arXiv:1603.02312v1l [math.SP] 7 Mar 2016

ASYMPTOTIC PROPERTIES OF JACOBI MATRICES FOR A FAMILY OF
FRACTAL MEASURES

GOKALP ALPAN, ALEXANDER GONCHAROV, AND AHMET NIHAT SIMSEK

ABSTRACT. We study the properties and asymptotics of the Jacobi ceastassociated with
equilibrium measures of the weakly equilibrium Cantor séthese family of Cantor sets
were defined and different aspects of orthogonal polynanoialthem were studied recently.
Our main aim is numerically examine some conjectures cangrorthogonal polynomi-
als which do not directly follow from previous results. Wes@lcompare our results with
more general conjectures made for recurrence coefficisstscated with fractal measures
supported orR.

1. INTRODUCTION

For a unit Borel measurg with an infinite compact support oR, using the Gram-
Schmidt process for the sét,x,x?,...} in L?(u), one can find a sequence of polynomials

(0n(+; M))no Satisfying
/ Om(X 1)On(X; 1) i (X) = Omn

whereqy(+; 1) is of degreen. Here,qn(+; 1)) is called then-th orthonormal polynomial for
U. We denote its positive leading coefficient ky andn-th monic orthogonal polynomial
On(-; 1) /Kn by Qn(-; ). If we assume tha_1(-; i) := 0 andQo(+; i) := 1 then there are
two bounded sequenceéan);y_;, (bn);,_; such that the polynomial®Qn(-; 1)), Satisfy a

three-term recurrence relation

Qn1(X M) = (X—bny1)Qn(X U) — 83 Qn-1(X; ), N € N,

wherea, > 0, b, € R andNy = NU{0}.

Conversely, if two bounded sequendes);_; and (bn),_, are given witha, > 0 and
b, € R for eachn € N then we can define the corresponding Jacobi métrixvhich is a
self-adjoint bounded operator acting I8iiN), as the following,

b]_ a 0 O
ag b2 a 0
(1.1) H=1| o a b, ag

The (scalar valued) spectral measuref H for the cyclic vector1,0,...)T is the measure
that has(an);y_; and(bn);;_; as recurrence coefficients. Due to this one to one correspon-
dence between measures and Jacobi matrices, we denotedberdatrix associated with

2010Mathematics Subject ClassificatioB7F10, 42C05 and 30C85.
Key words and phrase<antor sets, Parreau-Widom sets, orthogonal polynomi&isy spacing, and
Widom factors.
The authors are partially supported by a grant from TubitdlbF199.
1


http://arxiv.org/abs/1603.02312v1

2 GOKALP ALPAN, ALEXANDER GONCHAROV, AND AHMET NIHAT SIMSEK

by Hy,. For a discussion of the spectral theory of orthogonal pmiyials onR we refer the
reader to[[48, 56]. _

Let ¢ = (Cn)n-—_o b€ a two sided sequence taking valuestbandc! = (Cny ) _., fOr
j € Z. Thenc is called almost periodic i{Cj}jeZ is precompact in”(Z). A one-sided
sequencel = (dn)_, is called almost periodic if it is the restriction of a two etlalmost
periodic sequence . Each one sided almost periodic sequence has only one ext¢ns
7 which is almost periodic, see Section 5.13in/[48]. Hencesided and two sided almost
periodic sequences are essentially the same objects. AiJaedrix H, is called almost
periodic if the sequences of recurrence coeffici€atg;,_, and(bn)_; for u are almost
periodic. We consider in the following sections only ondesi sequences due to the nature
of our problems but, in general, for the almost periodigitis much more natural to consider
sequences oA instead ofN.

A sequence = (s)_; is called asymptotically almost periodic if there is an astnpe-
riodic sequencel = (dn)y_; such thaid, — s, — 0 asn — . In this cased is unique and
it is called the almost periodic limit. See [42,/48) 51] for maletails on almost periodic
functions.

Several sufficient conditions df;, to be almost periodic or asymptotically almost peri-
odic are given in[[41], 49] for the case when ess supthat is the support oft excluding
its isolated points) is a Parreau-Widom set (Section 3) grairticular homogeneous set in
the sense of Carleson (seel[41] for the definition). We rertfeaksome symmetric Cantor
sets and generalized Julia sets (seél[41, 5]) are ParredorVWBY [11/]59], for equilibrium
measures of some polynomial Julia sets corresponding Daebtices are almost periodic. It
was conjectured in [37, 33] that Jacobi matrices for selfigir measures including the Can-
tor measure are asymptotically almost periodic. We sholsld mention that some almost
periodic Jacobi matrices with applications to physics @ee [8]), has essential spectrum
equal to a Cantor set.

