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ENERGY ESTIMATES AND MODEL ORDER REDUCTION FOR

STOCHASTIC BILINEAR SYSTEMS

MARTIN REDMANN∗

Abstract. In this paper, we investigate a large-scale stochastic system with bilinear drift
and linear diffusion term. Such high dimensional systems appear for example when discretizing
a stochastic partial differential equations in space. We study a particular model order reduction
technique called balanced truncation (BT) to reduce the order of spatially-discretized systems and
hence reduce computational complexity. We introduce suitable Gramians to the system and prove
energy estimates that can be used to identify states which contribute only very little to the system
dynamics. When BT is applied the reduced system is obtained by removing these states from the
original system. The main contribution of this paper is an L

2-error bound for BT for stochastic
bilinear systems. This result is new even for deterministic bilinear equations. In order to achieve
it, we develop a new technique which is not available in the literature so far.
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1. Introduction. Many phenomena in real life can be described by partial
differential equations (PDEs). Famous examples are the motion of viscous fluids,
the description of water or sound waves and the distribution of heat. For an accurate
mathematical modeling of these real world applications it is often required to take
random effects into account. Uncertainties in a PDE model can, for example, be
represented by an additional noise term. This leads to stochastic PDEs (SPDEs)
[10, 16, 29, 30].

It is necessary to discretize a time-dependent SPDE in space and time in order
to solve it numerically. Discretizing in space can be considered as a first step.
This can be done for example by spectral Galerkin [18, 20, 21] or finite element
methods [1, 23, 24]. This usually leads to a high dimensional SDE. Solving such
complex SDE systems causes large computational cost. In this context, model order
reduction (MOR) is used to save computational time by replacing large scale systems
by systems of low order in which the main information of the original system should
be captured.

1.1. Setting. We consider a large-scale stochastic control system with bilinear
drift that can be interpreted as a spatially-discretized SPDE. The corresponding
noise process is an Rv-valued Lévy process M = (M1, . . . ,Mv)

T with mean zero

and E ‖M(t)‖
2
2 = E

[

MT (t)M(t)
]

< ∞ for all t ≥ 0. We investigate the system

dx(t) = [Ax(t) +Bu(t) +

m
∑

k=1

Nkx(t)uk(t)]dt+

v
∑

i=1

Hix(t−)dMi(t), (1.1a)

y(t) = Cx(t), t ≥ 0. (1.1b)

We assume that A,Nk, Hi ∈ Rn×n (k ∈ {1, . . . ,m} and i ∈ {1, . . . , v}), B ∈
Rn×m and C ∈ Rp×n. Moreover, we define x(t−) := lims↑t x(s). The control

u = (u1, . . . , um)
T
is assumed to be deterministic and square integrable, i.e.,

‖u‖
2
L2

T
:=

∫ T

0

‖u(t)‖
2
2 dt < ∞
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2 M. REDMANN

for every T > 0. We denote the covariance matrix of M by K = (kij)i,j=1,...,v. It

characterizes the covariance function of M , see [29, Theorem 4.44], meaning that
E[M(t)MT (t)] = Kt.

We aim to replace the large scale system (1.1) by a system of the same structure,
but with a much smaller state dimension r ≪ n. This reduced order model (ROM)
is supposed be chosen, such that the corresponding output yr is close to the original
one, i.e., yr ≈ y in some metric.
In this paper, we consider balanced truncation (BT) for obtaining a ROM. It relies
on defining a reachability Gramian P and an observability Gramian Q. These
matrices are selected, such that P characterizes the states in (1.1a) and Q the
states in (1.1b) which barely contribute to the system dynamics (see Section 2 for
details). In order to be able to remove both the unimportant states in (1.1a) and
(1.1b) simultaneously, the first step of BT is a state space transformation

(A,B,C,Hi, Nk) 7→ (Ã, B̃, C̃, H̃i, Ñk) := (SAS−1, SB,CS−1, SHiS
−1, SNkS

−1),

where S = LQXΣ−
1
2 and S−1 = LPY Σ−

1
2 . The ingredients of the balancing

transformation are computed by the Cholesky factorizations P = LPL
T
P , Q =

LQL
T
Q, and the singular value decomposition XΣY T = LT

QLP . This transformation
does not change the output y of the system, but it guarantees that the new Gramians
are diagonal and equal, i.e., SPST = S−TQS−1 = Σ = diag(σ1, . . . , σn) with
σ1 ≥ . . . ≥ σn being the Hankel singular values (HSVs) of the system. The ROM is
then obtained by selecting the left upper r × r blocks of Ã, H̃i, Ñk, the first r rows
of B̃ and the first r columns of C̃, such that the smallest n− r HSVs are removed
from the system.

