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We consider the long time behavior of the trajec-
tories of the discontinuous analog of the standard
Chirikov map. We prove that for some values of param-
eters all the trajectories remains bounded for all time.
For other set of parameters we provide an estimate for
the escape rate for the trajectories and present a nu-
merically supported conjecture for the actual escape
rate.

1 Introduction.

We consider the area-preserving transformation of the
cylinder [0, 1)× R defined by f(x, y) = (x′, y′) where{

x′ = x+ αy (mod 1)

y′ = y + sgn
(
x′ − 1

2

)
,

(1)

Parameter α ∈ R is called the twist parameter. A point
at position (x, y) on the cylinder moves at constant
height y around the cylinder a distance αy, and then
moves up one unit if it is on the right half of the cylinder
(x′ ∈ (1/2, 1)), down one unit if it is on the left half
(x′ ∈ (0, 1/2)), and stays at the same vertical position
if it is at the singular lines x′ = 1/2 or 0.

Such system can be regarded as a discontinuous ana-
log of the standard Chirikov map (see [3]), where the
smooth function sin(x′) is replaced by the discontin-
uous sgn(x′). This system can be also obtained from
the Fermi-Ulam accelerator model with the sawtooth-
like wall movement regime (see [1] for details). For
the smooth variants of the described problems KAM-
technique can be used to provide the existence of the
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invariant curves separating the phase space and so no
unbounded orbit exists for such systems. Since trans-
formation (1) is discontinuous, KAM theory is not ap-
plicable and so new methods are needed for the anal-
ysis. Such systems having many interesting dynamical
properties, attracted a lot of attention in the past few
years (see e.g. [5], [4]).

In this note we study the asymptotic properties of
the orbits of system (1) in terms of the growth rate of
the height yn of the iterates (xn, yn) = fn(x0, y0). We
will focus on the rational values of the twist parameter
α. The case of the irrational values of α is more difficult
and will be a subject of a future work.

In the next section, we collect preliminary results on
the structure of the set of orbits of system (1) and re-
late our system to a transformation on a finite lattice.
In section 3 we present our main results and state some
conjectures based on the numerical simulations. Sec-
tion 4 is devoted to the numerical study of the periodic
orbits.

Acknowledgments. Present work was done during
the Summer@ICERM research program in 2015. Au-
thors are deeply thankful to ICERM and Brown Uni-
versity for the hospitality and highly encouraging at-
mosphere. Authors also want to thank Vadim Zharnit-
sky and Stefan Klajbor-Goderich for deep and fruitful
discussions.

2 Preliminaries.

We will use the following notations. Integer part of x
is denoted as bxc, therefore for the fractional part of
x we have {x} = x − bxc. Zq = {0, 1, . . . , q − 1} will
denote the ring of residues modulo q.
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Lemma 1. Map (1) is symmetric with respect to the
point (1/2, 0). In details, for any two points (x, y) and
(x̃, ỹ) such that (x, y)+(x̃, ỹ) = (1, 0) one has f(x, y)+
f(x̃, ỹ) = (1, 0) (See Fig. 1).

Proof. Let (x̃, ỹ) = (1− x,−y) , then x′ = x+ αy and
x̃′ = 1−x−αy = 1−x′. Hence ỹ′− ỹ = −(y′−y).

Figure 1: Transformation (1) can be thought as inter-
val exchange transformation with infinitely many inter-
vals. Intervals Ij,+ are the pre-images of the segments
x ∈ (1/2, 1), y = y0 + (j + 1). Similarly, Ij,− are the
pre-images of x ∈ (0, 1/2), y = y0 + (j − 1).