There are many open problems regarding orthogonal polyadsran Cantor sets, such as
how to define the Szegb class of measures and isospecual (g@e e.g. [21, 22] for the
previous results and [32, 33,136,/ 38, 39] for possible extessof the theory and important
conjectures) especially when the support has zero Lebesgasure. The family of sets that
we consider here contains both positive and zero Lebesgasure sets, Parreau-Widom
and non Parreau-Widom sets. Widom-Hilbert factors (se¢i@e® for the definition) for
equilibrium measures of the weakly equilibrium Cantor se#y be bounded or unbounded
depending on the particular choice of parameters. Somegiep of these measures related
to orthogonal polynomials were already studied in detditilutnow we do not have complete
characterizations of most of the properties mentioned @lboterms of the parameters. Our
results and conjectures are meant to suggest some forongdatf theorems for further work
on these sets as well as other Cantor sets.

The plan of the paper is as follows. In Section 2, we reviewpifeious results oK (y)
and provide evidence for the numerical stability of the altpon obtained in Section 4 in [4]
for calculating the recurrence coefficients. In Section 8,discuss the behavior of recur-
rence coefficients in different aspects and propose somjeatares about the character of
periodicity of the Jacobi matrices. In Section 4, the prapsiof Widom factors are investi-
gated. We also prove that the sequence of Widom-Hilberbfador the equilibrium measure
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of autonomous quadratic Julia sets is unbounded above asasdbe Julia set is totally dis-
connected. In the last section, we study local behavior@spacing properties of the zeros
of orthogonal polynomials for the equilibrium measures eflly equilibrium Cantor sets
and make a few comments on possible consequences of ourinahexperiments.

For a general overview on potential theory we refer the neta¢45,(46]. For a non-
polar compact se C C, the equilibrium measure is denoted py while CagK) stands
for the logarithmic capacity oK. The Green’s function for the connected component of
C\ K containing infinity is denoted b (z). Convergence of measures is understood as
weak-star convergence. For the sup normkoand for the Hilbert norm om?(u) we use
| llLe(k) @nd || - [ 2, respectively.

2. PRELIMINARIES AND NUMERICAL STABILITY OF THE ALGORITHM

Let us repeat the constructioniéfy) which was introduced in [30]. Let= (ys)s 1 be a
sequence such thatQys < 1/4 holds for eacts € N provided thaty g ; 27 5log(1/ys) < .
Setro =1 andrs = yar2 ;. We define(fn)>_; by f1(2) :=22(z—1)/y1+ 1 and fn(2) :=
Z/(2yn) +1—1/(2y) for n > 1. HereEp := [0, 1] andE, := F;%([—1, 1]) whereF, is used
to denotef,o---o f;. Then,E, is a union of 2 disjoint non-degenerate closed intervals in
[0,1] andEp C En—4 for all n € N. Moreover,K(y) :=N>_,En is a non-polar Cantor set in
[0,1] where{0,1} C K(y). Itis not hard to see that for each differgntve end up with a
differentK(y).

It is shown in Section 3 of 4] that for all € Ny we have

(2.1) 11Qzs (-3 Mk (y)) 2 () = \/(1— 2¥s11)r3/4.

The diagonal elements, thm's of Hyg,,» are equal to (b by Section 4 in[[4]. For the
outdiagonal elements by Theorem 4.3(in [4] we have the foligwelations:

(2.2) a1 = Qe (k) iz )

(23) 2= Q2 () iz )/ 1Q (5 Hin)) iz )

If n+1=2%>2then

) [1Q2 (5 k) 112 ) |
||Q23—1 ('; IJK(y)) ||L2(“K(y)) . azs—l+1 . azsfl+2 seedps_g

If n+1=252k+ 1) for somes < N andk € N, then

N LT TP S e
. +1 —

> >
D2k 1)1 Dot q

(2.4) ani1

If n+1=(2k+1) for k€ N then
@6) 201 =\ [1Qa (i) gy )~ e

The relations[(2]1)[(212)[ (2.3]. (2.4), (R.5), (2.6) cdetply determingan);y_; and nat-
urally define an algorithm. This is the main algorithm thatwse and we call it Algorithm
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1. There are a couple of results for the asymptotidgg);,_;, see Lemma 4.6 and Theorem
4.7 in [4].

