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Abstract

In this work, we introduce a generalization of the well-known Vehicle Routing
Problem for a specific application in the monitoring of a Water Distribution
Network (WDN). In this problem, multiple technicians must visit a sequence of
nodes in the WDN and perform a series of tests to check the quality of water.
Some special nodes (i.e., wells) require technicians to first collect a key from a
key center. The key must then be returned to the same key center after the test
has been performed, thus introducing precedence constraints and multiple visits
in the routes. To solve the problem, three mathematical models and an Iterated
Local Search have been implemented. The efficiency of the proposed methods is
demonstrated by means of extensive computational tests on randomly created
instances, as well as on instances derived from a real-world case study.

Keywords: OR in Service Industries; Vehicle Routing Problem; Water Distribution
Networks; Mathematical Modeling; Iterated Local Search.

1 Introduction

Water contamination is related to the presence of one or more chemical compounds
or pathogens to the extent that they become dangerous to the consumer and might
lead to diseases (Naserizade et al., 2018). The risk of accidental contamination of




drinking water is a well-known issue, and, recently, concerns regarding the deliberate
contamination of urban water networks have called for additional safeguards.

In general, any threat to urban water networks directly affects the users in
the community (Razali, 2015). Indeed, according to a report recently released by
the World Health Organization, contaminated drinking water is estimated to cause
485,000 diarrhoeal deaths each year (World Health Organization, 2019)). The safety
of water distribution networks has always been an important issue for the com-
munities. However, many distribution systems in cities around the world face the
threat of accidental or intentional contamination during the transportation from
treatment plants to consumers due to reverse flows (i.e., the return of contaminated
water flows from facilities), old infrastructures, insufficient use of disinfectants, and
so forth. Consequently, water contamination in distribution networks is considered
as the most diffused cause behind the spread of water-borne diseases (Moon et al.,
2002]).

In recent years, several studies have been conducted to identify the main sources
of water pollution and improve the quality of water thanks to innovative treatment
methods and plants, but still an accidental event, such as a large-scale contamination
or a destructive attack to the transmission system, can significantly affect both the
economy and the society. In 2014, for example, 300,000 consumers in West Virginia
were affected by the accidental contamination of their drinking water distribution
system caused by 4-Methylcyclohexanemethanol (Seok Jeong and Abraham, [2006).
During the same year, as reported by Mukherjee et al. (2017), a spill of benzene
from a chemical plant in China accidentally reached the water distribution network.
More recently, 27,000 Norwegian consumers were exposed to water contaminated
with Clostridium (de Winter et al., 2019).

Supply, treatment, transmission and distribution of drinking water in urban dis-
tribution networks require substantial expenses; therefore, not only water in urban
distribution networks is considered an essential resource, but also an economic com-
modity. The results of a study conducted by the World Bank show that nearly
15% of treated water is wasted annually in developed countries. This amount arises
to a range of 35-60% for developing countries (Zhang et al., |2016). Timely control
of Water Distribution Networks (WDNs) is thus of fundamental importance, both
from an economical and public health point of view.

In this paper, a new variant of the well-known Vehicle Routing Problem (VRP)
in the context of WDNs is proposed. In this problem, a set of technicians must visit
a set of nodes, including wells, reservoirs and treatment plants, within a network to
evaluate the water quality. When visiting a well, the technicians need a key to open
the well and perform the required tests. Since the technicians do not have the key,
they have to visit a specified node at which the key is located, called key center in
the following, to acquire it. As a result, they need to visit this node before reaching
the well. After the tests have been performed, they have to take the key back to
its original key center before returning to the depot where they started their route.



In addition to that, it is imposed that all nodes are visited and that the duration
of any route performed by a technician does not exceed a maximum traveling time.
The aim of the problem is to minimize the sum of the traveled times.

The problem originates from a real-world application that we encountered in
Mashhad (Iran), where 5 technicians daily inspect a WDN comprising 3,124 house-
holds/shops, 293 reservoirs/tanks, 356 wells and 14 treatment plants. To solve
the problem, we propose three Mized Integer Linear Programming (MILP) models,
and an [terated Local Search (ILS) algorithm. While the models managed to solve
small-size instances with up to 20 nodes, the ILS efficiently tackled cases with up
to 200 nodes, allowing us to produce good-quality solutions for randomly created
instances, as well as for realistic instances derived from the case study, in short
computing times.

The remainder of the paper is organized as follows. In Section [2] the relevant
literature is revised. The problem is formally described in Section 3] Sections [4] and
present the mathematical models and the ILS algorithm, respectively. Computa-
tional results are described in Section [6] and final conclusions and future research
directions are discussed in Section [7

2 Literature Review

The VRP is an iconic class of problems in operations research, with applications
in the fields of transportation, distribution, logistics and services. We refer the
interested reader to Toth and Vigo (2014) for an extensive overview, and to Mor
and Speranza| (2022)) for a recent survey. The problem we face generalizes the VRP
by considering precedence constraints and multiple visits. In this section, we only
revise routing problems involving these two features, with a particular focus on
real-world applications.

In the context of the Traveling Salesman Problem (TSP), precedence constraints
were first addressed in the seminal work by Balas et al.| (1995), and, since then, have
been widely investigated. In Moon et al.| (2002), the authors proposed a formulation
for the TSP with precedence constraints using a two-commodity network flow model
and developed a genetic algorithm based on a topological sorting of customers. In
Sarin et al.| (2005), novel formulations for the asymmetric TSP and the precedence
constrained asymmetric TSP were proposed. To tighten the formulations, the au-
thors proposed and tested valid inequalities. |Sun et al.| (2018) presented a new
model for the time-dependent capacitated profitable tour problem, a generalization
of the TSP with time windows and precedence constraints, and developed a tailored
labeling algorithm. [Salman et al. (2020) describe the precedence constrained gen-
eralized TSP, in which customers are partitioned into groups and exactly one visit
per group must be performed. They presented a novel branching technique and
compared several bounding methods.



Precedence constraints have also been widely studied for problems involving
multiple vehicles. Razali (2015) developed a genetic algorithm based on a topo-
logical sorting of customers to solve the VRP with precedence constraints. The
algorithm includes a route repair method to generate feasible offspring. A VRP
variant with time windows, synchronization and precedence constraints was intro-
duced by Haddadene et al.[(2016). The authors focused on an attended home health
care application, and proposed some exact and heuristic solution methods, including
a novel MILP formulation, a greedy heuristic, and three metaheuristics.

Precedence constraints naturally arise in the context of Pickup-and-Delivery
Problems (PDP), where each demand must be first collected at an origin node
before being delivered at a destination node. We refer the reader to |Battarra et al.
(2014) and Doerner and Salazar-Gonzélez| (2014) for detailed surveys on PDPs for
goods transportation and PDPs for people transportation, respectively, and to [Kog
et al. (2020) for a recent survey on simultaneous PDPs. Recently, |Aziez et al.
(2020)) studied a multi-PDP with time windows. They defined a 2-index formu-
lation, an asymmetric representatives formulation, and a 3-index formulation im-
proved by preprocessing and valid inequalities. The problem was solved exactly
using a branch-and-cut algorithm. Dedicated branch-and-cut algorithms were also
developed by Hernandez-Pérez et al.| (2021)), to solve the single-vehicle two-echelon
one-commodity PDP, and by Wolfinger and Salazar-Gonzélez (2021]), to solve a PDP
with split loads and transshipments. The problem addressed in the latter work in-
cludes multiple visits to the same node. This is common when split deliveries are
allowed, or multiple pickup and delivery operations can be performed at a single
node. These generalizations were considered by Bruck and Iori| (2017), where non-
elementary formulations were proposed for a single-vehicle PDP and then extended
to the cases of split deliveries, intermediate drop-offs, and multiple vehicles.