Next we notice that the transformation (1) preserves
the lattice y ∈ {y0 + Z} in the second coordinate. Let

α =
p

q
, where p, q ∈ Z and gcd(p, q) = 1. Then for two

points (x, y) and (x, y ± q) first components of their
images coincide and thus the increments in the sec-
ond components are equal. Therefore we can restrict
our attention to the set (x, y) ∈ [0, 1) × {y0 + Zq}.
Transformation (1) can be regarded as an interval ex-
change transformation on the union of 2q intervals⋃q

j=1(Ij,+ ∪ Ij,−), where Ij,− = {(x, y) : {qx + py <
q/2}, y = y0 + j} and Ij,+ = {(x, y) : {qx + py >
q/2}, y = y0 + j} (see Fig. 1)

If one considers the special case q = 1 dynamics of
the system (1) degenerates to{

x′ = x+ py0 (mod 1)

j′ = j + sgn
(
x′ − 1

2

)
In this particular case dynamic of the first coordi-
nate became independent from the second coordinate.

Therefore one can identify all the intervals Ij,+ =
I+ and all the intervals Ij,− = I−. For py0 = 1
one immediately obtain linearly growing trajectory
fn(1/4, y0) = (1/4, n + y0). On the other hand for
py0 = 1/2 any trajectory remains bounded since for
x ∈ I+ from lemma 1 it follows that x′ ∈ I−. The case
of y0 being irrational has been extensively studied (see
[9, 7, 8, 2]) It provides a random-like behavior of the
trajectories depending on the arithmetic properties of
the initial condition y0.

In this paper we address the case q > 1 and consider

rational initial conditions y0 =
a

b
. Using substitution

y = y0 + j, we rewrite transformation (1) as{
x′ = x+ p(a+bj)

bq (mod 1)

j′ = j + sgn
(
x′ − 1

2

) (2)

where j′ is defined by the expression y′ = y0 + j′.

Lemma 2. Trajectories of the system (2) are orga-
nized in bands: for (x, j) and (x̃, j) such that bbqxc =
bbqx̃c it follows that bbqx′c = bbqx̃′c.

Proof. Obviously, integral parts of xbq and x̃bq are
changed by the transformation (2) by the same amount
p(a+ bj).

From lemma 2 it follows that we can restrict our at-
tention on the single representatives from the classes
of equivalent trajectories and consider our transforma-
tion on the discrete torus (x, y) ∈ Zbq × Zq. For the
sake of simplicity we will use the following lattices:

Le =

{(
2 + 4r

4bq
,
a

b
+ j

)
, j ∈ Zq, r ∈ Zbq

}

Lo =

{(
3 + 4r

4bq
,
a

b
+ j

)
, j ∈ Zq, r ∈ Zbq

}
We refer to Le and Lo as the even and the odd lattice,

respectively. Lo can be obtained from Le by shifting

to the right by
1

4bq
(see Fig. 2).

Thanks to lemma 2 these lattices are invariant under
the action of f . To simplify the notations, henceforth
when bq is even we consider f : Le → Le, and when

2



Figure 2: Lattices Le and Lo for odd bq.

bq is odd we consider f : Lo → Lo. For purposes of
calculation we will think of f as acting on (r, j) instead
of (x, y). Explicitly, for r ∈ Zbq and j ∈ Zq we have{

r′ = r + p(a+ bj) (mod bq)

j′ = j + sgn(2r′ − bq + 1 + δ) (mod q),
(3)

where δ = bq (mod 2) refers to our choice of the lattice
Le or Lo.

3 Main Results.

Since the lattices Le, Lo are finite all the trajectories
of the system (3) are periodic. The total increment in
the second coordinate of any periodic trajectory has to
be proportional to q. If the total increment of a tra-
jectory is zero, we will call such a trajectory bounded
or periodic. Otherwise the trajectory will be called
escaping.

3.1 Existence of escaping trajectories.

Theorem 1. Let α = p
q and y0 = a

b be two rational

numbers satisfying the condition bbq/2c = pa (mod b).
Then

1. For bq even, any orbit of the transformation (1)
starting at the level y = y0 is bounded.

2. For bq odd there exists a unique class of equivalent
trajectories of the system (1) starting at the level
y = y0 and growing without bounds.

