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ABSTRACT
This study focuses on the development of a new class of the Robust Integral of the
Sign of the Error (RISE) control law adequate for second-order nonlinear multi-
input-multi-output systems. A revisit for the original RISE is done by altering some
static feedback gains into time-varying nonlinear ones depending on the system
states. The proposed controller takes advantage of both RISE control robustness
towards uncertainties and the special behavior of nonlinear feedback gains towards
time-varied parameters. A Lyaponuv-based stability analysis to prove the semiglobal
asymptotic tracking of the proposed new controller is included. In order to validate
the relevance of the proposed controller, real-time experimental results are presented
and discussed. Experiments have been conducted on a Delta parallel manipulator,
in different operating conditions including payload and speed variations.

KEYWORDS
RISE control, nonlinear feedback gains, parallel kinematic manipulators, stability
analysis, real-time experiments.

1. Introduction

Nonlinear dynamical systems of uncertainties and parameters variation have been
studied extensively in the literature. Those systems have been always considered as
a challenge possessing special care from scientific people. In fact, most of the real-
time industrial applications are counted in the family of highly nonlinear uncertain
dynamical systems.

Recently, a novel control mechanism called Robust Integral of the Sign of the Error
(RISE) has been developed in Xian, Dawson, Queiroz, & Chen (2004). RISE feedback
law is a continuous control solution dealing with Multi-Input-Multi-Output (MIMO)
high-order nonlinear systems. This non-model-based control strategy can guarantee
a semi-global asymptotic tracking under limited assumptions on the system uncer-
tainties and time-varying parameters. RISE-based controllers have been applied in
different real-time applications thanks to the robustness and disturbances rejection
provided by RISE feedback closed-loop architecture. It has been proved experimen-
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tally the high efficiency of RISE controller for disturbance rejection compared to some
classical controllers in a directed energy platform (jitter) (Feemster, 2014), an Au-
tonomous Underwater Vehicle (AUV) (Fischer, Hughes, Walters, Schwartz, & Dixon,
2014), a two-link robot manipulator (Fischer, Kan, Kamalapurkar, & Dixon, 2014),
a nonlinear teleoperation system (kawai, Namerikawa, 2013), and a DC motor drive
system taking into account the static friction (Yao, Jiao, & Ma, 2014). Moreover, some
research works have been proposed and experimented in the literature based on the
adaptation algorithms for the gains of RISE control or for the system parameters. In
(Kamaldin, Chen, Kong, Teo, & Tan, 2016), a gain-adaptive RISE feedback strategy
was implemented on a dual-drive gantry, and the results had shown improvement of
the proposed controller against the conventional RISE controller. Model-based adap-
tive control laws with RISE feedback have been proposed and applied to different
platforms such as hydraulic load simulator (Luo, Yao, Chen, Li, & Xu, 2017; Yao,
Deng, & Jiao, 2017) and a parallel robot Delta (Bennehar, Chemori, Bouri, Jenni,
& Pierrot, 2017). It has been proved experimentally the high performances of such
control schemes compared to the standard RISE control.

Because of the powerful robustness and performance acquired by RISE and RISE-
based control strategies, the idea of improving such controller arises. Enriching this
control law with more nonlinearity may allow it to compensate for more percentage
of high nonlinearities abundant extensively in most of the industrial robotized appli-
cations.

In the last decades, a serious need for nonlinear control appeared in the area of au-
tomatic control engineering with the fast evolution of technology. Indeed, conventional
linear control has been used in a wide range of industrial applications providing a good
performance. However, its good performance is limited to a small range operation and
around the nominal steady state only. At critical operating conditions (for example:
high-speed, high-precision applications), linear control may degrade the performance
and even lead to instability while nonlinear control can handle the variation in the
nonlinear dynamics preserving the stability and the good performance (Khalil, 2002;
Slotine & Li, 1991). One of the most studied concepts in the area of nonlinear control
is utilizing nonlinear functions as feedback gains able to adapt itself with the variation
of the system states, control inputs or other variables. In (Jingqing, 1994), it has been
proposed to improve the classical Proportional-Derivative-Integral (PID) controller
to a Nonlinear PID (NLPID) by using tracking-differentiator and a nonlinear com-
bination in order to enhance the adaptability and robustness of such regulator. The
nonlinear feedback gains concept of NLPID has been applied later to different experi-
mental platforms showing better control performance compared to the static feedback
gains theory. One can mention: a NLPID controller applied to a parallel robot (Su,
Duan, & Zheng, 2004), an Augmented NLPD controller applied to a serial manipu-
lator (Kelly & Carelli, 1996), a parallel robot (Shang, Cong, Li, & Jiang, 2009), and
an underwater vehicle (Campos, Chemori, Creuze, Torres, & Lozano, 2017), and an
extended Desired Compensation Adaptation Law (DCAL) applied to a parallel robot
(Bennehar, Chemori, & Pierrot, 2016).

To this point, we have seen the advantages of using nonlinear feedback algorithms
for the control problem of complex robotic systems. Parallel Kinematic Manipulators
(PKMs) inherit complexity from their closed-kinematic-chains structure in which the
moving platform is linked to the fixed-base by at least two kinematic chains (Merlet,
2006). They are well known with their highly nonlinear and coupled dynamics, abun-
dant uncertainties, parameters variation and actuation redundancy (in some PKMs)
increasing more the challenge of the control task. Several control solutions have been
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proposed for PKMs in the literature. One can mention the simple linear PID controller
applied in (Chaudhary & Ohri, 2016) and the improved NLPID tested in (Su et al.,
2004). Some controllers that have a priori knowledge about the dynamics of the par-
allel robot such as: computed-torque control (Codourey, 1998), augmented nonlinear
PD (Shang et al., 2009), PD with computed feedforward (Saied, Chemori, El Rafei,
Francis, & Pierrot, 2018), dual-space control (Natal, Chemori, & Pierrot, 2015). In
addition, the dynamic adaptive controllers that can calibrate the system parameters
online include: RISE-based adaptive control (Bennehar et al., 2017), DCAL (Bennehar
et al., 2016), nonlinear dual-mode adaptive Control (Natal, Chemori, & Pierrot, 2016),
adaptive terminal sliding mode control (Bennehar, El Ghazaly, Chemori, & Pierrot,
2016), L1 adaptive control with adaptive feedforward (Bennehar, Chemori, Pierrot, &
Creuze, 2015).