Overall, we may find many routing problems that are inspired by real-world ap-
plications and involve precedence constraints and multiple visits. [Sigurd et al.| (2004
studied an application of a PDP with time windows and precedence constraints aris-
ing in the transportation of live animals. In this case, the precedence constraints are
given by veterinary rules, imposing that the livestock holdings are visited in a pre-
defined sequence to avoid the spread of potential diseases. The authors proposed a
tight formulation of the problem based on a Dantzig-Wolfe decomposition. [Quttineh
et al.[ (2013) presented an application in the context of military operations, that was
modeled as a generalized VRP with synchronization and precedence constraints.
The peculiarity of the problem is due to the nature of the attack, which may re-
quire aircraft synchronization, multiple attacks to the same target, and precedence
constraints among different targets. The problem was solved by a MILP model.

Furtado et al. (2017) addressed a particular PDP with time windows originating
from the oil industry. The aim of the problem is to determine the routing and
scheduling of vessels that collect crude oil from offshore platforms and transport
it to terminals on the coast. The authors proposed a MILP model, solving it by



means of two different branch-and-cut algorithms. Another valuable example of
routing and scheduling in the context of large-scale disaster relief operations was
examined by Sabouhi et al. (2019). The authors solved a PDP arising from a case
study in the city of Tehran (Iran). They proposed an integrated logistic system to
evacuate people from areas affected by natural or man-made disasters. The problem
was formulated as a MILP model, and a memetic algorithm was developed to solve
large-scale instances. Pereira et al.| (2020) studied a particular Workforce Scheduling
and Routing Problem (WSRP), called multiperiod WSRP with dependent tasks, in
which the requested services consist of tasks to be executed along one or more days
by teams of workers having different skills. Each customer can be visited more than
once in a day, as long as precedence constraints are not violated. A MILP model, a
constructive algorithm and an ant colony metaheuristic were proposed.

Recently, an interesting variant of the Team Orienteering Problem (TOP), named
multi-visit TOP with precedence constraints, was investigated by Hanafi et al.
(2020). In this problem, a set of tasks has to be accomplished in a predetermined
order by possibly different vehicles. To solve the problem, the authors proposed a
compact MILP formulation and a kernel search heuristic.

For what concerns WDNSs, the literature mainly contains works on the location
of sensors (see, e.g., Rathi and Gupta 2014)). The VRP has been applied in many
areas, but, to the best of our knowledge, not yet to the inspection of WDNs. In
this paper, we fill this lack in the literature and propose exact and heuristic solution
methods for a real-world VRP on a WDN.

3 Problem Description

The WDN is an essential infrastructure that consists of many elements, including
reservoirs, wells, pipes and treatment plants.

An effective way to constantly monitor a WDN is by means of water quality
sensors, which can be positioned all over the network. In cities where these sensor
systems have not been installed, technicians are required to regularly visit nodes of
the WDN and perform tests. The nodes to be visited, called for simplicity demand
nodes in the following, are divided into two types:

1. Type I: households, shops, reservoirs, tanks and treatment plants. For this
kind of nodes, the technicians can directly go on site and perform the required
tests. Reservoirs, tanks and treatment plants are characterized by larger ser-
vice times than households and shops, due to the larger amount of tests that
have to be performed;

2. Type II: wells. For these nodes, the technicians need a key to access the well
and perform the tests. So, they have to visit first a specified key center, and
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Figure 1: An illustrative example of a VRPWDN solution in Mashhad (Iran)

take the key. Once all tests have been completed at the well, the key needs to
be returned to its original key center, thus imposing a second visit.

A simple illustrative example derived from the real-world application we are
facing is depicted in Figure It comprises three routes starting and ending at
the depot. Two of them (top and left part of the figure) visit just reservoirs and
treatment plants, so demand nodes of type I. The third (right part of the figure)
also visits a well, and is thus forced to pass twice by the corresponding key center.

Formally, we are given a directed graph G = (V, A), where the node set is
V ={0,1,...,n,n+ 1} and is partitioned as V =V, UVo U V3 U {0,n + 1}. Nodes
0 and n + 1 represent, respectively, the beginning and end of all routes, and in our
application coincide with a unique central depot. Sets V1 and V5 are associated with,
respectively, the demand nodes of types I and II. Set V3 comprises nodes associated
with all key centers. With each node ¢ € V5, we associate a predecessor p; € V3 and
a successor node d; € V3. In our application, p; and d; correspond to a unique key
center, so they have the same geographical location, but the models and algorithms
that we propose below can also solve the case in which they correspond to different
locations.

Each demand node has to be visited exactly once, while each vehicle visits a
particular key center at most once for picking up all the keys, and then another
single time for delivering all the keys that were previously collected. This implies



that, in case a center has the keys for multiple demand nodes and these nodes are
visited by a unique vehicle, then such keys must be collected all together in a unique
visit (to p;), and then later delivered all together in another visit (to d;). Note that
it is not compulsory to visit p; immediately before i. In other words, the vehicle can
collect the key for ¢ but then visit other nodes before reaching ¢. The same holds
for d;, which is not required to be visited immediately after 7.

The graph is complete, and with each arc (7, j) € A we associate a traveling time
cij. A service time v; is associated with each node 7 € V. We suppose that triangle
inequality holds for all our instances (i.e., ¢;; < ¢ +vi + ¢ for all i, j,k € V). We

are also given a set K of homogeneous vehicles based at the central depot. Each
vehicle performs a single route.

A route starts and ends at the depot. Its duration is given by the sum of the
service and traveling times of the nodes and arcs covered by the vehicle, and it
should not exceed a maximum duration L. Whenever a route visits a node i of
type 11, then it should also visit p; and d;. The aim of the Vehicle Routing Problem
for Water Distribution Networks (VRPWDN) is to visit all demand nodes, while
satisfying all constraints and minimizing the sum of the route durations.

The VRPWDN is NP-hard in the strong sense, because it generalizes the well-
known VRP. In the next sections, we attempt its solution through mathematical
models and heuristic algorithms.

4 Mathematical Models

In this section, we investigate three mathematical models that describe the VR-
PWDN and are derived from the literature. The first model is based on a time
representation of the problem and is inspired by the formulation proposed by [De-
saulniers et al.| (2014) for the VRP with time windows. The second is a flow-based
model that builds upon the formulation presented by [Kara| (2011) and later used by,
among others, |Karaoglan et al.|(2012), |[Naji-Azimi and Salari (2014)), and |Allahyari
et al. (2015). The third is a node-based model that we derive from the classical
Miller, Tucker and Zemlin formulation (see, e.g., Bektag and Gouveia |2014).

4.1 Time-based Model

Let y;; be a binary variable taking value 1 if node ¢ is visited by vehicle £ and 0
otherwise, z;;; be another binary variable taking value 1 if arc (7,7j) is covered by
vehicle k£ and 0 otherwise, and t;;, be a continuous variable corresponding to the
time at which vehicle k arrives at node i. The time-based model for the VRPWDN
can be formulated as follows:

(VRPWDNg) min > > > (e +vi)win (1)

keK ieV\{n+1} jeV\{0}



subject to

Y. D wig=1 ieViuVy, (2

kEK jeV\{0}

> agp=1 ke K (3)
jevi{o}
Yik = Z Tijk = Z Tjik ieVke K (4)

jevi{o} JEV\{n+1}
Z Tint1k =1 ke K (5)

ieV\{n+1}
> tor =0 (6)
keK
0 <t < Lyir ieVke K (7)
tik > tik +vi + iy — Mig (1 — zi51) iceV\{n+1},jeV\{0},kc K (8)
Ypik + Ydik = 2Yik ieVo,ke K (9)
ook & Up, + Cpii — M (1 — yir) < ti < ta;k — (Cid, + Vi) Yik ic€Va,ke K (10)
ziji € {0,1} ijeVike K (11)
yir € {0,1} icVke K (12)

Objective function is to minimize the total duration of the routes. Con-
straints impose that each node ¢ € V1 U V5 has exactly one outgoing arc. Each
vehicle starts its route from the depot and such condition is imposed by means of
constraints . Constraints and ensure that each node i has exactly one
incoming and one outgoing arc and that each vehicle k end its route at the depot.
Constraints @ impose that all routes start at time 0. Constraints impose that
arrival times are non-negative and limit the duration of each route to be at most L.
The time at which vehicle k arrives at node j is modeled by means of constraints ,
in which we set M;; = L + v; + ¢;j — ¢jn4+1. Constraints @ impose that if vehicle k
visits node 7, then it also visits nodes p; and d;. Since p; may contain keys not only
for 4 but for other nodes, vehicle k may visit p; but not ¢, and the same holds for d;.
For this reason, the equation cannot be an equality. Constraints , in which we
set M! = L+ vy, + ¢p, i — Cint1, guarantee the respect of precedence constraints, by
forcing time dependency between visits to p;, ¢ and d;. Note that if y;; is equal to 0,
constraints become redundant with respect to constraints . Constraints
and define the domain of the z;;; and y;; variables.