We want to examine numerical stability of Algorithm 1 sinoeimdoff errors can be huge
due to the recursive nature of it. Before this, let us list soemarkable properties &f(y)
which will be considered later on. In the next theorem onefoand proofs of parfa) in
[2], (b) and(c) in [4], (d) and(e) in [5], () in [6], (9) in [30] and(h) and (i) in [1]. We

Qe 2
call WE () = cagsapmio)"

Theorem 2.1. For a giveny = (ys)a_; let & :=1—4y. Then the following propositions
hold:

(@) If Yo s <wandys < 1/32forall s € N then K(y) is of Hausdorff dimension zero.

(b) If ys < 1/6 for each sc N then K(y) has zero Lebesgue measurg, is purely
singular continuous antiminf a, = O for ).

(c) Letf := (f~s)§;1 be a sequence of functions such that fs for 1 < s < k for some
ke N and fg(z) = 22 — 1 for s> k. Thenn®_,;F;1([~1,1]) = Ex whereF, :=
fio---0fy.

(d) Gk(y) is Holder continuous with exponet 2 if and only ify & ; & < co.

(e) K(y) is a Parreau-Widom set if and only¥fg ; /& < .

(f) If o1& < o then there is C> 0 such that for all ne N we have

as then-th Widom-Hilbert factor foru.

1Qn (';UK(V)) HLZ(IJ ) aj...an
W2(H () = - R < Cn,
W) = ek (CarK ()
(9) Cap(K(y)) = exp(yi_1 2 ¥logy).
(h) Letwi1(t)=1/2—(1/2)/1-2y1 +2ytand v 1(t) =1—vy 1(t). Foreachn> 1, let
Vin(t) = vVI=2)h+ 2yt and wn(t) = —vin(t). Then the zero set of &)-; tik(y))
is {Vi; 10+ 0Vigs(0) }ieq12) forallse N.
(i) SUPH H(y)) = eSSSUPfLiky) = K(y). If K(y) = [0,1] \ U2 y(ci,ch) where ¢ # d|
for all'i, j € N then ik, ([0,&]) C {m2™"}mnew where g € (i, di). Moreover for
each me Nand ne Nwith m2™" < 1there is an ie N such thaf ) ([0, &]) = m2™".

We consider 4 different models dependingyon the whole article. They are:

(1) ys=1/4—(1/(50+9)%.

(2) o= 1/4—(1/(50+9)*).

(3) e =1/4—(1/(50+5)/4).

(4) ys = 1/4—(1/50).
Model 1 represents an example whétéy) is Parreau-Widom and Model 2 gives a non
Parreau-Widom set with fast growth pfModel 3 produces a non Parreau-Wid#ify) with
relatively slow growth ofy but still G, is optimally smooth. Model 4 yields a set which
is neither Parreau-Widom nor the Green’s function for thenglement of it is optimally
smooth. We used Matlab in all of the experiments.

If f is a nonlinear polynomial having real coefficients with reatl simple zerog; <

Xo < ... < X and distinct extremag < ... < yn_1 where|f(y;)| >1fori=1,2...,n—1,
we say thatf is anadmissiblepolynomial. Clearly, for any choice of, f, is admissible for
eachn € N and this implies by Lemma 4.3 in![5] th&, is also admissible. By the remark
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FIGURE 1. Errors associated with eigenvalues.

after Theorem 4 and Theorem 11 [in [28] it follows that the €tmffel numbers (see p. 565
in [28] for the definition) for the 2-th orthogonal polynomial ofig, are equal to 12". Let
uQ(y) be the measure which assign®1 mass to each zero @ (-; Lk (y)). From Remark

4.8 in [4] the recurrence coefficien(ak)ﬁn:f, (bk)ﬁn:1 for pg, are exactly those ofix ).