In this paper, we propose to receive advantage of the nonlinear feedback gains in the
RISE feedback control solution. We look to increase the robustness of RISE regulator
towards disturbances, uncertainties and variation of system nonlinearities depending
on the operating point. This can be achieved by replacing some of the static feedback
gains in RISE control with nonlinear time-varying feedback gains as function of the
system states: position error, velocity error, and the integral of the position error.
The stability analysis of the new proposed time-varying feedback RISE controller is
established based on a suggested Lyapunov function proving its semiglobal asymptotic
tracking. Then, it is implemented and tested experimentally on a non-redundant 3-
DOFs PKM called Delta robot for different scenarios and operating conditions. The
resulting performance of the proposed controller overcomes the standard RISE con-
troller in terms of precision, high-speed motions, robustness, and control efforts at
high-dynamic operating conditions.

The rest of this paper is organized as follows. In section 2, a background on the
original RISE controller is presented. In section 3, the proposed contribution to RISE
control is introduced. Section 4 is dedicated to the stability analysis of the proposed
control solution. The kinematics and dynamics of Delta robot are detailed in section
5. In section 6, the real-time experimental results are presented and discussed. Section
7 gives the final conclusion and emphasizes some possible perspectives.

2. Background on RISE-feedback control

Consider the second order MIMO nonlinear dynamical systems represented as:

M(x, ẋ)ẍ + F (x, ẋ) = u (1)

where x(t), ẋ(t) ∈ Rn denote the system states: position and velocity respectively,
and ẍ(t) ∈ Rn denotes the acceleration, with ”n” actuators. Note that x(t) and
ẋ(t) are measurable states. u(t) ∈ Rn represents the control input. M(.) ∈ Rn×n
and F (.) ∈ Rn are uncertain nonlinear functions. In most of the real-world robotic
systems, the mathematical model in (1) is poorly known and usually formulated with
some simplifications, non-modelled phenomena and disturbances.

Let the output tracking error be defined as follows:

e1 = xd − x (2)

where xd(t) ∈ Rn is the desired trajectory. In order to achieve an asymptotic tracking
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of a reference trajectory xd(t) (e1 → 0 as t → ∞), the system and the desired signal
should have the assumptions below.

Assumption 1. The matrix M(.) ∈ Rn×n is a symmetric positive-definite matrix and
satisfies ∀ ξ(t) ∈ Rn the following inequality:

m||ξ||2 ≤ ξTM(.)ξ ≤ m(x)||ξ||2 (3)

with m ∈ R is a positive constant, and m(x) ∈ R is a positive non-decreasing function.
Notice that ||.|| stands for the classical Euclidean norm.

Assumption 2. If x(t) and ẋ(t) ∈ L∞ (measurable and bounded), then F (.) is
bounded. Moreover, the first and second partial derivatives of the elements of M(.)
and F (.) with respect to x and ẋ exist and are also bounded.

Assumption 3. The chosen reference trajectory xd(t) ∈ Rn is differentiable till the
4th order, and its derivatives are bounded.

x
(i)
d (t) ∈ L∞ for i = 0, 1, ..., 4 (4)

To develop the closed-loop error system equation, we need to introduce the auxiliary
errors e2(t), r(t) ∈ Rn as follows:

e2 = ė1 + α1e1 (5a)

r = ė2 + α2e2 (5b)

where α1, α2 are positive constant design gains added to increase the flexibility of
tuning.

After differentiating (5b) with respect to time, multiplying both sides of the obtained
equation by M(x, ẋ), then using the system dynamics (1), we get the equation below:

M(.)ṙ = M(.)(
...
xd + α1ë1 + α2ė2) + Ṁ(.)ẍ + Ḟ (.)− u̇ (6)

By adding and subtracting the two terms (1
2Ṁ(.)r and e2) for the right-hand side

of the above-obtained equation (6), it can be rewritten as follows:

M(.)ṙ = −1

2
Ṁ(.)r − e2 − u̇ +N(.) (7)

where N(.) is defined as:

N(.) ≡ N(x,ẋ, ẍ, t) = M(.)(
...
xd + α1ë1 + α2ė2) + Ṁ(.)(ẍ +

1

2
r) + e2 + Ḟ (.) (8)

Based on the stability analysis introduced in (Xian et al., 2004), RISE control law
that can achieve the control objective is defined as follows:

u(t) = (ks + 1)e2(t)− (ks + 1)e2(0) +

∫ t

0
(ks + 1)α2e2(σ)dσ+

∫ t

0
βsgn(e2(σ))dσ (9)
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where ks and β are two positive constant gains, sgn(.) is the standard signum function.
The integral of signum can hold smooth bounded disturbances for a sufficient condition
on the feedback gain. The second term of (9) is used to ensure a zero input signal at
time t0 = 0.