Stochastic linear case (Nk = 0). BT is a method that was developed for deter-
ministic linear systems (Hi = Nk = 0) [2, 27, 28]. Basically, two ways of extending
BT to stochastic linear systems have been considered so far. The so-called type I
approach relies on defining Gramians based on generalized fundamental solutions
of the system [5, 7]. The drawback of this generalization is that only an H2-error
bound is available [7] and an H∞-error bound cannot be achieved [6, 12]. To over-
come this issue the type II ansatz was introduced in [12], where an H∞-error bound
is proved. There, a different reachability Gramian was considered which is defined
as the solution to a matrix inequality. Energy estimates for linear stochastic sys-
tems for both the type I and the type II ansatz have recently been given in [32],
such that MOR based on both approaches can be justified. As an alternative to
BT, we want to refer to the singular perturbation approximation, where the work
in [14, 25] was extended to stochastic linear systems in [32, 33].

Deterministic bilinear case (Hi = 0). Although the bilinear term is a very
weak nonlinearity, deterministic bilinear system can be seen as bridge between lin-
ear and nonlinear systems. This is because many deterministic nonlinear systems
can be represented by bilinear systems using a so-called Carleman linearization.
Applications of these equations can be found in various fields [9, 26, 34]. Apart
from balancing related MOR techniques [5, 19], various alternative methods have
already been studied for the case of Hi = 0 [3, 4, 8, 15]. We, however, only discuss
the case of BT below. When considering BT for deterministic bilinear systems,
Gramians have to be chosen properly in order to find suitable characterizations for
the reachability and observability energy of the system. Concerning the choice of
the bilinear Gramians the control components uk that are multiplied with the state
x in (1.1a) are treated like white noise. Gramians according to the stochastic type
I approach were, e.g., considered in [5, 17]. In both references energy estimates can
be found, but they are only valid for states being in a possibly very small neigh-
borhood of zero. Moreover, no error bound exists for this approach. Choosing the
bilinear Gramian according to the stochastic type II approach has been considered
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in [31]. To be more precise, perturbed type II Gramians were used there. This has
the advantage of finding global energy estimates under the assumption of having
bounded controls. Furthermore, an H∞-error bound was proved in [31], again, as-
suming bounded controls. Depending on the underlying system, the bound on the
controls can be small which is the drawback of this method.

1.2. Outline of the paper and main result. The work in this paper on BT
for system (1.1) can be interpreted as a generalization of the deterministic bilinear
case, where the control u is perturbed by Lévy noise. We see this extension as a
first step to find a bridge between stochastic linear systems and stochastic nonlin-
ear systems to open the field of balancing related MOR to many more stochastic
equations and applications.

In this paper, the main contributions are energy estimates for the stochastic
bilinear system and an error bound for BT. It is important to notice that these
results are not just an extension of existing theory, they are new even for the
deterministic bilinear case (Hi = 0), since in contrast to [31] no bound on the
control is assumed. To be more precise, in Section 2, we propose Gramians P and
Q to system (1.1). We show that the reachability Gramian P provides information
about the degree of reachability of a state. Moreover, we establish a bound on the
observation energy using the observability Gramian Q. The following result on an
L2-error bound for BT is proved in Section 3. For the proof of this theorem, the
existing methods in the literature cannot be applied. Hence, we also provide a new
technique to achieve this bound.

Theorem 1.1. Let y be the output of the full model (1.1) with x(0) = 0 and
yr be the output of the ROM by BT with zero initial state. Then, for all T > 0, it
holds that

(

E ‖y − yr‖
2
L2

T

)
1
2

≤ 2(σr+1 + σr+2 + . . .+ σn) ‖u‖L2
T
exp

(

0.5 ‖u‖
2
L2

T

)

,

where σr+1, σr+2, . . . , σn are the smallest n− r HSVs of system (1.1).
Theorem 1.1 implies that BT works well for stochastic bilinear systems if the trun-
cated HSVs are small and the control energy is not too large.