Proof. Thanks to the above discussion, every un-
bounded trajectory of the system (1) corresponds to
the escaping trajectory of the system (3). Thus, one
has to show that system (3) either does not have escap-
ing trajectoies (for even bq) or has exactly one escaping
trajectory (for odd bq). Transformation (3) can be con-
sidered as a continuous transformation with respect to
the second coordinate, since every iteration gets an in-
crement of ±1 in j. We will construct a critical level
j = j∗ such that no trajectory can cross it in the case
of even bq. As it will be clear from the construction,
for the case of odd bq there is only one trajectory which
can cross this level. We will look for j∗ such that

p(a+ bj∗) = bbq/2c (mod bq). (4)

Note that p/q is irreducible and so gcd(pb, bq) = b.
Since by the assumption of the theorem bbq/2c − pa is
divisible by b we conclude that the congruence (4) has
exactly b solutions in the form j∗+kq, k = 0, 1, . . . (b−
1) (see [6]). Thus all these solutions correspond to the
same equivalence class in Zq.

We will show that in the case of even bq no trajecto-
ries may cross the level j = j∗ and for the odd q there is
only one such trajectory. Indeed, assume for definite-
ness that for (r, j∗ − 1) we have f(r, j∗ − 1) = (r′, j∗).
This means that r′ belongs to the right half of the cylin-
der. But for the even bq it follows that bpj∗ = bq/2
and so r′ is shifted exactly by bq/2 thus the trajectory
coming to the critical level from below will go down at
the next step. From lemma 1 it follows that neither
trajectory can cross this level from above.

For the case of odd bq one gets pj = (bq−1)/2 and so
only r = (bq− 1)/2 together with its image r′ = bq− 1
belong to the right half of the cylinder. Since there is
a unique point at which trajectory may pass the level
j∗ such a trajectory necessarily has to be escaping (see
Fig. 5)

Remark 1. In the case of integral initial condition
y0 = a one can set b = 1 and so the congruence (4)
always has a solution. Thus theorem 1 states that for
α = 1/2k all the trajectories of the system (1) remain
bounded while for α = 1/(2k + 1) there is only one
equivalence class of unbounded trajectories.

From numerical simulations the following statement
is evident.

3



(a)

 

 

(b)

Figure 3: (a): Phase space for q = 992 is filled with the periodic orbits. Orbits are colored with the length of
the period. Lighter points correspond to the shorter periods. Largest period equals 6168. (b): Escaping orbit
for q = 991. Length of the orbit equals to 414639.

Conjecture 1. For every α = p/q, there exists y0 =
a/b such that there is an escaping orbit of (1) starting
at the level y = y0.

For odd q it follows from theorem 1 that a = 0, b = 1
provides the desired result. When the technical condi-
tions of the Theorem 1 is not satisfied, congruence (4)
has no solutions and we cannot construct the bottle-
neck level passing which will assure that trajectory is
escaping. However, one particular case seems to be
tractable. From here on we fix p to be equal to 1.

Theorem 2. For q = 4k + 2 there exists an escaping
trajectory of the transformation f , starting at the level
y0 = 1/2.

Letting a = 1, b = 2 we will show that the orbit of
the point (r0, j0) = (4k−1, 2k+1) is unbounded. From
(3) we get the following system{

r′ = r + 1 + 2j (mod 2q)

j′ = j + sgn(1 + 2r′ − 2q) (mod q)

Next lemma provides us some control on the sub-lattice
for which the orbit of (r0, y0) should belong to.

Lemma 3. Let q = 4k + 2. Denote by (rm, jm) the
m-th iterate of the point (r0, j0) = (4k − 1, 2k + 1).
Then rm +m (mod 2) = 3 (mod 4).

Proof. At first we observe that the parity of the second
coordinate of the point always differs from the parity
of m. Indeed j0 is odd and at each step the trajectory
gets or looses 1.

We proceed by induction. First let us consider
m = 0. We have j0 = 2k + 1 = 1 (mod 2) and
r0 = 4k − 1 = 3 (mod 4). Then for m = 1 we get
r1 = r0 + 2j0 + 1 = 3 + 2 + 1 = 2 (mod 4).

Now assume that for some even m the assump-
tion of the lemma holds true. Then since jm =
1 (mod 2) it follows rm+1 = rm + 2jm + 1 =
2 (mod 4). Finally if the assumption holds for some
odd m we get jm = 0 (mod 2) and therefore
rm+1 = 2 + 1 + 4 (mod 4) = 3 (mod 4).