Computing the first time derivative of (9) and substituting in (7) leads to the
following closed-loop error system equation:

M(.)ṙ = −1

2
Ṁ(.)r − e2 − (ks + 1)r − βsgn(e2) +N(.) (10)

Let’s now consider the auxiliary function defined by: Nd(t) = N(xd, ẋd, ẍd, t). Then
if added and subtracted to the right-hand side of (10) leads to:

M(.)ṙ = −1

2
Ṁ(.)r − e2 − (ks + 1)r − βsgn(e2) + Ñ +Nd (11)

where

Ñ(x, ẋ, ẍ, t) = N(x, ẋ, ẍ, t)−Nd(t) (12)

Thanks to Assumptions 1 and 2 of the nonlinear functions M(.) and F (.), and As-
sumption 3 required in the desired trajectory, one can deduce that functions Nd(t)
and Ṅd(t) ∈ L∞ (i.e. exist and bounded).

Since N(.) is continuous, one can show that Ñ(.) can be upper bounded as follows:

||Ñ || ≤ ρ(||z||)||z|| (13)

where z(t) = [e1 e2 r]T , and ρ(.) : R ≥ 0 → R ≥ 0 is a globally invertible non-
decreasing function. For the proof of (13), the reader can refer to Lemma 1 in the
appendix of (Patre, 2009).

Referring to (Xian et al., 2004), it can be verified that the control law of (9) insures
that all the closed-loop system states are bounded and converge to zero

e
(i)
1 (t)→ 0 as t→∞, for i = 0, 1, 2 (14)

as long as the control gain ks is chosen large enough relative to the initial conditions
of the system, α1, α2 > 1/2, and β satisfies the following condition:

β > ||Nd(t)||L∞ +
1

α2
||Ṅd(t)||L∞ (15)

where ||.||L∞ is the L∞ norm (Khalil, 2002).

3. Proposed contribution: time-varying feedback RISE controller

3.1. General overview on nonlinear feedback gains in control

Several controllers depending on nonlinear feedback gains have been already reviewed
in the introduction, highlighting their superior tracking performance compared to lin-
ear fixed feedback gains.
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Consider the simple case of linear PID control in its classical form as follows:

u(t) = kpe(t) + ki

∫ t

0
e(σ)dσ + kdė(t) (16)

where kp, ki, kd ∈ R+ are three static feedback gains needed to be tuned to obtain the
desired closed-loop performance, and e(t) is the tracking error. Once tuned, this con-
troller is able to keep the desired performance if no changes appear. However, when
the operating conditions change (uncertainties, time-varying parameters, unknown
payload, etc), the fixed feedback gains will be no more able to keep the desired per-
formance, and sometimes the closed-loop system even loses the stability. The NLPID
controller proposed in (Jingqing, 1994) has a similar structure as a linear PID but the
constant gains are substituted with time-varying ones as follows:

u(t) = kp(.)e(t) + ki(.)

∫ t

0
e(σ)dσ + kd(.)ė(t) (17)

where kp(.), ki(.), kd(.) are positive nonlinear functions depending on the model states.
This formulation allows the control to be automatically online adjusted with the system
variations during operation. Thus, better performance can be achieved and wider zone
for operating conditions.

Our proposition is summarized by taking advantage of the time-varying feedback
gains into the linear part of RISE controller improving its robustness and global per-
formance. In the forthcoming sections, we introduce our proposed controller followed
by a study of the stability of the resulting closed-loop system.

3.2. Proposed time-varying feedback RISE controller

The original controller in (9) can be split up into two parts: a linear feedback part
based on the measured combined error e2, and a nonlinear signum function. The
linear part consists of proportional and integral actions on the combined error, which
is similar to a PI controller but taking as input the combined error instead of the
position error. These two linear control actions may lead up to poor performances
when dealing with highly nonlinear systems at critical dynamic operating conditions.
They have considerable sensitivity to disturbances and limited tuning capabilities.

We propose to replace the proportional and the integral static feedback gains by
nonlinear time-varying ones. The proposed time-varying feedback RISE controller is
given as follows:

u(t) = (Ks(.) + 1)e2(t)− (Ks(t0) + 1)e2(0) +

∫ t

0
(ks0 + 1)α2(.)e2(σ)dσ

+

∫ t

0
βsgn(e2(σ))dσ

(18)

with Ks(.) and α2(.) are two nonlinear feedback functions designed as suggested in
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Ks(e2, 1, 1)

e2
0 + 1- 1

0.5≤ϵ1≤1

(a) Evolution of Ks(e2).

α ( e , ϵ , δ

∫ 2
0

≤ϵ2≤1.5

+δ2-δ2

(b) Evolution of α2(
∫
e2).

Figure 1. Plots of the evolution of the proposed nonlinear gains with respect to their arguments.

(Shang et al., 2009):

Ks(.) ≡ Ks(e2, ε1, δ1) =

ks0|e2|ε1−1, |e2| > δ1

ks0δ
ε1−1
1 , |e2| ≤ δ1

(19a)

α2(.) ≡ α2(e2, ε2, δ2) =

α20|
∫
e2|ε2−1, |

∫
e2| > δ2

α20δ
ε2−1
2 , |

∫
e2| ≤ δ2

(19b)

where ks0, α20, ε1, δ1, ε2, δ2 are positive design parameters need to be chosen carefully.
Indeed, to meet the desired performance, ε1 and ε2 are chosen within the intervals [0.5,
1] and [1, 1.5] respectively.

On one hand, the selection of ε1 within the interval [0.5, 1] can reduce the propor-
tional gain Ks(.) at high combined error values and increase it at small ones (see Figure
1-a). As long as the combined error remains within the small interval [−δ1,+δ1] around
zero, the proportional gain remains constant as a maximum saturated value. Notice
that the combined error gives knowledge about both position and velocity errors. Thus,
such variation of the gain could result in a rapid transition of the closed-loop system
states and favorable damping.