2. Energy estimates. BT relies on the idea to create a system (1.1), in which
the dominant reachable and observable states are the same. Afterwards, the unim-
portant states are removed to obtain an accurate approximation to the original
model. In order to find the states that are hardly reachable and observable, a
reachability Gramian P and an observability Gramian Q are introduced in this
section. We will see that the definitions of the Gramians are meaningful, since
they lead to estimates, which allow us to find the states that barely contribute to
the system dynamics. This justifies to balance the system based on the proposed
Gramians.

2.1. Reachability Gramian. We introduce a reachability Gramian P as a
positive definite solution to

ATP−1 + P−1A+

m
∑

k=1

NT
k P−1Nk +

v
∑

i,j=1

HT
i P

−1Hjkij ≤ −P−1BBTP−1. (2.1)

An inequality is considered in (2.1), since the existence of a positive definite solution
is not ensured when having an equality. The existence of a solution to (2.1) goes
back to [12, 32] and is given if

λ



A⊗ I + I ⊗A+

m
∑

k=1

Nk ⊗Nk +

v
∑

i,j=1

Hi ⊗Hjkij



 ⊂ C−, (2.2)
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which we assume to hold througout the remainder of the paper. Here, λ (·) denotes
the spectrum of a matrix. Condition (2.2) is called mean square asymptotic stability
[11, 22, 32]. It means that if the control components uk in the bilinear term of (1.1a)
would truely be white noise, then the second moment of the solution would tend to
zero in the uncontrolled setting (B = 0) if t → ∞.

Let x(t, x0, u) denote the solution to (1.1a) for t ≥ 0, an initial state x0 ∈ Rn and
a control u ∈ L2

T . We choose (pk)k=1,...,n to be an orthonormal basis of Rn consisting
of eigenvectors of P . We denote the corresponding eigenvalues by (λk)k=1,...,n. For
the Fourier coefficients of x(t, 0, u), we obtain

〈x(t, 0, u), pk〉
2
2 ≤ λk

n
∑

i=1

λ−1
i 〈x(t, 0, u), pi〉

2
2 = λk

∥

∥

∥

∥

∥

n
∑

i=1

λ
− 1

2

i 〈x(t, 0, u), pi〉2 pi

∥

∥

∥

∥

∥

2

2

= λk

∥

∥

∥P
− 1

2x(t, 0, u)
∥

∥

∥

2

2
= λk xT (t, 0, u)P−1x(t, 0, u). (2.3)

We use a shorter notation for the state below, i.e., we write x(t) instead of x(t, 0, u)
if required. By Lemma A.1, we have

E
[

xT (t)P−1x(t)
]

=2

∫ t

0

E

[

xT (s)P−1

(

Ax(s) +Bu(s) +

m
∑

k=1

Nkx(s)uk(s)

)]

ds

(2.4)

+

∫ t

0

E



xT (s)

v
∑

i,j=1

HT
i P

−1Hjkijx(s)



 ds.

The bilinear term in the above equation can be bounded as follows:

m
∑

k=1

2

∫ t

0

xT (s)P−1Nkx(s)uk(s)ds =

m
∑

k=1

2

∫ t

0

〈

P− 1
2x(s)uk(s), P

− 1
2Nkx(s)

〉

2
ds

≤

m
∑

k=1

(∫ t

0

∥

∥

∥P− 1
2x(s)uk(s)

∥

∥

∥

2

2
ds+

∫ t

0

∥

∥

∥P− 1
2Nkx(s)

∥

∥

∥

2

2
ds

)

=

∫ t

0

xT (s)P−1x(s) ‖u(s)‖
2
2 ds+

∫ t

0

xT (s)

m
∑

k=1

NT
k P−1Nkx(s)ds. (2.5)

We insert this inequality into (2.4), such that

E
[

xT (t)P−1x(t)
]

(2.6)

≤ E

∫ t

0

xT (s)(ATP−1 + P−1A+

m
∑

k=1

NT
k P−1Nk +

v
∑

i,j=1

HT
i P

−1Hjkij)x(s)ds

+ E

∫ t

0

2xT (s)P−1Bu(s)ds+

∫ t

0

E
[

xT (s)P−1x(s)
]

‖u(s)‖
2
2 ds.
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We then plug in (2.1), which yields

E
[

xT (t)P−1x(t)
]

≤− E

∫ t

0

xT (s)P−1BBTP−1x(s)ds

+ E

∫ t

0

2xT (s)P−1Bu(s)ds+

∫ t

0

E
[

xT (s)P−1x(s)
]

‖u(s)‖
2
2 ds

=E

∫ t

0

‖u(s)‖
2
2 −

∥

∥BTP−1x(s) − u(s)
∥

∥

2

2
ds

+

∫ t

0

E
[

xT (s)P−1x(s)
]

‖u(s)‖22 ds

≤

∫ t

0

‖u(s)‖22 ds+

∫ t

0

E
[

xT (s)P−1x(s)
]

‖u(s)‖22 ds

The Gronwall inequality, see Lemma A.3, provides

E
[

xT (t)P−1x(t)
]

≤

∫ t

0

‖u(s)‖
2
2 ds exp

(∫ t

0

‖u(s)‖
2
2 ds

)

.