Proof of theorem 2. Consider the orbit of the point
(r0, j0) = (4k − 1, 2k + 1). One can easily calculate
that j1 = j0 + 1 and j2 = j1 + 1, that is, there are
immediately two consecutive increases. It then suffices
to show that there is no point at level j = 2k+ 3 from
which there are two consecutive decreases.
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To have a decrease to the j = 2k + 1 level from
(r, 2k + 2) we need to have 1 + 2r′ − 2q < 0, i.e.,

r + q + 3 (mod 2q) < q − 1

2
(5)

For r < q−3 we have r+q+3 (mod 2q) = r+q+3, so for
the inequality (5) to hold we need r < − 1

2 −3, which is
impossible. For r ≥ q−3 we have r+ q+3 (mod 2q) =
r − q + 3, so for (5) to hold we need r < 2q − 7

2 . By
lemma 3, r = 2 (mod 4) for any point in our desired
orbit at level j = 2k + 2, and so the only r’s that are
possibly in the orbit and result in a decrease from this
level are r = 4k + 2, 4k + 6, . . . , 8k − 2.

In the j = 2k + 3 level, to have a decrease to the
j = 2k + 2 level we need to have r′ < 4k + 3

2 . To
have two consecutive decreases, this r′ must be one of
the r’s we found in the previous paragraph. But the
smallest such r is 4k + 2, so this cannot happen.

For q = 4k, we searched for y0 = a/b that give an
escaping orbit for some (x0, y0) ∈ Le. We present the
table of a/b depending on k with the smallest b.

k 1 2 3 4 5 6 7 8

a 1 4 4 1 26 36 67 63
b 3 13 11 45 57 103 144 205

k · · · 9 10 11 12 13 14

a · · · 77 19 23 360 243 23
b · · · 227 337 223 1043 1264 505

One can see that the b required increases rather
quickly with k. It also appears that one cannot simply
narrow the search by taking a = 1. For example, for
k = 3 we searched for escaping orbits with y0 = 1/b
and found none for b ≤ 5000.

3.2 Length of the escaping orbit.

Now we will investigate the growth rate of the escaping
orbit. The fastest possible rate fo the transformation
(1) is linear, i.e. the trajectory may gain as much as
O(N) in the second coordinate after N iterations. In
fact, escaping trajectories grow much slower. Since the
phase space of the transformation (3) is finite and thus
so are all the trajectories we will consider the lengths of
the trajectories instead of their growth rates. Let α =

1/q and y0 = 0. Theorem 1 provides unique escaping
trajectory for each odd q.

Definition 1. Define `(q) as the unique odd-length pe-
riod under f on Lo.

Quantity `(q) describes the portion of the phase
space Zq×Zq swiped by the escaping trajectory. Thus
linearly growing trajectory should have `(q) = O(q),
since such a trajectory should visit every level of the
lattice O(1) amount of times. In fact, numerical ex-
periments show that the escaping trajectory has the
slowest possible growth rate `(q) = O(q2) (see Fig. 4)

Figure 4: `(q)/q2 for q < 50 000. The average value of
`(q)/q2 was found to be about 0.43.

Conjecture 2. Length of the escaping orbit `(q) grows
as O(q2).

At this moment we can provide much milder esti-
mate.

Theorem 3. Consider transformation (1) with α =
1
q with odd q and y0 = 0. Let {xn, yn} denote the
unbounded trajectory provided by theorem 1. Then for
any n and n′ such that |n′ − n| < q log q it follows that
|yn′ − yn| < q.

We will prove this theorem providing an aprioiry
bound on the length `(q). The idea of the proof con-
sists in the estimate of the time it takes from the es-
caping trajectory to pass the levels near the bottleneck
level j = (q + 1)/2. We will use two lemmas. First
lemma states that two consecutive vertical increases
near j = (q + 1)/2 + m (for m ≥ 0 reasonably small)
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cause the resulting iterate to be less than about k units
to the right of x = 1/2 (a line of discontinuity for f).
Second lemma uses the information about the first co-
ordinate of the trajectory to estimate the time trajec-
tory will spent on the prescribed level (see Fig 5).