On the other hand, the nonlinear feedback gain α2(.) varies as function of the
integral of the combined error (see Figure 1-b), which means that it is more concerned
with the steady state combined errors (i.e. errors that persist with time). The choice
of ε2 within the interval [1, 1.5] gives large integral gain for the large steady state
combined errors, and small integral gain for the small steady state combined errors
as illustrated in Figure 1-b. As long as this error remains within the small interval
[−δ2,+δ2] around zero, the integral gain remains as a minimum constant value. This
variation may accelerate the tracking process towards the setpoint and prevent the
integral term from accumulating above or below specific bounds which can solve the
integral windup problem.

Choosing ε1 and ε2 in their corresponding intervals leads to globally bounded non-
linear functions as follows (bounds can be realized from Figure 1):

0 < Ksm , ks0 ‖e2‖ε1−1
∞ ≤ Ks(.) ≤ ks0δε1−1

1 , KsM (20a)
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0 < α2m , α20δ
ε2−1
2 ≤ α2(.) ≤ α20

∥∥∫ e2

∥∥ε2−1

∞ , α2M (20b)

where ||.||∞ indicates the infinity-norm.
Using the above introduced time-varying feedback gains in the standard equation of

RISE controller may enhance the global tracking performance of such controller and
may improve its robustness towards changes in system parameters. It is worth to con-
firm that the structure of the nonlinear functions is simple enough to be implemented
in real-time experiments.

In order to analyse the stability of the proposed time-varying feedback RISE con-
troller, we need to establish its related closed-loop error equation based on the non-
linear MIMO system (1).

Let us first define the auxiliary error r(t) which is synthesized now using the non-
linear function α2(.) as follows:

r = ė2 + α2(.)e2 (21)

Following the same previous procedure: differentiating r(t), multiplying both sides
by M(.), getting use of the system dynamics (1), and arranging the elements of the
obtained equation leads to:

M(.)ṙ = −1

2
Ṁ(.)r − e2 − u̇ +N(.) (22)

where N(.) is a new auxiliary function defined as follows:

N(.) ≡ N(x, ẋ,ẍ, t) = M(.)(
...
xd + α1ë1 + α2(.)ė2 + α̇2(.)e2)

+ Ṁ(.)(ẍ +
1

2
r) + e2 + Ḟ (.)

(23)

The equation of the closed-loop error system is then derived by differentiating the
control law of time-varying feedback RISE controller (18) with respect to time and
substituting it in (22). Introducing the supplementary function Ñ(., t) as in (12) allows
the closed-loop error equation to be as follows:

M(.)ṙ = −1

2
Ṁ(.)r−e2 − K̇s(.)e2 − (Ks(.) + 1)ė2 − (ks0 + 1)α2(.)e2

− βsgn(e2) + Ñ +Nd

(24)

Since α2(.) is continuous, the upper bound of ||Ñ || in (13) still exist.

3.3. Stability analysis of the proposed time-varying feedback RISE
controller

Theorem 3.1. The control law proposed in (18) applied to the second-order nonlinear
MIMO system whose dynamic model is governed by (1) ensures that all the system
signals are bounded and converge asymptotically to zero with time going to infinity,
knowing that the design control gains are chosen such that

β > ||Nd(t)||L∞ + (1/α2M )||Ṅd(t)||L∞
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with α1 > 1/2, ε1 ∈ [0.5,1], ε2 ∈ [1,1.5], and the bounds KsM , α2m in (20a) and (20b)
are chosen large enough.

Proof. Let us first consider the function L(t) ∈ R defined as follows:

L(t) = r(Nd(t)− βsgn(e2)) (25)

With the use of Lemma 1 in (Xian et al., 2004), we can conclude that if β is chosen
satisfying the following condition:

β > ||Nd(t)||L∞ +
1

α2M
||Ṅd(t)||L∞ (26)

then the following inequality holds:∫ t

0
L(τ)dτ ≤ β|e2(0)| − e2(0)Nd(0) (27)

Then, an additional function P (t) ∈ R needs to be defined as follows:

P (t) = β|e2(0)| − e2(0)Nd(0)−
∫ t

0
L(τ)dτ (28)

knowing that P (t) ≥ 0, ∀ t ≥ 0 is ensured from (26) and (27).
We now introduce a continuous differentiable definite positive function V : R3n+1×

R≥0 → R≥0 as follows:

V (y, t) =
1

2
eT1 e1 +

1

2
rTM(.)r + P (29)

where y = [zT
√
P ]T and z(t) is defined above. In view of the characteristics of the

matrix M(.) stated by Assumption 1 and its bounds in (3), V (y, t) can be bounded
as follows:

λ1 ‖y‖2 ≤ V (y, t) ≤ λ2(‖y‖) ‖y‖2 (30)

being λ1 = (1/2) min{1,m} and λ2 = (1/2) max{m(‖y‖), 1}.
Applying the time derivative of (29), and using equations (24), (25) and (28) leads

to:

V̇ = eT1 e2 − α1e
T
1 e1 − rTe2 − K̇s(.)r

Te2 − (Ks(.) + 1)rTr

+ (Ks(.) + 1)α2(.)rTe2 − (ks0 + 1)α2(.)rTe2 + rT Ñ
(31)

where K̇s(.) is the time derivative of the nonlinear function Ks(.). Now, we need to
find an upper bound for V̇ in (31).