Furthermore, the aforementioned model can be enhanced with the addition of
the following valid inequalities

(Cops + Vp, + Cpii)Yik < tik icVo,ke K (13)
(Cop; + Vp; + Cpyi + Vi + Cia,)Yin < tak ieVo,ke K (14)
tix > (coi + vi + Cij)Tijh 1eV\{n+1},jeV\{0}L,ke K (15)

which strengthen the values taken by the arrival time variables.



4.2 Flow-based Model

Let f;;1 be a variable representing the “load” of vehicle k when traveling along arc
(i,j) € A. The load represents the number of nodes visited by vehicle k before it
travels along arc (7,7). We can model the VRPWDN as follows:

(VRPWDNg,) min Y > Y (cij +vi)zin (16)

k€K ieV\{n+1} jeV\{0}

subject to , , and

Z Tijk = Z Tjik ieVke K (17)
jev\{o} JEV\{n+1}
Z Z (cij +vi)wigr < L ke K (18)
i€V\{n+1} jeV\{0}
> foik=0 ke K (19)
JeV\{o}
Z Jint1,6 = Z Z Tijp — 1 ke K (20)
i€V \{n+1} ieV\{n+1} jeV\{0}
Z fijk > Z (fjik + zjik) ieV\{0,n+1}, ke K (21)
JjeV\{o} JEV\{n+1}
Z (fpijk — fije + zijr) < (n—1)(1 — Z Tijk) i€Va,ke K (22)
JjeV\{o} jevi{o}
Yo Sz D wign i€ Vo, ke K (23)
jev\{o} jev\{o}
Z (fajk — fijr) = Z Tijk ieVo,ke K (24)
Jjev\{o} JjeV\{o}
0 < fije < (n— D)xij i,jeVke K (25)

As in the previous model, objective function minimizes the total route dura-
tion. Constraints correspond to the previous constraints except for the y;p
term. The maximum duration of each route is bounded by means of constraints .
Constraints and impose the load on vehicle & when leaving 0 and entering
n + 1, respectively. Constraints (21)) impose the load conservation at node i. Con-
straints f guarantee the respect of precedence constraints. Constraints
impose lower and upper bounds on the f;;; variables.

The above model can be improved by the addition of the following constraints:

Z Tjpk + Z Tajk = 2 Z Tjik ie€Va,ke K (26)
FJEV\{n+1} jev\{o} FjeV\{n+1}
Y e — fogr) = > > ic Vo, ke K (27)
jevi{o} leV\{n+1}pi=p; j€eV\{0}

Z (frie = fije) + nzije + (n—2)zj, < (n—1) 4, e V\{0,n+1}, ke K (28)
leV\{n+1}



Constraints are equivalent to @ Constraints enforce an additional
relation between the flows leaving p; and d;. Constraints are derived from the
lifted constraints proposed by Desrochers and Laporte| (1991]).

4.3 Node-based Model

Let u;; be a variable representing the load on vehicle k after leaving node i. With
respect to the previous model, this implies setting u;; = jev fijk- We can model
the VRPWDN as follows:

(VRPWDN,p) min > Y > (eij + v (29)

k€K ieV\{n+1} jeV\{0}

subject to , , , , and

ugr, =0 ke K (30)
Un4+1,k = Z Z Tijk ke K (31)
i€V\{n+1} jeV\{0}

Uik — Wik + N < (n—1) ieV\{n+1},jeV\{0Lke K (32)

Up,k — Uik + Z i <n(l— Z Tijk) ie€Vo,ke K (33)
jevi{o} jev\{0}

Upk = Z Tijk teVo,ke K (34)

je{0}

Udyk — Uik 2 Z Tijk i€ Vo, ke K (35)
JEVA{0}

0<wuir<n Z Tijk ieV,ke K (36)
FEVA{0}

For each vehicle k, constraints set the load after leaving node 0, while con-
straints define the load when arriving at node n + 1. Constraints impose
the load conservation when traveling from node i to node j. Constraints f
guarantee the respect of precedence constraints. Constraints impose both the
non-negativity of the w;, variables and their relation with the z;;,variables.

The model can be improved by the addition of and of

Uk — Up, ke > > S wn ieVakeK (37)
leV\{n+1}p;=p jeV\{0}
Uik — Uik + NT45k + (’Il — 2)Ijik < (n — 1) i,jEeV \ {O,n + 1}, ke K (38)

which correspond to the above and , respectively.

5 Iterated Local Search

We developed an ILS algorithm with the purpose of finding good-quality VRPWDN
solutions in short computing times. The choice of this metaheuristic is motivated
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by its simplicity and effectiveness, in addition to the wide applicability it has found
on related VRPs (see, e.g., Vansteenwegen et al.[2009, [Silva et al.|2015, Haddadene
et al. 2016/ and |Atefi et al.|2018]). On the other hand, the need for short computing
times is justified by the number of visits usually scheduled in a day in our real-world
application, and by the fact that candidate locations might change at the beginning
or in the course of a day. Two examples which typically cause a re-scheduling
of visits can be a new warning for potential water contamination coming from a
household or shop or, when visiting a well, the unfortunate event that the well’s
door is broken and it is not possible to open it.

Following the general framework proposed by |Lourenco et al. (2019), the ILS
starts from an initial solution and then improves it by iteratively invoking local
search and perturbation procedures. The pseudo-code of the proposed ILS is pro-
vided in Algorithm|l} First, we generate an initial solution zg by means of a heuristic
algorithm (line 1), and then we improve it with a local search procedure (line 2).
The current solution, z, is stored as the incumbent, z*, and inserted in the set of
best known solutions obtained during the search, called BKSet (lines 3 and 4).
Next, we execute two phases, one after the other.

In the first phase, by applying a perturbation on x followed by a call to the local
search (lines 6-8), the algorithm tries to escape from local optima. The perturbation
is randomly selected between two tailored procedures. Let z(x) and I(x) be the cost
of x and the maximum duration of a route in x, respectively. In case x has better
cost than z*, or same cost but lower maximum duration, then we use it to update
x*. In such a case, we also insert x in BK Set. This set contains the 3 different
solutions found during the search and having the smallest z(x) costs, breaking ties
by smallest [(x) value. If, instead, x does not improve z*, then we set x + z* as
starting solution to be shaken at the next iteration. This loop is repeated until no

improvement is found for max;z, iterations.

With the aim of further improving the solution obtained, at line 16 we enter the
second ILS phase, in which a new series of improving attempts is performed. The
idea is to intensify the search around the solutions contained in BK Set. For each
such solution, we perform once more a loop of shaking and local search procedures,
which is repeated until the same termination condition used above is met. Should
one of these attempts manage to improve the incumbent solution, this time only in
terms of costs, then the search restarts from the beginning of the first phase.