Lemma 4. Let q ≥ 1 be odd. Suppose (r0, j0) ∈
Lo, (r1, j1) = f(r0, j0), and (r2, j2) = f(r1, j1) are
such that j0 = q+1

2 + m − 2, j1 = j0 + 1, and

j2 = j0 + 2 for some m ∈ {1, 2, . . . , q−12 }. Then

r2 ∈ [ q−12 , q−12 + m − 1].

Proof. Let j0, j1, and j2 be as in the statement of the
lemma. That j1 > j0 means r1 > q/2 (since we need
sgn(r1 − q

2 ) = 1 in order for this to happen), and in
the same way j2 > j1 =⇒ r2 > q/2. Therefore
q−1
2 ≤ ri ≤ q−1 for i ∈ {1, 2}. These inequalities make

sense, despite Zq not being ordered, because everything
is in the interval [0, q).

Each value of r1 satisfying these inequalities can be
written as r1 = q−1

2 + n for some n ∈ {0, 1, . . . , q−12 }.
We have

r2 = r1 + j1 (mod q) =

(
q − 1

2
+ n

)
+

+

(
q + 1

2
+m− 1

)
(mod q) = n+m− 1

Using our definitions of n and m, we obtain

q − 1

2
≤ r2 = n+m− 1 ≤ q − 1

2
+m− 1

as desired.

The next lemma roughly states that if we start at a
point within k units horizontally of r = q+1

2 (for m > 0

reasonably small) and at vertical level j = q+1
2 + m,

then the iterates of the point bounce at least about
q/2m times between j = q+1

2 +m and j = q+1
2 +m−1.

Lemma 5. Let q ≥ 9 be an odd integer. Let j0 =
q+1
2 + m and q+1

2 ≤ r0 ≤ q+1
2 + m − 1 for m ∈

{1, 2, . . . , bq/9c}. Let (r0, j0) ∈ Lo and take Nm to
be the greatest integer such that jn ∈ { q+1

2 +m, q+1
2 +

m− 1} for all n ≤ Nm. Then Nm ≥
⌊
q−1
2m

⌋
− 1.

Figure 5: Escaping trajectory near the bottleneck level.

Proof. Let r0 = q+1
2 +s, where s is in {0, 1, . . . ,m−1}.

We have

r1 = r0 + j0 (mod q) = s+m+ 1 <
q

2
,

j1 = j0 − 1 =
q + 1

2
+m− 1

and

r2 = r1 + j1 (mod q) =
q + 1

2
+ s+ 2m >

q

2
,

j2 = j1 + 1 =
q + 1

2
+m.

Every two iterations of f , the value of r increases by
the amount

(
q+1
2 +m

)
+
(
q+1
2 +m− 1

)
(mod q) = 2m

until r increases past q. Thus,

(r2n−1, j2n−1) =

(
s+ (2n− 1)m+ 1,

q + 1

2
+m− 1

)
and

(r2n, j2n) =

(
q + 1

2
+ s+ 2nm,

q + 1

2
+m

)
for all integers n with 0 ≤ n ≤ n∗, where n∗ is such
that s+ (2n∗ − 1)m+ 1 < q

2 and q+1
2 + s+ 2mn∗ < q.

We claim that n∗ =

⌊
q − 1

4m

⌋
− 1 satisfies these in-

equalities. We have

s+(2n∗−1)m+1 < m−1+

(
q − 1

2m
− 1

)
m+1 =

q − 1

2

6



And on the other hand

q + 1

2
+ s+ 2mn∗ ≤ q + 1

2
+m− 1+

+2

(
q − 1

4m
− 1

)
m = q −m− 1 < q,

as claimed. Note also that n∗ ≥ 0, since⌊
q − 1

4m

⌋
− 1 ≥ q − 1

4m
− 2 ≥ 9(q − 1)