Using the conventional inequality for any two vectors, a and b namely aT b ≤ (||a||2+
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||b||2)/2, one can write:

V̇ ≤ 1

2
‖e1‖2 +

1

2
‖e2‖2 − α1 ‖e1‖2 −

1

2
‖r‖2 − ‖e2‖2 −

|Ksmp|
2
‖r‖2

− |Ksmp|
2
‖e2‖2 − (Ksm + 1) ‖r‖2 +

(KsM + 1)α2m

2
‖r‖2

+
(KsM + 1)α2m

2
‖e2‖2 −

(ks0 + 1)α2m

2
‖r‖2 − (ks0 + 1)α2m

2
‖e2‖2

+ ‖r‖ ρ(‖z‖) ‖z‖

(32)

where Ksmp is a lower bound for K̇s(.). After developing and re-arranging (32) we
obtain:

V̇ ≤ −ζ1 ‖e1‖2 − ζ2 ‖e2‖2 − ζ3 ‖r‖2 − µ ‖r‖2 + ‖r‖ ρ(‖z‖) ‖z‖ (33)

where ζ1, ζ2, ζ3 and µ are constants to be chosen positive defined as follows:

ζ1 = α1 −
1

2
(34a)

ζ2 =
1

2

(
1−KsM α2m + ks0 α2m

)
(34b)

ζ3 =
1

2

(
3 + 2Ksm −KsM α2m − α2m

)
(34c)

µ =
1

2
(ks0 + 1)α2m (34d)

From (34a), α1 should satisfy the condition α1 > 1/2. Equation (33) can be rewritten
as follows:

V̇ ≤ −λ3 ‖z‖2 −
(
µ ‖r‖2 − ‖r‖ ρ(‖z‖) ‖z‖

)
(35)

being λ3 = min{ζ1, ζ2, ζ3}. Using the mathematical remarkable square identities, (35)
can be rewritten as follows:

V̇ ≤ −
(
λ3 −

ρ2(‖z‖)
4µ

)
‖z‖2 , −c ‖z‖2 (36)

where c is some positive constant, which implies that the following inequality holds:

λ3 >
1

4µ
ρ2(‖z‖) (37)
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Let us define the region D using inequality (37) as follows:

D =
{
y ∈ R3 × R≥0| ||y|| < ρ−1(2

√
λ3µ)

}
(38)

We know that V (y, t) ∈ L∞ is a continuously differentiable function such that
W1(y) ≤ V (y, t) ≤ W2(y) (see equation (30)) and V̇ (y, t) ≤ −W (y) (from equation
(36)). Hence e1, e2, r ∈ L∞.
W1(y),W2(y) are continuous positive-definite functions ∀ t ≥ 0 and ∀ y ∈ D, and

W (y) is uniformly continuous positive-semidefinite function.
Given that the initial conditions y(0) ∈ S, a subset of D defined as follows:

S =
{
y ⊂ D| W2(y) < λ1

(
ρ−1(2

√
λ3µ)

)2}
(39)

then we can conclude, using Lemma 2 of (Xian et al., 2004), that ||z(t)||2 → 0 as
t → ∞, ∀ y(0) ∈ S. This means that all the closed-loop system states (e1, e2, r)
asymptotically converge to zero with time.

e
(i)
1 (t)→ 0 as t→∞ ∀ y(0) ∈ S (40)

and here the proof is concluded.

4. Control application to Delta parallel robot

4.1. Description and modeling of Delta parallel robot

Delta parallel robot is a 3-DOF non-redundant PKM that has been patented by prof.
Reymond Clavel (Clavel, 1990) and developed at Ecole Polytechnique Federale de
Lausanne (EPFL), Switzerland. It has been proposed as an industrial robot for high-
speed pick-and-place applications.

The robot includes a fixed-base support and a moving platform (traveling-plate)
linked through three assemblies. Each assembly is a kinematic chain formed of a mov-
able rear-arm mounted from its first extremity to the shaft of a motor supposed to make
rotation, and linked from the second extremity to two parallel bars, which compose
the forearm, by means of ball-and-socket passive joints. The parallel rods are mounted
to the traveling-plate from their other side using the same said joints. This structure
enables the control of three basic degrees of freedom (x, y and z) with preserving the
parallelism of the traveling-plate with respect to the fixed-base. The inclination and
orientation of the moving platform in space remain unchanged whatever the motion
of the moving parts of the robot. Figure 2 illustrates the kinematics of Delta parallel
robot.

The 3-dimensional coordinate vector X = [x y z]T represents the position of cen-
ter of mass of the traveling-plate in the workspace. For each Cartesian position of the
traveling-plate in the workspace, there exist a unique and straightforward inverse kine-
matic solution of the joint angles in a 3-dimensional coordinate vector q = [q1 q2 q3]T .

The dynamic model of Delta robot is established, as in (Bennehar et al., 2017),
based on the virtual work principle. One can find more details on the dynamics of
such robot in (Codourey, 1996; Miller & Boris, 1995). The inverse dynamic equation
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Figure 2. A schematic view of Delta parallel robot including 1 : Fixed-base, 2 : Actuator, 3 : Rear-arm,

4 : Forearm, 5 : traveling-plate.

of Delta robot can be written in joint space as follows:

Γ(t) = M(q)q̈ + C(q, q̇)q̇ +G(q) (41)

where

• q, q̇, q̈, are the joint position, velocity, and acceleration vectors respectively.
• M(q), is the total mass and inertia matrix of the robot,
• C(q, q̇), is the Coriolis and centrifugal forces matrix,
• G(q), is the gravitational forces vector,
• Γ(t), is the control input vector.

The main dynamic parameters of delta parallel robot are summarized in Table 1.

4.2. Application of the proposed controller to Delta robot

In order to demonstrate the effectiveness of the proposed time-varying feedback RISE
controller, both the original RISE and the proposed control algorithms were imple-
mented on the 3-DOF Delta parallel robot. A comparative study between the two
implemented controllers is done in the forthcoming experimental section.

For an adequate control design and implementation, we re-defined the position error
in (2) for Delta robot as a difference between the desired joint angle qd ∈ R3 and the

Table 1. The main dynamic parameters of Delta parallel robot.