This implies that (see e.g. Theorem 1.3.5n/[48]) the Cbffist numbers corresponding to
2"-th orthogonal polynomial fopi ) are also equal to/2".
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FIGURE 2. Errors associated with eigenvectors.
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Let
by a
ap by a
(2.7) H“}Q(y) = az . .. ,
an_1
an_1 b

where the coeﬁicientsak)ﬁn:’ll, (bk)ﬁn:1 are the Jacobi parameters fo,). Then the
set of eigenvalues dﬂ“ﬁlm is exactly the zero set @on ( IJK(V)). Moreover, by[[29], the

square of first component of normalized eigenvectors ginesad the Christoffel numbers,
which in our case is equal tg/2". For eacm € {1,...,14}, using gauss.m, we computed the
eigenvalues and first component of normalized eigenveofd@QM where the coefficients

are obtained from Algorithm 1. We compared these values thigtzeros obtained by part
(h) of Theoreni Z.11 and/R" respectively. For eaah let {t,?}ﬁnzl be the set of eigenvalues for
Hug, and{ql}Z", be the set of zeros where we enumerate these sets so thataterthe
index they have, the value will be smaller. L{evg}ﬁ”zl be the set of squared first component
of normalized eigenvectors. We plotted (see Figure 1 andrE@)R: := (1/2”)(2&”21 It —
qR|) andR2 := (1/2”)(2&”21 (1/2") —wi|). This numerical experiment shows the reliability
of Algorithm 1. One can compare these values with Fig. 2.ir).[39

3. RECURRENCECOEFFICIENTS
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FIGURE 3. The values of outdiagonal elements of Jacobi matriceseant
dices of the form 2

It was shown (for the stretched version of this set but simalguments are valid for
this case also) in [5] tha(y) is a generalized polynomial Julia set (see e.g. [17[ 18, 19]
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FIGURE 5. Normalized power spectrum of tiag's for Model 1.

for a discussion on generalized Julia sets) ifyinf- 0, that isK(y) := d{z€ C: Fy(2) —
o |ocally uniformly}. Let J(f) be the (autonomous) Julia set fbfz) = > — ¢ for some
c > 2. Since(fy)_; is a sequence of quadratic polynomials, it is natural to lhakto what
extentHujm andH“Km have similar behavior. Compare for example Theorem 4./7]iwiih
Section 3 in[[15].
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The recurrence coefficients fgi ¢y can be ordered according to their indices, see (1V.136)-
(IV.138) in [14]. We obtain similar results fquy ) in our numerical experiments in each

4 models. That is the numerical experiments suggest t?lat 2n}rmjn: an for n < 14 and
e tARRS]

it immediately follows from[(2.R) and (2.6) that max= ay. Thus, we make the following
ne
conjecture:

Conjecture3.1. For L, we hav?e{Ti..r,]zn}ai = agn and in particular Iigiogf ags = Iirrp_jorgf an.

A non-polar compact séf C R which is regular with respect to the Dirichlet problem
is called a Parreau-Widom set¥f_; Gk (&) < o whereUye is the set of critical points,
which is at most countable, @x. Parreau-Widom sets have positive Lebesgue measure.
It is also known that (see e.g. Remark 4.8lin [4]) limapf> O for uk provided thatK is
Parreau-Widom. For more on Parreau-Widom sets, we refeetder to([20, 59].

By part (e) of Theorem 2, limin&, > 0 for k(, provided thatyg ; /& < . It
also follows from Remark 4.8 iri_[4] and [25] that if the's associated withu ) sat-
isfy liminf a, = 0 thenK(y) has zero Lebesgue measure. Hence asymptotic behavior of the
an’s is also important for understanding the Hausdorff dinem®f K(y). We computed
Vh i= axn/asni (see Figuréld and Figufkeé 4) for=1,...,13 in order to find for which/’s
liminf a, = 0. We assume here Conjectlrel3.1 is correct.

In Model 1, v, is very close to 1 which is expected since for this case limain$ 0. In
other models, it seems that,)13, seems to behave like a constant. Thus, this experiment
may be read as unle§s’; /& < « is satisfied limink, = 0. So, we conjecture:

Conjecture 3.2. For a giveny = (W)y_q. let & := 1 — 4y for each ke N. Then Ky) is of
positive Lebesgue measure if and only {f ; /s < o if and only ifliminf a, > 0.

A more interesting problem is whethlelpm) is almost periodic or at least asymptotically
almost periodic. Sincéby,),_; is a periodic sequence, we only need to deal \étl),_;.

