0 0 0 0 0 0 ]
s2 : [ 0 −1 0 0 0 0 0 0 0 0 ]
s3 : [ 0 0 −1 0 0 0 0 0 0 0 ]
s4 : [ 0 0 0 −1 0 0 0 0 0 0 ]
s5 : [ 0 0 0 0 −1 0 0 0 0 0 ]
s1 : [11.995220082449654 −11.002018603888557 0 0 0 −1 0 0 0 0 ]
s2 : [ 0 10.998025890846899 −10.000386365505443 0 0 0 −1 0 0 0 ]
s3 : [ 0 0 9.995777402249201 −8.998111068535287 0 0 0 −1 0 0 ]
s4 : [ 0 0 0 9.00229715779829 −8.001163693705028 0 0 0 −1 0 ]
s5 : [ 0 0 0 0 1 0 0 0 0 −1]
s1 : [0.9957828222479908 −0.003992713041657936 −0.0014994963267600525 0 0 1 −1 0 0 0 ]
s2 : [1.9999160791264572 −11.002018603888557 9.995777402249201 −0.0030142895687461646 0 1 0 −1 0 0 ]
s3 : [2.9965399682572844 −11.002018603888557 0 9.00229715779829 −0.0040464541747882166 1 0 0 −1 0 ]
s4 : [10.995220082449654 −11.002018603888557 0 0 1 1 0 0 0 −1]
s5 : [11.995220082449654 −11.002018603888557 0 0 0 1 0 0 0 0 ]
s1 : [ 0 0.9936127652497042 −0.004608963256242049 0.0012209718570073136 0 0 1 −1 0 0 ]
s2 : [ 0 2.001435184525553 −10.000386365505443 9.00229715779829 −0.0008415764775513424 0 1 0 −1 0 ]
s3 : [ 0 9.998025890846899 −10.000386365505443 0 1.0 0 1 0 0 −1]
s4 : [ 0 10.998025890846899 −10.000386365505443 0 0 0 1 0 0 0 ]
s1 : [ 0 0 0.9945133005526081 0.004186089263003012 0.0007304432600054866 0 0 1 −1 0 ]
s2 : [ 0 0 8.995777402249201 −8.998111068535287 1 0 0 1 0 −1]
s3 : [ 0 0 9.995777402249201 −8.998111068535287 0 0 0 1 0 0 ]
s1 : [ 0 0 0 8.00229715779829 −7.001163693705028 0 0 0 1 −1]
s2 : [ 0 0 0 9.00229715779829 −8.001163693705028 0 0 0 1 0 ]
s1 : [ 0 0 0 0 1 0 0 0 0 1 ]

Table 6. Realizing rays of the 2-associahedron ∆2,5, associated to each letter
of the word c2w◦(c) for n = 5. These rays were obtained by fattening twice the
suffix triangle of an initial triangle with coefficients λ(i,j) = 14 − i − j + ε`(i,j)
and ρ(i,j) = 13 − i − j + εr(i,j), where ε`(i,j) and εr(i,j) were uniform independent
random variables in [−0.001, 0.001] for i ∈ [4] and j ∈ [5− i].

4.3. Perturbations. As a particular case of Observation 2, we noticed that the
set of cones F5(14 − i − j, 13 − i − j) seemed really close of realizing the 2-
associahedron ∆2,5. So we stopped our experiments on the coefficients λ(i,j) and ρ(i,j)
and tried to perturb the rays randomly with the hope of killing the last remaining
degeneracies. Again there is some freedom in this idea of “perturbing” the rays.
Indeed we tried to add a random and small enough term to each of their coordi-
nate, unsuccessfully. But then, applying the perturbations to the coefficients λ(i,j)
and ρ(i,j) themselves finally gave us realizing rays for the 2-associahedron ∆2,5, that
are given in Table 6. Of course not all perturbations terms that appear in these
rays are necessary. So working on the coordinates in Table 6, we found better ones,
given in Table 7. Notice that these rays now have integer coordinates between −10
and 10. Moreover we were able to reduce the number of perturbation terms to 3.