In the following, we provide the details of the main elements of the algorithm.
5.1 Initialization Procedure
Algorithm 2] gives the Initialization procedure that is used to generate an initial

solution. At the beginning, |K| routes are built in parallel by randomly selecting
a first node i € V3 U Vs per route. In case ¢ belongs to Vs, then the predecessor

11



Algorithm 1 Iterated Local Search (ILS)

1: o < Initialization() > Generate an initial solution
2: = < LocalSearch(x)

¥

4: BK Set < {z*} > BK Set: set of best known solutions
5: repeat > Phase 1
6: Shake() < Rand{Si, Sa2} > Randomly select a shaking procedures
7: x + Shake(x)

8: x < LocalSearch(z)

9: Insert(x, BK Set)

10: if z(x) < z(z*) OR (2(z) = 2(2*) AND I(z) < l(z*)) then

11: ¥

12: else

13: x—z*

14: end if

15: until no improvement is found for maz;;., iterations

16: for j < 1 to |[BKSet| do > Phase 2
17: x < BKSet; > Select the j¥ solution € BK Set
18: repeat

19: Shake() < Rand{S, S2}
20: x + Shake(x)
21: x < LocalSearch(x)
22: if z(z) < z(z*) then
23: Tt~
24: Insert(z*, BKSet)
25: Go to line 5
26: end if
27: until no improvement is found for max;;. iterations
28: end for

29: return z*

and the successor of i (i.e., p; and d;) are also inserted into the route. In the next
|[V1 U V3| — | K| iterations, a new node is randomly selected and inserted into an
existing route. In these iterations, both the node and, in case ¢ € V5, its predecessor
and successor are inserted in the route in the positions that lead to the minimum
extra mileage cost. Note that the insertion of node ¢ or tuple (p;,i,d;) into an
existing route is led by procedure CheapestInsertion, which evaluates among the
| K| routes the best candidate for the expansion. At line 22, the algorithm checks
whether the solution is feasible. If not, then the whole procedure is repeated from
scratch.
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Algorithm 2 Initialization Procedure

LSV« 10

2: for k< 1 to |K| do > Initialization of |K| routes in parallel
3 i < Rand{1, ..., |V; U Val}

4: V<« Vu{i} > Add i to the set of visited nodes
5: if i € V5 then

6: Tk < (O,pi,i,di,n—i-l)

7: Insert(ry,S)

8: else

9: rk<—(0,z’,n+1)

10: Insert(rg,S)

11: end if

12: end for

13: for j « 1 to [V UVs| — |K| do > Expansion of existing routes

14: i < Rand{{1,...,|[VA UWa|} \ V}
15: V< VUu{i}
16: if i € V5 then

17: CheapestInsertion((p;,i,d;), 1, € S)
18: else

19: CheapestInsertion(i,r; € S)

20: end if

21: end for

22: if Feasible(S) =1 then

23: continue

24: else

25: Go to line 1

26: end if

27: return S

5.2 Local Search

The LocalSearch procedure invokes, one after the other, the following neighborhood
searches:

LS1 Swap intra-route: swap two sequences with up to three consecutive nodes in
the same route. Potential nodes belonging to V3 are extracted from the two
sequences and reinserted after the swap following the minimum extra mileage
cost and respecting the precedence constraints;

LS2 Swap inter-route: swap two sequences with up to three consecutive nodes from
different routes, taking care of nodes belonging to Vs;

LS3 Relocate intra-route: remove a sequence with up to three consecutive nodes
and reinsert it in a different position within the same route, taking care of
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nodes belonging to Vis;

LS4 Relocate inter-route: remove a sequence with up to three consecutive nodes
and reinsert it in a different route, taking care of nodes belonging to Vs;

LS5 3-opt: in a preliminary step, select a route and remove potential nodes be-
longing to V3. Following this step, apply the standard 3-opt algorithm to
the remaining nodes. After each iteration of the 3-opt algorithm update the
solution by reinserting the previously extracted nodes belonging to V.

Procedures from LS1 to LS4 have all complexity O(n?), whereas LS5 has com-
plexity O(n3). To limit the computational effort required by LS5, a random logic
search is added. In particular, a candidate route k is selected randomly and poten-
tial nodes belonging to V3 are removed as follows. For each node i in the route, the
saving s; that could be obtained by removing ¢ and directly connecting the prede-
cessor and successor nodes of i in the route is computed. Then, the probability of
removing i is set to p; = s;/> ; $j- By means of the roulette wheel mechanism, three
non-adjacent nodes are selected for removal, and then the resulting route is opti-
mized by a 3-opt algorithm. A threshold of «y iterations is set to limit the number
of attempts.

The calls to LS1-LS5 are repeated as long as an improvement is found. Procedure
LocalSearch hence returns a solution which is a local optimum with respect to all
five neighborhoods.

5.3 Shaking Procedure

To perturb a solution, we randomly select, with same probability, one of the two
following procedures.

S1 Shaking 1: randomly select a route k£ and execute a random iteration of the
3-opt algorithm to update the order of visits. If the cost of the current solution
is not worse than az(z*), with o being an input parameter, randomly select a
second route k&’ and perform another 3-opt iteration. The procedure is iterated
as long as the cost of the perturbed solution is not worse than az(z*);

S2 Shaking 2: compute the cost saving obtained by removing any node from
the solution, similarly to what is done in LS5. Then use the roulette wheel
mechanism to select a node ¢ € V' \ {0,n + 1}, and remove ¢ from its route.
The removal procedure is iterated until at least « percent of all nodes have
been removed. If the selected node belongs to Va, then its saving is computed
as the average cost saving obtained by removing i, p;, and d;. At the end of
this step, the algorithm invokes the Initialization procedure to rebuild a
feasible solution.
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6 Computational Results

In this section, we present the results of extensive computational tests performed
with the aim of assessing the performance of the proposed methods. The mathe-
matical models and the ILS were coded in C++ using Microsoft Visual Studio 2010.
The computational tests were executed on a PC equipped with an Intel Core i7 CPU
processor @ 2.70 GHz and 6 GB of RAM, using CPLEX 12.3 as MILP solver. In
Section we describe the sets of randomly-created instances that we used for our
tests. The comparison among the mathematical models is reported in Section
while the behavior of the ILS is analyzed in Sections and In Section
we report the results of additional computational experiments performed on a set
of realistic instances derived from the case study.

6.1 Randomly-created Instances

We created several random instances with the aim of assessing the performance of
the algorithms under different situations. In detail, we created two sets of instances,
each comprising different subsets having homogeneous values of [V3 U Va|, (|Va|, |V3])
and |K|, and composed by three random instances per subset. We obtained the
following sets:

e Small-size: 18 instances with |V3 U Va|=10, (|Val, |V3]) € {(1,1), (2,1), (2,2)},
and |K| € {1,2}; 24 instances with |V; U V3|=15, (|Val, |V3]|) € {(3,2), (3,3),
(4,2), (4,3)}, and |K| € {2,3}; 24 instances with |V} U V5|=20, (\Vg\ |V3]) €
{(2,2), (3,2), (3,3), (5,3)}, and |K| € {2,3};

e Medium- and large-size: 24 instances with |V} U Va|=50, (|Va|, |Vs]) € {(5,5),
(8,8), (10,5), (10,8)}, and |K| € {5,8}; 24 instances with |V; U V2|=100,
(|Val, |V3]) € {(5,5), (10,5), (10,10), (15,10)}, and | K| € {10, 15}; 24 instances
with [V4 U Va|=200, (|[Val,|V3]) € {(10,10), (20,10), (20,20), (30,20)}, and
K| € {15,20}.

For each instance, the coordinates of the nodes are integer values randomly
selected between 0 and 100. The distances between the nodes are computed as
the Euclidean ones, rounded to the second closest digit. The maximum duration
is set to L =153 ;cv 0w, G + K| X sevsuqoy G)/| K|, where @ is the average travel
time of the arcs leaving 4, computed as ¢ = >,y g5y ¢ij/(|V] — 1) for each node
i € V\{n+1}. The service time v; for each node i € V; UV U V3 is set to a random
integer value between 20 and 40.

In the following, a subset of instances is identified by the tuple (|V1UVa|, |Va|, |V3],
|K|), while a single instance is identified by (|Vy U Va|, [Val, |V35], | K|, u), where u is a
numerical index going from 1 to 3.
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To favor future research on the problem, the randomly-created instances have
been made publicly available at https://github.com/DarioVezzali/VRPWDN.