For a measurg with an infinite compact support su@p), let &, be the normalized count-
ing measure on the zeros Qf(-; u). If there is av such thatd, — v thenv is called the
density of states (DOS) measure fdy. Besides [, dv is called the integrated density of
states (IDS). FoH,, ., the density of states measure is automatically (see Thebrerend
Theorem 1.12in [48] and also [57lk ). Therefore, ifxis chosen from one of the gaps (by
a gap of a compact set ¢hC R we mean a bounded componentRfK) of supp(uK(y)),
that isx € (c;,d;) (see part (i) of Theorem 2.1) then the value of the IDS is etuai2™"
which does not exceed 1 and also for eagm € N with m2™" < 1 there is a gafc;,d;)
such that the IDS takes the valo@".

For an almost periodic sequence- (Cn),;_; theZ-module of the real numbers modulo 1
generated by satisfying

1 :
{w: rI]gnmﬁr]Zlexp(ZHmcu)cn # 0}

is called the frequency module forand it is denoted by# (c). The frequency module is
always countable and can be written as a uniform limit of Fourier series where ttee f
quencies are chosen amanfj(c). For an almost periodic Jacobi mattikwith coefficients
a= (an)y_, andb= (bn)>_,, the frequency module7 (H) is the module generated by (a)
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and.Z (b). It was shown in Theorem IIl.1 in_[24] that for an almost pelioH, the values

of IDS in gaps belong to# (H). Moreover, (see e.g. Theorem 2.4(in[[27]), an asymptoti-
cally almost periodic Jacobi matrix has the same densityatés measure with the almost
periodic limit of it.

In order to examine almost periodicity of tlag’s for L) we computed the discrete
Fourier transform{@,)2."; for the first 24 coefficients for each model where frequencies run
from 0 to 1. We normalizedd)? dividing it by zﬁfﬂé‘n\z. We plotted (see Figuiig 5) this
normalized power spectrum while we did not plot the peak By@letrending the transform.

There are only a small number of peaks in each case compaii firequencies which
points out almost periodicity of coefficients. We considatydViodel 1 here although we
have similar pictures for the other models. The highest Hpare at 3,0.25,0.75,0.3750.625,
0.43750.56250.1250.8750.3125. All these values are of the form2—" wheren < 4.
This is an important indicator of almost periodicity as thé®quencies are exactly the val-
ues of IDS forHuKm in the gaps which appear earlier in the construction of thet@aset.
The following conjecture follows naturally from the abovealission.

Conjecture 3.3. For anyy, (an),_4 for Hu ) is asymptotically almost periodic where the
almost periodic limit has frequency module equa{b@® "}, nc(n,; Modulo 1.

4. WIDOM FACTORS

FIGURE 6. Normalized power spectrum of thé? (i (,))'s for Model 1.

LetK C C be a non-polar compact set. Then the unique monic polynofniail degreen
satisfying

[ TnllLe k) = MIN{||Pn||L=(k) : Pn complex monic polynomial of degreg
is called then-th Chebyshev polynomiah K where|| - || = is the sup-norm oK.
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FIGURE 7. Widom-Hilbert factors for Model 1

We define the-th Widom factor for the sup-norm dabyWh(K) = || Tn|| =k / (Cap(K))".
It is due to Schiefermayr [47] that,,(K) > 2 if K C R. It is also known that (see e.g.

[26,/50]) ||Tn||1/”K — CapK) asn — . This implies a theoretical constraint on the growth

rate oW, (K), that is(1/n)logWh(K) — 0 asn — . See for examplé [52, 53, 54] for further
discussion.

Theorem 4.4 in[31] says that for each sequeiMdg)>_; satisfying limh_.»(1/n)logM;, =
0, there is ay such that,(K(y)) > Mp. On the other hand, for many compact subsets of
C (see e.g. [[7, 23, 55, 58]) the sequence of Widom factors ferstip-norm is bounded.
In particular, this is valid for Parreau-Widom sets &nsee [23]. It would be interesting
to find (if any) a non Parreau-Widom sé€ton R such that it is regular with respect to the
Dirichlet problem andWh(K));y_; is bounded. Note that K is a non-polar compact subset
of R which is regular with respect to the Dirichlet problem thgnTiheorem 4.2.3 in [45]
and Theorem 5.5.13 in [48] we have sipp) = K. In this case, we havwe/? (k) < Wh(K)
since||Qn(-; M)l L2(ue) < [ Tnlliz(ue) < [MallL=(k)- Therefore, itis possible to formulate the
above problem in a weaker form: Is there a non Parreau-Widdi s R which is regular
with respect to the Dirichlet problem such tig? (L ))%_, is bounded?