4q
− 2 =

=
1

4
− 9

4q
≥ 1

4
− 1

4
= 0

Therefore the total number of points Nm with j in
{ q+1

2 +m, q+1
2 +m− 1} satisfies

Nm ≥ 2n∗ + 1 =

⌊
q − 1

2m

⌋
− 1

Proof of theorem 3. From the proof of theorem 1 it fol-
lows that the escaping orbit pass through the point
(x0, (q − 1)/2), where x0 = 1

4 + q−1
2 ). There exist pos-

itive integers nk for k ∈ {1, 2, . . . , bq/9c} such that

jnk−2 =
q + 1

2
+ k − 2, jnk−1 =

q + 1

2
+ k − 1

jnk
=
q + 1

2
+ k

since the orbit must pass through at least one point at
each height.

By lemma 4, q+1
2 ≤ rnk

≤ q+1
2 + k − 1. Define

Ak =

{
(rnk+m, jnk+m) : m = 0, 1, ...,

⌊
q − 1

2k

⌋
− 2

}
By lemma 5, |Ak| =

⌊
q−1
2k

⌋
− 1. Since

q

2
< xnk+m < q, ynk+m =

q + 1

2
+ k for m even and

0 < xnk+m <
q

2
, ynk+m =

q + 1

2
+ k − 1 for m odd,

the Ak are disjoint. Therefore we have

`(q) ≥
bq/9c∑
k=1

(⌊
q − 1

2k

⌋
− 1

)
= O(q log q)

as desired.

4 Periodic orbits.

We conclude our discussion with the numerical inves-
tigation of the distribution of the periodic orbits.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

(b)

Figure 6: (a): Distribution of the preiodic orbits for
even q = 950, . . . , 1000. Case q = 4k is drawn in red.
Blue color corresponds to the case q = 4k+2. (b): Dis-
tribution of the preiodic orbits for q = 950, . . . , 1000.
Blue color corresponds to the case of odd q. Even q is
drawn in red.

From theorem 1 it follows that the whole phase space
of the system (3) is divided into the set of periodic or-
bits of various periods. If q is odd then there exists a
unique orbit of enormously large period which swipe
almost a half of the phase space. It turns out that
all the other periods are distributed in the range of
O(q). For even q all the periods belong to this range.
What is spectacular that we observe some similarity
in the distribution of these periods for even and odd
values of q. Collection of the periodic orbits represents
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a partition of the number q2 into the sum of the pe-
riods of the trajectories. We present here the Young
diagrams for these partitions scaled by the factor of q
in both directions. For the case of odd q we present
the diagram corresponding to the partition of the set
of bounded trajectories. It turns out that the Young
diagrams constructed for the cases of even q and for
the bounded part of the phase space for the odd q are
similar (see Fig. 6b).

Conjecture 3. Maximum length of the bounded tra-
jectories for the transformation (3) has the magnitude
O(q).

Looking at the portrait of the escaping trajectory
(Fig. 3b) one can notice well-defined lacunae corre-
sponding to the levels j = q/(2n + 1). These lacu-
nae represent the islands of stability around the corre-
sponding periodic points for the transformation f .

Figure 7: Lacuna near the level j = 0. Trajectories
cover O(q) distance in horizontal direction in O(

√
q)

steps.

However, these islands do not exhaust the whole
phase space since the every island consists of O(q)
bounded trajectories while every such trajectory has
period of order O(q1/2) (see Fig 7). Nevertheless we
observe that

Conjecture 4. Distributions of large periods of the
periodic trajectories for even values of q coincide.

On the other hand for small periods we have ob-
served some differences. It turns out that for q =
2 (mod 4) number of periodic orbits of small periods
does not depend on q while for q = 4k there are exactly
(2k−1) periodic orbits of period 4. Indeed one can eas-
ily check by the direct computation that trajectory of
every point (r, k), r ∈ [2k, 3k − 1) is 4-periodic. Com-
bined with the lemma 1 this observation provides 2k−2

points of period 4. Since the point (0, 0) is clearly 4-
periodic for any q, the total number of 4-periodic orbits
equals 2k − 1.
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