6.2 Comparison among the Mathematical Models

In this section, the performance of the three mathematical models from Section
is investigated. A time limit of 3,600 CPU seconds was imposed on each execution.
The aggregated results that we obtained are reported in Table 1} Each line reports
average/total values for a group of three instances having the same numbers of
vertices and vehicles. For each group, columns “z;” and “z,;” give the average lower
and upper bound values, respectively, column “%gap” gives the average percentage
gap and column “t(s)” the average run time. An entry “tlim” indicates that the
time limit was reached for all the three instances in the group. Column “opt” gives
the total number of instances solved to proven optimality.

From Table |1} we can observe that just on a few large-size instances the time-
based model and the node-based model find better results in terms of average upper
bound. Overall, the flow-based model outperforms the other two models in terms
of average lower bound, average percentage gap, average run time, and number
of optimal solutions obtained. Consequently, we adopted this model to assess the
quality of the solutions obtained by the ILS (see Section [6.3)).

For all the instances belonging to the medium- and large-size sets, the mathemat-
ical models could not obtain proven optimal solutions and the computer frequently
ran out of memory because of the large model size. Overall, we can conclude that
the results prove the need of a good heuristic for these instances. This need is further
motivated by the dimension of the original real-world problem, where the number
of visits per day (i.e., around 70) is out of scale if compared to the size of instances
solved to optimality within the time limit.

To assess the performance of the proposed valid inequalities, six small-size in-
stances were selected and solved running the three models with and without the
addition of the valid inequalities. The results are reported in Table [2, We can no-
tice that the inequalities help improve the performance of all models, by reducing
the average percentage gap and execution time, and increasing the number of proven
optimal solutions.

6.3 ILS Parameter Tuning

The ILS procedure adopts four main parameters (i.e., a, (3, v and mazjg,). To
set their values, we randomly selected six instances (two with 0 < n < 20, two
with 50 < n < 100, and two with n = 200). We then tested the ILS on these
instances by attempting all possible combinations of parameter values chosen in
the sets a € {0.05.0.10,0.15,0.25}, 8 € {2,5,10,20}, v € {50,100} and maz;e, €
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Table 2: Effect of valid inequalities on six small-size instances

without valid inequalities with valid inequalities
mathematical model Z1p zup  Yogap t(s) opt 21 Zup  J0gap t(s) opt
time-based 1036.25 1077.49 3.24 2484.51 2 1040.67 1076.85 2.81 2288.63 3
flow-based 1062.79 1076.85 1.00 953.69 5 1064.43 1076.85 0.88 751.28 5
node-based 1033.41 1084.99 3.86 1912.63 3 1037.93 1068.09 2.38 1745.36 4

Table 3: ILS parameter tuning. Best configuration in boldface

('Yv maxiter)

(50,200)  (50,500)  (50,1000) (50,5000) (100,200) (100,500) (100,1000) (100,5000)
(a, B) t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap

(0.05,2) 1.53 0.91 1.79 0.87 2.13 0.84 2.79 0.82 1.56 0.83 1.80 0.79 1.89 0.78 3.28 0.77
(0.05,5) 1.67 0.76 1.83 0.75 2.27 0.73 291 0.72 1.79 0.75 1.90 0.74 2.02 0.74 349 0.73
(0.05,10) 1.91 0.76 2.18 0.74 2.66 0.73 3.41 0.72 2.08 0.73 2.19 0.73 2.26 0.73 3.91 0.71
(0.05,20) 1.73 0.76 1.93 0.74 2.34 0.73 2.86 0.72 2.20 0.73 2.35 0.72 2.43 0.69 4.67 0.69

(0.10,2) 2.09 0.08 2.33 0.03 2.68 0.02 3.58 0.01 1.91 0.13 1.97 0.11 2.09 0.10 2.58 0.10
(0.10,5) 2.74 0.08 3.25 0.02 4.02 0.00 5.44 0.00 2.06 0.11 2.38 0.07 2.89 0.06 3.28 0.05
(0.10,10) 3.13 0.08 4.06 0.02 5.04 0.00 6.47 0.00 2.49 0.07 2.61 0.07 3.05 0.06 3.39 0.05
(0.10,20) 3.57 0.08 4.53 0.02 5.23 0.00 8.02 0.00 2.84 0.07 3.11 0.06 3.24 0.06 3.46 0.05

(0.15,2) 1.83 0.43 2.06 0.39 2.30 0.38 3.12 0.35 2.04 0.38 2.37 0.35 2.49 0.35 3.12 0.35
(0.15,5) 2.49 0.40 2.86 0.38 3.13 0.35 5.08 0.35 2.33 0.36 2.59 0.35 3.20 0.34 4.85 0.33
(0.15,10) 3.35 0.40 3.88 0.38 4.16 0.35 6.37 0.35 248 0.35 3.79 0.33 4.11 0.33 5.09 0.33
(0.15,20) 4.55 0.40 5.02 0.38 5.23 0.35 864 0.35 2.71 0.35 4.26 0.33 4.82 0.33 594 0.32

(0.25,2) 2.25 1.34 2.64 1.07 3.30 0.94 4.56 0.92 2.21 0.88 2.27 0.86 2.84 0.86 4.19 0.86
(0.25,5) 2.54 1.18 2.93 0.91 4.05 0.89 5.62 0.89 2.68 0.86 3.16 0.85 3.74 0.85 4.80 0.83
(0.25,10) 3.00 1.16 3.94 0.90 4.94 0.86 7.33 0.86 3.52 0.83 4.86 0.82 6.07 0.82 7.83 0.82
(0.25,20) 3.72 1.16 5.12 0.90 6.31 0.86 8.89 0.86 4.67 0.83 6.13 0.82 6.63 0.82 8.46 0.82

{200, 500, 1000, 5000}. The results are reported in Table For each combination
of parameters, column “t(s)” gives the average ILS run time on the six instances,
and column “%gap” gives the average gap computed as the average over the six
instances of 100(z —z*)/2z*. Here, z is the value of the solution obtained by the given
configuration and z* is the value of the best solution obtained by all configurations.

The configuration with o = 0.10, 8 = 5, v = 50 and max;t- = 1000 is the one
that obtained the best results (highlighted in bold in the table). It could always
achieve the best solution values, at the expense of a limited increase in the computing
time with respect to configurations adopting a smaller number of iterations. This
configuration was thus adopted for all successive ILS tests.

6.4 ILS Evaluation

In this section, we investigate the performance of the ILS. In Table [ the results
of the ILS are compared with those obtained by the best mathematical model (i.e.,
the flow-based one) on groups of three instances per line. We recall that column
“zup” gives the average upper bound value, column “opt” the number of proven
optimal solutions, and column “t(s)” the average run time. The ILS was executed
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Table 4: Computational results on small-size instances (three inst. per line)

flow-based ILS
[Vi U Va [Va [Vs] |K| Zub t(s) opt Zbest Zavg Zworst Oz t(s)
10 1 1 1 706.39 1.13 3 706.39 706.39 706.39  0.00 0.00
10 1 1 2 730.91 3.26 3 730.91 730.91 730.91  0.00 0.00
10 2 1 1 743.25 3.13 3 743.25 743.25 743.25 0.00 0.00
10 2 1 2 793.75 9.45 3 793.75 793.75 793.75 0.00 0.00
10 2 2 1 803.96 16.73 3 803.96 803.96 803.96 0.00 0.00
10 2 2 2 833.78 75.01 3 833.78 833.78 833.78 0.00 0.00
sum/avg (10) 768.67 18.12 18 768.67 768.67 768.67 0.00 0.00
15 3 2 2 1036.61 509.71 3 1036.61 1036.61 1036.61 0.00 0.14
15 3 2 3 1049.45 1325.68 3 1049.45 1049.45 1049.45 0.00 0.22
15 3 3 2 1114.68 1104.10 3 1114.68 1114.68 1114.68 0.00 0.14
15 3 3 3 1160.74  1358.60 2 1155.96 1155.96 1155.96 0.00 0.24
15 4 2 2 1036.61 510.81 3 1036.61 1036.61 1036.61 0.00 0.16
15 4 2 3 1084.12 1108.56 3 1084.12 1084.12 1084.12 0.00 0.22
15 4 3 2 1149.80  1420.98 2 1146.56 1146.56 1146.56 0.00 0.20
15 4 3 3 1202.40 1430.51 2 1202.40 1202.40 1202.40 0.00 0.27
sum/avg (15) 1104.30  1096.12 21 1103.30 1103.30 1103.30 0.00 0.20
20 2 2 2 1277.82 1354.86 2 1275.44  1275.44 1275.44 0.00 0.26
20 2 2 3 1329.12  1458.53 2 1316.03 1316.03 1316.03 0.00 0.33
20 3 2 2 1269.71 1271.07 2 1262.52 1262.52 1262.52 0.00 0.35
20 3 2 3 1301.73 1127.63 3  1301.73 1301.73 1301.73 0.00 0.41
20 3 3 2 1296.61 2661.64 1 1277.25 1277.25 1277.25 0.00 0.35
20 3 3 3 1321.84 tlim 0 1301.37 1301.37 1301.37 0.00 0.61
20 5 3 2 1280.43  2986.79 1  1265.46 1265.46 1265.46 0.00 0.33
20 5 3 3 1322.70  2863.57 1 1303.93 1303.93 1303.93 0.00 0.73
sum/avg (20) 1300.00 2165.51 12 1287.97 1287.97 1287.97 0.00 0.42
overall sum/avg 1083.93 1190.99 51 1079.19 1079.19 1079.19 0.00 0.23