Parameter Value Parameter Value

Rear-arm length: 240 mm Rear-arm mass: 0.22 kg
Forearm length: 480 mm Forearm mass: 0.084 kg
Actuator inertia: 1.82×10−3 kg.m2 Traveling-plate mass: 0.305 kg
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actual measured one q ∈ R3 as follows:

e1 = qd − q (42)

The measurement of the actual angle position is performed by means of encoders
integrated in the motors, and the position in Cartesian space is computed using the
forward kinematics of the robot as common for most parallel robots.

The dynamic model of Delta robot (41) is considered as a second order nonlinear
MIMO system with a structure similar to the system equation (1) with n = 3 (the
total number of degrees of freedom).

Consequently, the mass and inertia matrix M(q) is a diagonal symmetric positive-
definite matrix satisfying the boundedness condition introduced in Assumption 1. The
dynamics of Delta parallel robot satisfy Assumption 2 such that q(t) and q̇(t) are
measurable and bounded giving that C(q, q̇) and G(q) are bounded. Then, the first
and second partial derivatives of M(q) with respect to q and those of C(q, q̇), G(q) with
respect to q, q̇ exist and bounded. Also, the chosen desired trajectory qd(t) satisfies
the assumption of differentiability and boundedness reported in Assumption 3.

Therefore, Delta robot dynamics fit the design of RISE-based controllers and it is
possible to implement both control schemes in real-time experiments. The proposed
time-varying feedback RISE control architecture is summarized in the block diagram
depicted in Figure 3.

5. Real-time experiments and results

5.1. Experimental testbed and implementation issues

The Delta parallel robot used for the real-time experiments is shown in Figure 4, it is
located at Robotics Systems Laboratory, EPFL, Switzerland. Three direct-drive mo-
tors integrated with the fixed-base allow the motion of the kinematic chains generating
three translational movements of the traveling-plate in x, y and z axes. Each motor can

Figure 3. Block diagram of the proposed time-varying feedback RISE control scheme applied to Delta robot
in joint space, Ks(.) and α2(.) represent the nonlinear feedback gains.
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Figure 4. View of the real Delta parallel robot used for real-time experiments.

deliver a maximum torque of 23 Nm. The control algorithms are implemented in C++
language level using Visual Studio software from Microsoft, running on a Windows XP
operating system. RTX extension is used to establish the real-time communication.
The internal timer (HAL timer) of RTX is configured to 100 µs in which the control
loop is set to 10 times this value for synchronization, leading to a sample time 1 ms,
and a sampling frequency of 1 KHz.

The reference trajectory is generated using semi-ellipse geometric motions produc-
ing a pick-and-place trajectory in Cartesian space. This trajectory is mainly used in
industry for food packaging applications. A 3D illustrative view is shown in Figure 5
for the pick-and-place cycle to be followed by the robot’s traveling-plate, while Figure
6 displays the equivalent desired Cartesian trajectories x, y and z versus time.
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Figure 5. 3D view of pick-and-place reference trajectory in Cartesian space.
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Figure 6. The desired evolution of the three degrees of freedom to be tracked by the robot’s traveling-plate.

5.2. Performance evaluation criteria

In order to quantify the relevance of the control algorithm, we need to define a certain
performance index. One of our main objectives is to enhance the precision and increase
the tracking accuracy of Delta robot through the proposed controller.

An accuracy evaluation tool frequently used to evaluate differences between a de-
sired trajectory and a measured one is the Root-Mean-Square Error (RMSE) criterion.
It can quantify approximately the error between the desired trajectory and the actual
one traversed by the robot.

Two performance indices are used in our case, the RMSEs in Cartesian and joint
spaces defined as follows:

RMSEx =

√√√√ 1

N

N∑
i=1

(
e2
x(i) + e2

y(i) + e2
z(i)
)

(43)

RMSEJ =

√√√√ 1

N

N∑
i=1

(
e2
q1(i) + e2

q2(i) + e2
q3(i)

)
(44)

where ex, ey, ez represent the Cartesian position tracking errors along x, y, and z axes
respectively. eq1 , eq2 , eq3 denote the joints tracking errors. N is the number of the col-
lected samples through the whole trajectory.

In order to estimate the energy consumption for each controller at high dynamic
operating conditions, the input-torques-based criterion is proposed as follows:

EΓ =

3∑
i=1

N∑
j=1

|Γi(j)| (45)

where EΓ is the total summation of the absolute value of the input torques delivered
by the three actuators.
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5.3. Tuning of the control gains

A popular method for tuning of the control gains in experiments, used for complex
robotic systems, is the Trial and Error method. It is characterized by trying manually
and continuously different sets of control gains in real-time framework until the desired
control performance is achieved. It is used mostly when the formulated dynamic model
does not exactly match the physical system, and thus the automatic numerical closed-
loop tuning methods may give unsuitable control gains for real-time experiments.

5.3.1. Tuning of the standard RISE control gains

The tuning process of the standard RISE control gains is performed by the following
simple procedure:

(1) Set α2 = 0 and β = 0,
(2) tune α1 and ks as if dealing with a PD controller, given that α1(ks + 1) is the

proportional gain and (ks + 1) is the derivative one till a satisfied tracking is
reached,

(3) start increasing α2 with modifying again α1 and ks either increasing or decreasing
till we reach as best performance index as possible,

(4) increase β until obtaining less chattering input signal and better performance
index.

Following the above procedure, the standard RISE control gains were tuned in real-
time experiments, and the obtained final values are summarized in Table 2.

5.3.2. Tuning of the proposed time-varying feedback RISE control gains

For the tuning process of the proposed time-varying feedback RISE controller, and
especially tuning the nonlinear feedback gains, a similar manner for the one proposed
in (Shang et al., 2009) to tune the NPD control gains is used in our case.