In [3], the authors following[10] studief? (uJ(f))):zl wheref(z) =22 —AzforA >3
and showed that the sequence is unbounded. For this part@ade the Julia set is a compact
subset ofR which has zero Lebesgue measure. Itis always true for a polial autonomous
Julia set)(f) onR that supf 1)) = J(f) sinceJ(f) is regular with respct to the Dirichlet

problem by [35]. Now, let us show th&t\? (uJ(f)))c::l is unbounded wheifi(z) = 2 — ¢

andc > 2. These quadratic Julia sets are zero Lebesgue measurer Gatg onR and
therefore not Parreau-Widom. Seel[16] for a deeper disoussi this particular family.
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Theorem 4.1. Let f(2) = 22 —c for c> 2. Then(WZ (1y(1)))._, is bounded if and only if
c=2

Proof. If c= 2 thenJ(f) = [—2,2]. This implies tha{W? (uJ(f))):;l is bounded sincé( )
is Parreau-Widom.

Let c # 2. Then lim_.ax = 0 (see e.g. Section 1V.5.2 in [14]) where thg's are
the recurrence coefficients far ¢, and CapJ(f)) = 1 by [16]. SinceQun:1 (+; Uy1)) =

Q5 ( My(r)) — ¢ by Theorem 3in([9], we havi (L)) = I|Qan (- Hy(r)) Iy = VC
forall n 2 1. Moreover,

W (u C
(4.1) Wa s (o)) = =2 ;2: ) £

Hence lin . Ws (M) = o as lim_e @ = 0. This completes the proof. O

In [4], it was shown thafw;? (uK(V)))::l is unbounded ifi < 1/6 for allk € N. We want
to examine the behavior qiV? (L )))°° , Provided thaK (y) is not Parreau-Widom. By
[4], (Wen (IJK )) > /2 for all n € Ny for any choice ofy. Hence,we also have

) CaplHkiy) ., V2CaPlkk(y)
aon - aon

(4.2) W4 (Hk(y) =W (H(y)

forallne N.

If we assume that Conjecture B.1 and Conjedture 3.2 areatahen liminf, .., a:n =0 as
soon a¥(y) is not Parreau-Widom. If liminf,. ax = 0then limsup_, , Won_1 (HK(y)) =00
by (4.2). Thus, the numerical experiments indicate thefalhg:

Conjecture 4.2. K(y) is a Parreau-Widom set if and only (t\? (uK(V)))::l is bounded if
and only if(Wh(K(y)))n_; is bounded.

Let K be a union of finitely many compact non-degenerate intemal® and w be the
Radon-Nikodym derivative ofix with respect to the Lebesgue meeasure on the line. Then
Hk satisfies the Szeg6 conditiot; w(X)logw(x) dx > —eo. This implies by Corollary 6.7
in [22] that(W?(u ), is asymptotically almost periodic. K is a Parreau-Widom seti
satisfies the Szeg6 condition by [43]. We plotted (see leigirthe Widom-Hilbert factors
for Model 1 for the first 2° values and it seems that lim S0 (Lk y))) # sup\/vn (Mk(y)))-

For Model 1, we plotted (see FlguEé 6) the power spectrum(\fv# (Uk)) n 1 where we

normalizedW2|? dividing it by 2, \W2(ji)|2. Frequencies run from 0 to 1 here and we
did not plot the big peak at O.

Clearly, there are only a few peaks as in (see Figlre 5) whi@niimportant indicator
of almost periodicity. The highest 10 peaks are.&t@0000610351562%.25,0.75,0.125,
0.875,0.3750.625 0.0625,0.9375. These values are quite different than those of peaks in
Figure[®. This may be an indicator of a different frequencydaie of the almost periodic
limit. By Conjecture Z.2,(W2 (i )))::1 is unbounded and cannot be asymptotically al-
most periodic ifK(y) is not Parreau -Widom. We make the following conjecture:

Conjecture 4.3. (W (uK( )))::1 is asymptotically almost periodic if and only if(l) is

Parreau-Widom. If Ky) is Parreau-Widom then the almost periodic limit's frequgnwdule
includes the module generated fiy2 "}y, he (n,) Modulo 1.
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5. SPACING PROPERTIES OF ORTHOGONAL POLYNOMIALS AND FURTHER BCUSSION

6000

5000 - 4

4000 .