Observing the pattern formed on the sorting network of the word c2w5(c) by
these perturbation terms, we derived the conjectural pattern for realizing rays for
any 2-associahedron of Figure 17, and described in Section 1. There we stated
Question 2 as a question rather than as a conjecture, because of the 20 bad ridges
appearing with our choice of coefficients for n = 8. This is a priori not a problem
since the number of perturbations grows quadratically with n and our candidate
pattern of rays is still realizing for n = 8. Moreover the other tries we made seemed
to indicate that more random integer perturbations failed realizing 2-associahedra
before n = 6. Yet these bad ridges may grow quickly with n and let our pattern
finally fail being realizing for all n. But we still obtain realizations for some 2-
associahedra with integer coordinates between −(2n+ 1) and (2n+ 2), for n ≤ 8.

Theorem 14. The rays of the pattern in Figure 17 support a complete simplicial
fan in R2n which realizes the multiassociahedron ∆2,n for n ∈ [8].
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s1 : [−1 0 0 0 0 0 0 0 0 0 ]
s2 : [ 0 −1 0 0 0 0 0 0 0 0 ]
s3 : [ 0 0 −1 0 0 0 0 0 0 0 ]
s4 : [ 0 0 0 −1 0 0 0 0 0 0 ]
s5 : [ 0 0 0 0 −1 0 0 0 0 0 ]
s1 : [ 12 −11 0 0 0 −1 0 0 0 0 ]
s2 : [ 0 11 −10 0 0 0 −1 0 0 0 ]
s3 : [ 0 0 10 −9 0 0 0 −1 0 0 ]
s4 : [ 0 0 0 9 −8 0 0 0 −1 0 ]
s5 : [ 0 0 0 0 1 0 0 0 0 −1]
s1 : [ 1 0 0 0 0 1 −1 0 0 0 ]
s2 : [ 2 −11 10 −1 0 1 0 −1 0 0 ]

s3 : [ 3 −11 0 9 −2 1 0 0 −1 0 ]
s4 : [ 11 −11 0 0 1 1 0 0 0 −1]
s5 : [ 12 −11 0 0 0 1 0 0 0 0 ]
s1 : [ 0 1 0 0 0 0 1 −1 0 0 ]
s2 : [ 0 2 −10 9 −1 0 1 0 −1 0 ]
s3 : [ 0 10 −10 0 1 0 1 0 0 −1]
s4 : [ 0 11 −10 0 0 0 1 0 0 0 ]
s1 : [ 0 0 1 0 0 0 0 1 −1 0 ]
s2 : [ 0 0 9 −9 1 0 0 1 0 −1]
s3 : [ 0 0 10 −9 0 0 0 1 0 0 ]
s1 : [ 0 0 0 8 −7 0 0 0 1 −1]
s2 : [ 0 0 0 9 −8 0 0 0 1 0 ]
s1 : [ 0 0 0 0 1 0 0 0 0 1 ]

Table 7. Realizing rays of the 2-associahedron ∆2,5, associated to each letter
of the word c2w◦(c) for n = 5. These rays were obtained by working on the
coordinates of these in Table 6. The perturbation terms, that is the coordinates
that are different from these obtained by fattening twice a suffix triangle in an
initial triangle with coefficients λ(i,j) = 14− i− j and ρ(i,j) = 13− i− j, appear
boxed and red. In the non perturbed set of rays, all the corresponding terms are
equal to zero. Observe finally that all perturbation terms are negative integers.
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Figure 17. The candidate pattern for integer rays supporting a fan realiz-
ing 2-associahedra. We denote the n first vectors of the canonical basis of R2n

by (ei)i∈[n] and the n last ones by (fi)i∈[n]. The perturbation terms appear boxed
and red. They are negative and replace zero coordinates of the non perturbed
construction. This pattern is the one we obtain after applying 2n times the
rotation map to the underlying word c2w◦(c) to have a better presentation.
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5. Discussion

5.1. Polytopality. Unfortunately none of the new fans we produce happens to be
the normal fan of a polytope. Not even in the case of the 2-associahedron ∆2,3
which is known to have a polytopal realization by J. Bokowski and V. Pilaud [BP09].
Since all the transformations are intuitively chosen to fit with geometric constraints,
it suggests that the way from combinatorics to geometry is very fine and confirms
again how hard it is to handle with in the case of multiassociahedra.

5.2. Further k’s. The few tries we made towards more general k than 2 did not
work successfully and quickly produced sets of cones with many bad ridges, in
contrast with Section 4.1. We tried to fatten three times a triangle, which produced
really bad objects, and then we tried to fatten a triangle starting from the valid
rays we had obtained after perturbing, which was not better. But our experiments
lack exhaustive tries and the main issue with our method somehow comes from the
fact that we have too many and too wide degrees of freedom to apply it.
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