Consequently, by (2.3), we have

sup
t∈[0,T ]

√

E〈x(t, 0, u), pk〉22 ≤ λ0.5
k ‖u‖L2

T
exp

(

0.5 ‖u‖
2
L2

T

)

. (2.7)

Given a state it is not possible to gain information about the corresponding energy
from (2.7). However, given a bound on the energy which is not too large, let us say
‖u‖L2

T
≤ 1, we can conclude how much a state component contributes to the systems

dynamics. If λk is small, (2.7) implies that the Fourier coefficient 〈x(·, 0, u), pk〉2 is
close to zero on [0, T ] for normalized controls u. This means that the state variable
takes only very small values in the direction of pk such that hardly reachable states
have a large component in the eigenspaces of P belonging to the small eigenvalues.
Inequality (2.7) has already been pointed out in [31, Remark 1] for the case Hi = 0.

2.2. Observability Gramian. We define the observability Gramian to be the
solution to

ATQ +QA+

m
∑

k=1

NT
k QNk +

v
∑

i,j=1

HT
i QHjkij = −CTC. (2.8)

Condition (2.2) guarantees the existence of a positive semidefinite solution [32], but
we will furthermore assume that Q > 0 for the rest of the paper. Again, we use a
short notation by setting xx0

(t) := x(t, x0, u). In order to find a suitable estimate
for E

[

xT
x0
(t)Qxx0

(t)
]

, it is only required to replace P−1 by Q in (2.6) and take into
account the additional term xT

0 Qx0 that is due to the non-zero initial condition.
Hence,

E
[

xT
x0
(t)Qxx0

(t)
]

≤ E

∫ t

0

xT
x0
(s)(ATQ+QA+

m
∑

k=1

NT
k QNk +

v
∑

i,j=1

HT
i QHjkij)xx0

(s)ds

+ E

∫ t

0

2xT
x0
(s)QBu(s)ds+

∫ t

0

E
[

xT
x0
(s)Qxx0

(s)
]

‖u(s)‖
2
2 ds+ xT

0 Qx0.
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Applying (2.8) gives us

E
[

xT
x0
(t)Qxx0

(t)
]

≤− E

∫ t

0

yT (s)y(s)ds+ E

∫ t

0

2xT
x0
(s)QBu(s)ds+ xT

0 Qx0

+

∫ t

0

E
[

xT
x0
(s)Qxx0

(s)
]

‖u(s)‖
2
2 ds,

where y(t) = y(t, x0, u). Due to Lemma A.3, we find

E
[

xT
x0
(t)Qxx0

(t)
]

≤ α(t) +

∫ t

0

α(s) ‖u(s)‖
2
2 exp

(∫ t

s

‖u(w)‖
2
2 dw

)

ds, (2.9)

where we define α(t) := −E
∫ t

0 ‖y(s)‖
2
2 ds + E

∫ t

0 2x
T
x0
(s)QBu(s)ds + xT

0 Qx0. We
analyze this inequality further by looking at the terms depending on x0:

xT
0 Qx0

∫ t

0

‖u(s)‖
2
2 exp

(∫ t

s

‖u(w)‖
2
2 dw

)

ds = xT
0 Qx0

[

− exp

(∫ t

s

‖u(w)‖
2
2 dw

)]t

s=0

= xT
0 Qx0

(

exp

(∫ t

0

‖u(s)‖22 ds

)

− 1

)

.

Using this computation and E
[

xT
x0
(t)Qxx0

(t)
]

≥ 0, we get from (2.9) that

E

∫ t

0

‖y(s)‖
2
2 ds ≤xT

0 Qx0 exp

(∫ t

0

‖u(s)‖
2
2 ds

)

(2.10)

+ fB(t) +

∫ t

0

fB(s) ‖u(s)‖
2
2 exp

(∫ t

s

‖u(w)‖22 dw

)

ds,

where the term depending on the input matrix B is fB(t) := E
∫ t

0
2xT

x0
(s)QBu(s)ds.