five times on each instance. We report the best, average and worst solution values
achieved, as well as their standard deviation, in columns “Zpest”, “Zavg”s “Zworst”
and “o,”, respectively. More in detail, zpes gives the average of the best solution
values produced on the three instances, 24,4 the average of the average values, and
zworst the average of the worst values. The average computational time is shown in
column “t(s)”.

According to the results, for those groups of three instances that were all solved
to optimality by the flow-based model, the ILS obtained the same optimal values in a
shorter computational time. For all the remaining small-size sets, the ILS achieved
better values than the flow-based model (without proof of their optimality). In
addition, the constantly null average standard deviation among the different runs
indicates the robustness of the algorithm on these very simple instances. When
comparing the average run times, we can notice that the ILS needed an overall
average time of just 0.23 seconds against the 1,190.99 seconds of the flow-based
model.

In Table 5] we report the results of the ILS on medium- and large-size instances.
On instances having |V; U V| = 50 the average standard deviation is 0.00, on those
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Table 5: Computational results on medium- and large-size instances (three inst. per line)

ILS
|V1 ) V2| |V2‘ ‘V3| ‘K| Zbest Zavg Zworst Oz t(s)
50 5 5 5 2583.27 2583.27 2583.27 0.00 1.17
50 5 5 8 2721.90 2721.90 2721.90 0.00 1.59
50 8 8 5 2883.07 2883.07 2883.07 0.00 1.67
50 8 8 8 3001.70 3001.70 3001.70 0.00 2.10
50 10 5 5 2664.02 2664.02 2664.02 0.00 2.09
50 10 5 8 2807.41 2807.41 2807.41 0.00 2.19
50 10 8 5 2863.64 2863.64 2863.64 0.00 1.91
50 10 8 8 3003.07 3003.07 3003.07 0.00 2.52
avg (50) 2816.01 2816.01 2816.01 0.00 1.91
100 5 5 10 4430.65 4430.92 4431.53 0.40 7.61
100 5 5 15 4642.24 4642.45 4643.13 0.39 8.29
100 10 5 10 4507.07 4507.27 4508.07 0.45 7.19
100 10 5 15 4750.73 4750.92 4751.65 0.41 8.17
100 10 10 10 4856.94 4857.16 4857.99 0.47 9.03
100 10 10 15 5062.41 5062.62 5063.43 0.45 9.43
100 15 10 10 4826.28 4826.62 4827.96 0.75 9.18
100 15 10 15 5070.19 5070.50 5071.74 0.69 9.90
avg (100) 4768.31 4768.56 4769.44 0.50 8.60
200 10 10 15 8244.39 8244.97 8246.12 0.82 9.86
200 10 10 20 8636.53 8637.11 8638.33 0.84 10.34
200 20 10 15 8550.63 8551.32 8552.62 0.98 12.27
200 20 10 20 8814.41 8815.00 8816.05 0.82 13.29
200 20 20 15 9128.90 9129.63 9130.63 0.82 13.66
200 20 20 20 9305.35 9305.98 9307.13 0.81 14.96
200 30 20 15 9372.60 9373.86 9375.17 1.16 14.05
200 30 20 20 9497.20 9498.20 9499.67 1.10 15.70
avg (200) 8943.75 8944.51 8945.72 0.92 13.02
overall avg 5509.36 5509.69 5510.39 0.47 7.84

having |V; U V| = 100 it becomes 0.50, while on those having |V} U V| = 200 it
increases to 0.92, thus resulting in an overall average standard deviation of 0.47.
This confirms the robustness of the algorithm. Concerning the run time, the ILS
took on average 1.91 seconds to solve instances having |V} U V| = 50, 8.60 seconds
for those having |V; U V| = 100, and 13.02 seconds for those having |V; U V3| = 200.
The overall average run time is 7.84 seconds, proving that the method is suitable
for a quick use in practical situations.

Finally, Table [6] reports a sensitivity analysis on the average percentage of com-
putational time needed by each ILS component, grouped by set of instances. On the
small-size sets, LS2 and LS3 are the most time-consuming local search procedures,
while for medium- and large-size sets the largest effort is required by LS1 and LS4.

6.5 Results on Realistic Instances

The flow-based model and the ILS were also tested on a set of realistic instances
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Table 6: Percentage of the computational time needed by each ILS component

Set LS1 LS2 LS3 LS4 LS5 S1 S2
Small-size 3.63% 39.41% 28.65% 6.37% 20.50% 0.37% 1.07%
Medium-size 59.50% 9.02% 1.30% 18.36% 10.69% 0.23% 0.89%
Large-size 50.03% 3.48% 3.33% 32.35% 9.98% 0.13% 0.71%

generated from the WDN in the city of Mashhad (Iran). Our real case study consists
of 3,124 households/shops, 293 reservoirs/tanks, 356 wells and 14 treatment plants.
For all of these nodes the exact locations were collected.

Following the same rationale described in Section we generated 108 realistic
instances divided into two sets of small-size and medium- and large-size instances,
each comprising different subsets having homogeneous values of |V UVa|, (|Va, |V3]),
and |K|, and composed by three random instances per subset. The resulting sets

are:
e Small-size: 12 instances with |V; U Va|=10, (|Val, |V3]) € {(1,1), (2,1), (2,2)},
and |K| € {1,2}; 12 instances with |V; U V3|=15, (|Va], |V3]) € {(1 1), (2,1),
(2,2)}, and |K| € {1, 2, 3}; 12 instances with |V; UV5|=20, (|V2|, |V3]) € {(1,1),

(2,1), (2,2)}, and | K| € {2,3};

o Medium- and large-size: 12 instances with |V3 U V2|=40, (|Val,|V3]) € {(4,2),
(4,3), (6,2), (6,3)}, and | K| € {2,3}; 12 instances with |V;UV3|=50, (|Val,|V3])
€{(4,2), (4,3), (6,2), (6,3)}, and | K| € {2, 3}; 12 instances with |V; UV5|=60,
(IVa|, |V5]) € {(4,2), (4,3), (6,2), (6,3)}, and | K| € {2,3}; 12 instances with
|V1 UV2‘:100a (‘V2‘7|V3D S {(874)7 (875)7 (1074)7 (1075)}? and ’K‘ € {475}3
12 instances with |V U V5|=150, (|V2],|V5]) € {(8,4), (8,5), (10,4), (10,5)},
and |K| € {4,5}; 12 instances with |V; U V5]|=200, (|Val,|V5]) € {(8,4), (8,5),
(10,4), (10,5)}, and |K| € {4,5}.