<& 3000f .

2000 , .

1000 , .

0 1 - = e = = 7
2 4 6 8 10 12 14
N

FIGURE 8. Maximal ratios of the distances between adjacent zeros
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FIGURE 9. Ratios of the distances between prescribed adjacerg zero

For a measurgl having support ofR, let Z,(u) := {x: Qn(x; ) = 0}. Forn > 1 with
n € N, we defineM,(u) by
Mnp(p):= inf |x—X]|.
XX €Zn(H)
XEX!
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For a givery = ()i, let us enumerate the elementsZaf( ik ) by xin <+ <xnN. The

behavior of(My (uK(V))):Zl, in other words, the global behavior the spacing of the zeros
were investigated in [1]. Here, we numerically study sonyeeats of the local behavior of
the zeros.

We consider only Model 1 since the calculations give simigaults for the other models.
ForN =232% ... 214 let AyN = |XanN — Xon—1.n| Wheren € {1,...,N/2}. We computed

, _ AnN
(see FigurélBh : n,mem?i(N/z} A

(An)}4 ; increases fast and this indicates tié#)?>_, is unbounded.

ForN = 2% ands = 2, s= 6 we plotted (see Figufd Psn/A1n. These ratios tend to
converge fast.

In the next conjecture, we exclude the case of spéllr the following reason: Ley =
(W)p.q satisfiesyp 1 i =M < oo with y < 1/32 forallk e N andd := y1---W. Then
Aj x < exp(16M)d-1 for all k> 1 by Lemma 6 in[[30]. By Lemma 4 and Lemma 61in[30]
we conversely havé, x > (7/8)d-1. ThereforeAy < (8/7)exp(16M). Hence,(Axn)y_,
is bounded.

for each suchN.

Conjecture 5.1. For eachy = (%), withinfi i > 0, (Ax)y_; is an unbounded sequence.

If s = 2K for some ke N, there is a g € R depending on k such that
. A&Z”
lim == =

n—oo A172n

For the parameters> 3, Hiyr, is almost periodic wheré(z) = 22 — ¢, see[12]. It was
conjectured in[13] thdt-l,lj(f) is always almost periodic as soon@s 2. Forc = 2, Hiyr, is
not almost periodic sinca; = 2 anda, = 1 forn > 2 but it is asymptotically almost periodic.
Therefore if this conjecture is true then we have the folltgviH“Jm is almost periodic if
and only ifJ(f) is non Parreau-Widom.

We did not make any distinction between asymptotic almosbgeity and almost peri-
odicity in Section 3 and Section 4 since these two cases drgtimguishable numerically.
But we remark that if liminé, # 0 then the asymptotics lim,« aj.2s;.n = an cease to hold
immediately. We do not expeéty, , to be almost periodic for the Parreau-Widom case
for that reason. For a parameter= (ys)g ; such that linj_,.aj.os;n = a, holds for each
sandn it is likely that Hug is almost periodic. These asymptotics hold only for the non
Parreau-Widom case but it is unclear that if these hold fgpadameters making (y) non
Parreau-Widom.

Hausdorff dimension of a unit Borel measwyresupported orC is defined by diniu) :=
inf{HD(K) : u(K) = 1} whereHD(-) stands for the Hausdorff dimension of the given set.
Hausdorff dimension of equilibrium measures were studeedchiany fractals (see [34] for
an account of the previous results) and in particular fooaoimous polynomials Julia sets
(see e.g. [[44]). Iff is a nonlinear monic polyomial and{ f) is a Cantor set then by p.
176 in[44] (see also p. 22 in [34]) we have dipy 1)) < 1. ForK(y), Y& ;/& <
implies that dim(p (,)) = 1 sincepky)) and the Lebesgue measure restrictel tg) (see
4.6.1 in [49]) are mutually absolutely continuous. Morepvaur numerical experiments
suggest thak(y) has zero Lebesgue measure for non Parreau-Widom case. lals@my
be true that dinﬁuK(V)) < 1 for this particular case. Hence, it is an interesting peobto
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find a systematic way for calculating the dimension of efuillim measures dk(y) and
generalized Julia sets in general.
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