The main steps of this procedure are as follows:

(1) Initialization: ε1 = 1, ε2 = 1, α20 = 0 and β = 0,
(2) increase α1 and ks0 starting both from zero until obtaining acceptable tracking

performance.
(3) increase the value of α20 to get a better tracking performance, then make a

trade-off between α1, ks0 and α20,
(4) find (e2)max and (

∫
e2)max values and set their halves as values of δ1 and δ2

respectively,
(5) decrease the value of ε1 within the interval [0.5, 1] and increase the value of

ε2 within the interval [1, 1.5], retune again the values of ks0 and α20 making a
compromise among the four values,

(6) repeat steps (4) and (5) until obtaining the best possible RMSE,
(7) increase β until obtaining better performance index.

Based on the above tuning algorithm, the control parameters of the proposed time-
varying feedback RISE controller were tuned experimentally, and the obtained final
values are summarized in Table 2.
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Table 2. Summary of the control gains of both controllers tuned by

the proposed process.

Standard RISE Proposed time-varying feedback RISE

α1 = 360 α1 = 450 β = 2
ks = 0.35 ks0 = 0.35 α20 = 0.66
α2 = 0.66 ε1 = 0.65 ε2 = 1.45
β = 1.5 δ1 = 0.05 δ2 = 0.12

5.4. Obtained experimental results

two main scenarios have been experimented with both RISE and time-varying feedback
RISE controllers: (i) scenario 1: nominal case and (ii) scenario 2: robustness towards
speed and payload changes.

5.5. Scenario 1: nominal case

In this scenario, the traveling-plate does not carry additional payload and the Delta
robot is operating at acceleration of 2.5 G (with a speed of 1500 mm/s).

Following the reference trajectory shown in Figures 5 and 6, the Cartesian and
joint tracking errors for both controllers are registered and plotted in Figure 7. We
can notice that replacing the static feedback gains in the standard RISE controller with
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Figure 7. Scenario 1: Evolution of the Cartesian and joint tracking errors versus time.
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Figure 8. Scenario 1: Evolution of the control input torques versus time.

nonlinear feedback gains reduces the tracking errors in all axes. It can be seen that
the peak errors are decreased and the general tracking errors of the proposed control
are better than that of the standard RISE at different sections of the trajectory. One
can quietly observe the better dynamic performance of the proposed control strategy
compared to the original RISE control from the figured out tracking accuracy. The
RMSE evaluated in both Cartesian and joint spaces and reported in Table 3, shows
an improvement of 18 % in terms of tracking precision.

The generated control input torques of the three direct-drive motors for both con-
trollers are depicted in Figure 8. It is clear that both control algorithms generate an
input signal within the admissible limits of the motors. No significant improvement is
observed in terms of energy consumption in this scenario.

The evolution of the nonlinear feedback gains (Ks(.) + 1) and (ks0 + 1)α2(.) overall
the reference trajectory is depicted in Figures 9 and 10 respectively. The produced
variations of both feedback gains versus time give always strictly positive bounded
values (see Figures 9-a and 10-a). Figure 9-b shows the behavior of (Ks(.)+1) feedback
gain versus the variation of the combined error e2, which meets our expectations and
desired performance. Moreover, Figure 10-b exposes the attitude of (ks0 +1)α2(.) gain
versus the variation of (

∫
e2) showing the performance in prospect, knowing that (

∫
e2)

is always in the negative side.

Table 3. Scenario 1: Control perfromance evaluation for both con-

trollers.

RMSEx[mm] RMSEJ [deg]

Original RISE 0.993 0.2341
New time-varying feedback RISE 0.8129 0.192

Improvements 18.1 % 18 %
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Figure 9. Scenario 1: Evolution of the nonlinear feedback gain (Ks(.) + 1).

(a) (ks0 + 1)α2(.) versus time. (b) (ks0 + 1)α2(.) versus (
∫
e2).

Figure 10. Scenario 1: Evolution of the nonlinear feedback gain (ks0 + 1)α2(.).

This scenario shows clearly that the proposed time-varying feedback RISE control
overcomes the original RISE control in terms of precision and performance thanks to
the extended nonlinear feedback gains and their special behavior.

5.6. Scenario 2: robustness towards speed and payload changes

The main intended role of Delta parallel robot is performing rapid pick-and-place
cycles for industrial applications such as food packaging. Accordingly, a payload of
225 g was attached to the traveling-plate of the robot accompanied by increasing the
operating acceleration to 7.5 G (with a speed of 2000 mm/s). The aim of this scenario
is to test the robustness of the proposed time-varying feedback RISE controller towards
payload and speed changes.

The same desired trajectory illustrated in Figures 5 and 6 is followed by the robot
in this scenario. The resulted tracking errors in Cartesian and joint spaces for both
controllers are displayed in Figure 11. Comparing to the original RISE tracking errors,
a remarkable downsizing in the magnitudes of the tracking errors is obtained with the
proposed time-varying feedback RISE controller. A significant improvement of 30.5 %
in terms of Cartesian space accuracy is noticed when evaluating the RMSE perfor-
mance index and 28.3 % for the joint space accuracy (see Table 4). Less oscillations
are produced by the proposed time-varying feedback RISE control compared to the
standard RISE control, especially in actuators 1 and 2.

19



0 0.5 1
-10

-5

0

5

10
e

x
 [

m
m

]

0 0.5 1

-2

-1

0

1

2

e
q

1

 [
d

eg
]

0 0.5 1
-20

-10

0

10

20

e
y
 [

m
m

]

0 0.5 1
-4

-2

0

2

4

e
q

2

 [
d

eg
]

0 0.5 1

Time [sec]

-10

-5

0

5

e
z
 [

m
m

]

0 0.5 1

Time [sec]

-4

-2

0

2

4

e
q

3

 [
d

eg
]

Standard RISE Time-Varying Feedback RISE

Figure 11. Scenario 2: Evolution of the Cartesian and joint tracking errors versus time.