For each instance, the coordinates of the nodes were randomly selected among
the given real locations. The flow-based model and the ILS were used to run the
experiments. The results are reported in the Tables [7] and In Table [7] the
results of the ILS are compared with those obtained by the flow-based model. We
recall that columns “z,;”, “t(s)” and “opt” give the average upper bound value,
the average run time and the total number of instances solved to proven optimality
by the mathematical model, respectively. Note that an entry “tlim” indicates that
the time limit of 3,600 CPU seconds was reached for all the three instances in the
group. Conversely, columns “Zpest”, “Zavg”, “Zworst”, “0.” and “t(s)” give the best,
average and worst solution values, the standard deviation and the computational
time of the ILS, respectively.

We can notice that on small-size instances, the flow-based model and the ILS
obtained the same optimal values on instances having [V; U V5| € {10, 15}, and on
one subset out of four of instances having |V; UVa| = 20. For the remaining subsets,
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Table 7: Computational results on realistic small-size instances (three inst. per line)

flow-based ILS
|V1 @] VQ‘ |V2‘ |V3‘ |K| Zub t(S) opt Zbest Zavg Zworst Oz t(S)
10 1 1 1 82475.75 12.69 3 82475.75 82475.75 82475.75 0.00 0.00
10 1 1 2 80629.79 8.95 3 80629.79 80629.79 80629.79 0.00 0.00
10 2 1 1 121874.44 5.53 3 121874.44 121874.44 121874.44 0.00 0.00
10 2 2 2 116649.98 135.45 3 116649.98 116649.98 116649.98 0.00 0.00
sum/avg (10) 100407.49 40.66 12 100407.49 100407.49 100407.49 0.00 0.00
15 1 1 1 97874.84 1218.80 2 97874.84 97874.84 97874.84 0.00 0.05
15 1 1 2 186943.98 46.03 3 186943.98 186943.98 186943.98 0.00 0.08
15 2 1 2 126742.54 1204.46 2 126742.54 126742.54 126742.54 0.00 0.12
15 2 2 3 135254.03 2437.79 1 135254.03 135254.03 135254.03 0.00 0.12
sum/avg (15) 136703.85 1226.77 8 136703.85 136703.85 136703.85 0.00 0.09
20 1 1 2 158682.88 1205.87 2 158588.73 158588.73 158588.73 0.00 0.18
20 1 1 3 175830.70  3342.99 1 175655.43 175655.43 175655.43 0.00 0.20
20 2 1 2 170015.90 1466.86 3 170015.90 170015.90 170015.90 0.00 0.20
20 2 2 3 188935.98 tlim 0 187949.09 187949.09 187949.09 0.00 0.26
sum/avg (20) 173366.36  2403.93 6 173052.29 173052.29 173052.29 0.00 0.21
overall sum/avg 136825.90 1223.79 26 136721.21 136721.21 136721.21 0.00 0.10

the ILS achieved better values than the flow-based model (again, without proof of
their optimality).

On medium- and large-size instances, the ILS achieved very robust results on
instances having [V;UVa| € {40, 50,60}. Indeed, the standard deviation is constantly
null for all the subgroups, and the run times are very short. The robustness of
the ILS slightly decreases for instances having |V; U Va| € {100, 150,200}, however
remaining acceptable for a practical use. For these instances, the average run times
are around 7.32, 9.80 and 11.08 seconds, respectively, thus confirming that the
algorithm could efficiently solve realistic instances having a considerable number of
nodes in a few seconds.

7 Conclusions

In this paper, we introduced a generalization of the well-known Vehicle Routing
Problem (VRP), called VRP for Water Distribution Networks (VRPWDN), that
includes precedence constraints among nodes and multiple visits to some of the
nodes. The problem is NP-hard in the strong sense and, to the best of our knowl-
edge, has not yet been applied in the context of distribution networks where regular
inspections have to be performed to detect potential sources of contamination. To
solve the VRPWDN, three alternative mathematical models (time-based, flow-based
and node-based) were proposed, and an Iterated Local Search (ILS) algorithm was
developed.

Extensive computational tests on randomly generated small-size instances were
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Table 8: Comp. results on realistic medium- and large-size instances (three inst. per line)

ILS
|V1 U VQ‘ |V2| ‘V3| |K| Zbest Zavg Rworst Oz t(S)
40 4 2 2 180613.80 180613.80 180613.80 0.00 0.78
40 4 3 3 219227.54 219227.54 219227.54 0.00 0.79
40 6 2 2 195113.71 195113.71 195113.71 0.00 0.85
40 6 3 3 201338.25 201338.25 201338.25 0.00 0.84
avg (40) 199073.33 199073.33 199073.33 0.00 0.82
50 4 2 2 250479.23 250479.23 250479.23 0.00 0.97
50 4 3 3 278476.01 278476.01 278476.01 0.00 0.97
50 6 2 2 263769.77 263769.77 263769.77 0.00 1.18
50 6 3 3 293179.73 293179.73 293179.73 0.00 1.28
avg (50) 271476.19 271476.19 271476.19 0.00 1.10
60 4 2 2 263976.92 263976.92 263976.92 0.00 1.67
60 4 3 3 264029.28 264029.28 264029.28 0.00 1.73
60 6 2 2 222473.25 222473.25 222473.25 0.00 2.07
60 6 3 3 291979.18 291979.18 291979.18 0.00 2.35
avg (60) 260614.66 260614.66 260614.66 0.00 1.96
100 8 4 4 399442.47 399442.63 399443.14 0.30 6.41
100 8 5 5 438923.85 438923.90 438924.05 0.09 7.38
100 10 4 4 344216.84 344217.11 344217.64 0.38 7.72
100 10 5 5 376473.23 376473.42 376473.86 0.28 7.78
avg (100) 389764.10 389764.27 389764.67 0.26 7.32
150 8 4 4 438156.93 438157.42 438158.64 0.72 9.64
150 8 5 5 440416.07 440416.44 440417.48 0.61 8.85
150 10 4 4 466864.57 466864.99 466866.19 0.70 10.54
150 10 5 5 569988.53 569988.92 569990.11 0.68 10.17
avg (150) 478856.53 478856.94 478858.11 0.68 9.80
200 8 4 4 491986.12 491986.81 491988.10 0.86 10.76
200 8 5 5 495553.12 495553.59 495555.14 0.88 9.82
200 10 4 4 646227.25 646227.71 646228.81 0.71 11.93
200 10 5 5 696373.63 696374.24 696375.29 0.73 11.80
avg (200) 582535.03 582535.58 582536.83 0.79 11.08
overall avg 363719.97 363720.16 363720.63 0.29 5.35
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performed to compare the performance of the three mathematical models, showing
that the flow-based model outperforms the other two in terms of solution quality
and speed. On the same instances, the accuracy of the ILS in finding good-quality
solutions in a short time was proved. The ILS was also used to perform a series of
tests on randomly generated medium- and large-size instances with up to 200 nodes,
confirming its efficacy and robustness.

Additional computational tests were executed on small-, medium-, and large-size
realistic instances derived from the Mashhad (Iran) distribution network, proving
that our methods can be applied with profit even in a practical case.

Interesting future research directions include the application of the developed
techniques to other related VRPs with precedence constraints and multiple visits.
In addition, we are interested in studying the generalization of the VRPWDN to
the case of multiple periods. In this generalization, one should first of all determine
in which day inspecting the given nodes, and then creating the routes for each day.

Acknowledgements

This work was supported in part by Research Deputy of Ferdowsi University of
Mashhad, under Grant No. 48185, and by University of Modena and Reggio Emilia,
under grant FAR 2021. This support is gratefully acknowledged.

References

Allahyari, S., Salari, M., and Vigo, D. (2015). A hybrid metaheuristic algorithm
for the multi-depot covering tour vehicle routing problem. Furopean Journal of
Operational Research, 242(3):756-768.

Atefi, R., Salari, M., Coelho, L. C., and Renaud, J. (2018). The open vehicle rout-
ing problem with decoupling points. Furopean Journal of Operational Research,
265(1):316-327.

Aziez, 1., Coté, J.-F., and Coelho, L. C. (2020). Exact algorithms for the multi-
pickup and delivery problem with time windows. Furopean Journal of Operational
Research, 284(3):906-919.

Balas, E., Fischetti, M., and Pulleyblank, W. R. (1995). The precedence-constrained
asymmetric traveling salesman polytope. Mathematical Programming, 68(1):241—
265.

Battarra, M., Cordeau, J.-F., and Iori, M. (2014). Chapter 6: Pickup-and-delivery
problems for goods transportation. In Toth, P. and Vigo, D., editors, Vehicle

Routing: Problems, Methods, and Applications, Second Edition, pages 161-191.
SIAM.

24



Bektag, T. and Gouveia, L. (2014). Requiem for the Miller-Tucker—Zemlin subtour
elimination constraints? FEuropean Journal of Operational Research, 236(3):820—
832.

Bruck, B. P. and Iori, M. (2017). Non-elementary formulations for single vehicle
routing problems with pickups and deliveries. Operations Research, 65(6):1597—
1614.

de Winter, C., Palleti, V., Worm, D., and Kooij, R. (2019). Optimal placement
of imperfect water quality sensors in water distribution networks. Computers &
Chemical Engineering, 121:200-211.

Desaulniers, G., Madsen, O. B., and Ropke, S. (2014). Chapter 5: The vehicle
routing problem with time windows. In Toth, P. and Vigo, D., editors, Vehicle

Routing: Problems, Methods, and Applications, Second Edition, pages 119-159.
SIAM.

Desrochers, M. and Laporte, G. (1991). Improvements and extensions to the Miller—
Tucker—Zemlin subtour elimination constraints. Operations Research Letters,
10(1):27-36.

Doerner, K. F. and Salazar-Gonzalez, J.-J. (2014). Chapter 7: Pickup-and-delivery
problems for people transportation. In Toth, P. and Vigo, D., editors, Vehicle

Routing: Problems, Methods, and Applications, Second Edition, pages 193-212.
SIAM.

Furtado, M. G. S., Munari, P., and Morabito, R. (2017). The pickup and deliv-
ery problem with time windows in the oil industry: model and branch-and-cut
methods. Gestdo & Producdo, 24:501-513.

Haddadene, S. R. A., Labadie, N., and Prodhon, C. (2016). A GRASP x ILS for
the vehicle routing problem with time windows, synchronization and precedence
constraints. Ezpert Systems with Applications, 66:274-294.

Hanafi, S., Mansini, R., and Zanotti, R. (2020). The multi-visit team orienteering
problem with precedence constraints. Furopean Journal of Operational Research,
282(2):515-529.

Hernéndez-Pérez, H., Landete, M., and Rodriguez-Martin, 1. (2021). The single-
vehicle two-echelon one-commodity pickup and delivery problem. Computers &
Operations Research, 127:105152.

Kara, I. (2011). Arc based integer programming formulations for the distance con-
strained vehicle routing problem. In 3rd IEEFE International Symposium on Lo-
gistics and Industrial Informatics, pages 33-38. IEEE.

Karaoglan, 1., Altiparmak, F., Kara, I., and Dengiz, B. (2012). The location-routing
problem with simultaneous pickup and delivery: Formulations and a heuristic
approach. Omega, 40(4):465-477.

25



Kog, C., Laporte, G., and Tiikenmez, I. (2020). A review of vehicle routing with
simultaneous pickup and delivery. Computers € Operations Research, 122:104987.

Lourenco, H. R., Martin, O. C., and Stiitzle, T. (2019). Iterated local search: Frame-
work and applications. In Potvin, J.-Y. and Gendreau, M., editors, Handbook of
Metaheuristics, Third Edition, pages 129-168. Springer.

Moon, C., Kim, J., Choi, G., and Seo, Y. (2002). An efficient genetic algorithm for
the traveling salesman problem with precedence constraints. European Journal of
Operational Research, 140(3):606-617.

Mor, A. and Speranza, M. G. (2022). Vehicle routing problems over time: a survey.
Annals of Operations Research, pages 1-21.

Mukherjee, R., Diwekar, U. M., and Vaseashta, A. (2017). Optimal sensor placement
with mitigation strategy for water network systems under uncertainty. Computers
& Chemical Engineering, 103:91-102.

Naji-Azimi, Z. and Salari, M. (2014). The time constrained maximal covering sales-
man problem. Applied Mathematical Modelling, 38(15-16):3945-3957.

Naserizade, S. S., Nikoo, M. R., and Montaseri, H. (2018). A risk-based multi-
objective model for optimal placement of sensors in water distribution system.
Journal of Hydrology, 557:147—-159.

Pereira, D. L., Alves, J. C., and Moreira, M. C. d. O. (2020). A multiperiod workforce
scheduling and routing problem with dependent tasks. Computers & Operations
Research, 118:104930.

Quttineh, N.-H., Larsson, T., Lundberg, K., and Holmberg, K. (2013). Military air-
craft mission planning: a generalized vehicle routing model with synchronization
and precedence. FURO Journal on Transportation and Logistics, 2(1-2):109-127.

Rathi, S. and Gupta, R. (2014). Sensor placement methods for contamination detec-
tion in water distribution networks: A review. Procedia Engineering, 89:181-188.

Razali, N. M. (2015). An efficient genetic algorithm for large scale vehicle rout-
ing problem subject to precedence constraints. Procedia - Social and Behavioral
Sciences, 195:1922-1931.

Sabouhi, F., Bozorgi-Amiri, A., Moshref-Javadi, M., and Heydari, M. (2019). An
integrated routing and scheduling model for evacuation and commodity distribu-
tion in large-scale disaster relief operations: a case study. Annals of Operations
Research, 283(1):643-677.

Salman, R., Ekstedt, F., and Damaschke, P. (2020). Branch-and-bound for the
precedence constrained generalized traveling salesman problem. Operations Re-
search Letters, 48(2):163-166.

26



Sarin, S. C., Sherali, H. D., and Bhootra, A. (2005). New tighter polynomial length
formulations for the asymmetric traveling salesman problem with and without
precedence constraints. Operations Research Letters, 33(1):62-70.

Seok Jeong, H. and Abraham, D. M. (2006). Operational response model for phys-
ically attacked water networks using NSGA-II. Journal of Computing in Civil
Engineering, 20(5):328-338.

Sigurd, M., Pisinger, D., and Sig, M. (2004). Scheduling transportation of live
animals to avoid the spread of diseases. Transportation Science, 38(2):197-209.

Silva, M. M., Subramanian, A., and Ochi, L. S. (2015). An iterated local search
heuristic for the split delivery vehicle routing problem. Computers € Operations
Research, 53:234-249.

Sun, P., Veelenturf, L. P., Dabia, S., and Van Woensel, T. (2018). The time-
dependent capacitated profitable tour problem with time windows and precedence
constraints. Furopean Journal of Operational Research, 264(3):1058-1073.

Toth, P. and Vigo, D. (2014). Vehicle Routing: Problems, Methods, and Applica-
tions. STAM, 2nd edition.

Vansteenwegen, P., Souffriau, W., Berghe, G. V., and Van Oudheusden, D. (2009).
Iterated local search for the team orienteering problem with time windows. Com-
puters €& Operations Research, 36(12):3281-3290.

Wolfinger, D. and Salazar-Gonzélez, J.-J. (2021). The pickup and delivery prob-
lem with split loads and transshipments: A branch-and-cut solution approach.
European Journal of Operational Research, 289(2):470-484.

World Health Organization (2019). Drinking-water fact sheet.

Zhang, Q., Wu, Z. Y., Zhao, M., Qi, J., Huang, Y., and Zhao, H. (2016). Leakage
zone identification in large-scale water distribution systems using multiclass sup-
port vector machines. Journal of Water Resources Planning and Management,
142(11):04016042.

27



	1 Introduction
	2 Literature Review
	3 Problem Description
	4 Mathematical Models
	4.1 Time-based Model
	4.2 Flow-based Model
	4.3 Node-based Model

	5 Iterated Local Search
	5.1 Initialization Procedure
	5.2 Local Search
	5.3 Shaking Procedure

	6 Computational Results
	6.1 Randomly-created Instances
	6.2 Comparison among the Mathematical Models
	6.3 ILS Parameter Tuning
	6.4 ILS Evaluation
	6.5 Results on Realistic Instances

	7 Conclusions