Thus, the proposed control law is producing less tracking errors at high dynamic
operating conditions (high-speed motions) with handled payload compared to the orig-
inal RISE. This ensures the robustness of the proposed controller towards operating
condition changes and parameters variation. Thanks to the nonlinear behavior of the
time-varying feedback gains, the increased effect of the nonlinear dynamics of parallel
manipulators at high-speed motions can be more compensated by the proposed control
law in comparison to the original RISE even though no model-compensation term is
considered.

Figure 12 displays the evolution of the control input torques along the reference tra-
jectory for both controllers. Both standard RISE and proposed time-varying feedback
RISE controllers guarantee an input signal within the safety margins of Delta robot
actuators. Nevertheless, it is worth to highlight the reduced input torques generated by
time-varying feedback RISE control compared to the standard RISE controller. In this
scenario of high dynamic operating conditions, an improvement of 19.1 % in terms of
energy consumption is noticed and reported in Table 4 using the input-torques-based
criterion proposed in (45).

The dynamic variations of the nonlinear feedback gains along the desired trajectory
are depicted in Figures 13 and 14. It is obvious from Figures 13-a and 14-a to observe
that the nonlinear gains remain positive and bounded even with the high changes of
the dynamic operating conditions. Figure 13-b displays the action of (Ks(.) + 1) gain
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Figure 12. Scenario 2: Evolution of the control input torques versus time.

versus the combined error e2 with a smaller constant zone compared to scenario 1. This
explains the better performance of the proposed time-varying feedback RISE controller
compared to the original RISE controller by the dynamic behavior of the feedback gains
with the change of the operating conditions. The same holds for (ks0 + 1)α2(.) gain in
Figure 14-b, where the nonlinear variation is increased compared to scenario 1, leading
to better control performance and more robustness.

To sum up, we can say that the proposed time-varying feedback RISE control is
more robust towards payload and speed variations than the original RISE algorithm
due to the dynamic behavior of the proposed nonlinear feedback gains.

5.7. Performance index versus operating acceleration

In this section, the operating acceleration of the robot is increased gradually starting
from 2.5 G reaching up 10 G. Both controllers have been tested at different operating
acceleration with and without additional payload of 225g.

Figures 15 and 16 are two bar graphs showing the variation of the Cartesian RMSE
in (mm) with respect to the operating acceleration (G) in case of no added payload
and payload of 225 g respectively.

The improvement at each operating acceleration is evaluated for the two tested
cases of payloads. It is shown in Figure 15 that in the case of no added payload,
the improvement of the performance decreases as the acceleration increases. However,
still the proposed time-varying feedback RISE controller performs better than the

Table 4. Scenario 2: Control perfromance evaluation for both controllers.

RMSEx[mm] RMSEJ [deg] EΓ[Nm]

Original RISE 5.3985 1.2577 1.7692 × 104

New time-varying feedback RISE 3.7542 0.9012 1.4318 × 104

Improvements 30.5 % 28.3 % 19.1 %
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Figure 13. Scenario 2: Evolution of the nonlinear feedback gain (Ks(.) + 1).

(a) (ks0 + 1)α2(.) versus time. (b) (ks0 + 1)α2(.) versus (
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e2).

Figure 14. Scenario 2: Evolution of the nonlinear feedback gain (ks0 + 1)α2(.).

original RISE at all operating accelerations. This proves the robustness of the proposed
control strategy towards the effect of nonlinearities which increases considerably at
high accelerations knowing that no dynamic compensator is used in the controller.

Furthermore, in the case of added payload of 225 g, a significant improvement is
observed at each operating acceleration as illustrated in Figure 16. In particular, at ac-
celeration of 10 G, RISE controller generates high tracking errors overriding the safety
margins of the robot. While the proposed time-varying feedback RISE controller gen-
erates acceptable tracking errors always within the defined safety margins. Thus, the
robustness towards uncertainties and parameters variation at high dynamic operating
conditions is verified by the proposed controller.

To this end, the experimental results have shown better performances of the pro-
posed time-varying feedback RISE control strategy compared to the original RISE
at different operating conditions. It has been verified that the proposed controller is
more robust towards high dynamic operating condition changes (i.e. high-speed mo-
tions) with and without parameters variation (i.e. payload).
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Figure 15. Clustered column chart of RMSEx versus operating acceleration with no payload.
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Figure 16. Clustered column chart of RMSEx versus operating acceleration with added payload of 225g.

6. Conclusion and future work

In this paper, a new class of RISE control strategy has been proposed for second-order
nonlinear MIMO systems. RISE control law ensures semi-global asymptotic tracking
under restricted assumptions on the uncertainties and nonlinearities of the system. We
proposed to replace some of the static feedback gains in the original RISE control law
by nonlinear ones depending on the system states. The idea is inspired by the fact that
nonlinear time-varying gains lead mainly to better global performance and compensate
for a wide range of nonlinearities and additive disturbances. A stability analysis has
been established for the proposed controller. It proves that all the system signals
are bounded and converge asymptotically to zero as time goes to infinity. Real-time
experiments have been conducted on the 3-DOF non-redundant parallel robot Delta.
The obtained experimental results show clearly better performance of the proposed
time-varying feedback RISE -based control strategy compared to the original RISE
controller in terms of tracking accuracy and robustness towards payload and speed
changes.
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This work can be further extended by considering the dynamics of the system in
adaptive algorithm with the proposed time-varying feedback RISE controller. A sup-
plementary adaptive dynamic term rich enough with knowledge about the system may
enhance the performance and robustness of such control law.
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