In an observation problem an unknown initial condition x0 is aimed to be recon-
structed from the observations y(t, x0, u), t ∈ [0, T ]. Since the control part Bu does
not depend on the unknown initial state, it can be assumed to be known and hence
be neglected in the considerations by setting B = 0. This assumption is also taken
in [5, 17], where the observation energy of deterministic bilinear systems is studied.
Now, B = 0 implies fB ≡ 0. Applying this to (2.10) leads to the following bound
on the observation energy on [0, T ]:

E

∫ T

0

‖y(s, x0, u)‖
2
2 ds

∣

∣

∣

∣

∣

B=0

≤ xT
0 Qx0 exp

(

∫ T

0

‖u(s)‖
2
2 ds

)

. (2.11)

If we the energy of the control is sufficiently small, e.g., ‖u‖L2
T
≤ 1, we can identify

states from (2.11) producing only little observation energy. We see that the energy
that is caused by the observations of x0 is small if the initial state is close to the
kernel of Q. These initial states are contained in the eigenspaces of Q corresponding
to the small eigenvalues.

3. L2-error bound for BT. Let us assume that system (1.1) has a zero initial
condition (x0 = 0) and is already balanced. Thus, (2.1) and (2.8) become

ATΣ−1 + Σ−1A+

m
∑

k=1

NT
k Σ−1Nk +

v
∑

i,j=1

HT
i Σ

−1Hjkij ≤ −Σ−1BBTΣ−1, (3.1)

ATΣ + ΣA+

m
∑

k=1

NT
k ΣNk +

v
∑

i,j=1

HT
i ΣHjkij ≤ −CTC, (3.2)
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i.e., P = Q = Σ = diag(σ1, . . . , σn) > 0. We partition the balanced coefficients of
(1.1) as follows:

A =
[

A11 A12

A21 A22

]

, B =
[

B1

B2

]

, Nk =
[

Nk,11 Nk,12

Nk,21 Nk,22

]

, Hi =
[

Hi,11 Hi,12

Hi,21 Hi,22

]

, C = [C1 C2 ] ,

where A11, Nk,11, Hi,11 ∈ Rr×r (k ∈ {1, . . . ,m} and i ∈ {1, . . . , v}), B1 ∈ Rr×m and
C1 ∈ Rp×r etc. Furthermore, we partition the state variable and the Gramian

x = [ x1
x2

] and Σ =
[

Σ1

Σ2

]

,

where x1 takes values in Rr (x2 accordingly), Σ1 is the diagonal matrix of large
HSVs and Σ2 contains the small ones. The reduced system by BT is

dxr = [A11xr +B1u+

m
∑

k=1

Nk,11xruk]dt+

v
∑

i=1

Hi,11xrdMi, (3.3a)

yr(t) = C1xr(t), t ≥ 0, (3.3b)

where xr(0) = 0 and the time dependence in (3.3a) is omitted to shorten the
notation. In order to find a bound for the approximation through BT, we define

x− =
[

x1−xr
x2

]

and x+ =
[

x1+xr
x2

]

,

and write down the corresponding equations for these variables. The system for x−

is given by

dx− = [Ax− +

m
∑

k=1

Nkx−uk]dt+
[

0
c0

]

dt+

v
∑

i=1

[Hix− +
[

0
ci

]

]dMi, (3.4a)

y−(t) = Cx−(t) = Cx(t)− C1xr(t) = y(t)− yr(t), t ≥ 0, (3.4b)

where c0(t) := A21xr(t)+B2u(t)+
∑m

k=1 Nk,21xr(t)uk(t) and ci(t) := Hi,21xr(t) for
i = 1, . . . , v. We derive (3.4) by comparing the partitioned system (1.1) with the
reduced system (3.3). The equation for x+ looks similarly, the difference lies only
in the signs for the compensation terms c0, . . . , cv and an additional control term:

dx+ = [Ax+ + 2Bu+
m
∑

k=1

Nkx+uk]dt−
[

0
c0

]

dt+
v
∑

i=1

[Hix+ −
[

0
ci

]

]dMi. (3.5)

We will see that the proof of the error bound can be reduced to the task of finding
suitable estimates for E[xT

−(t)Σx−(t)] and E[xT
+(t)Σ

−1x+(t)]. The next theorem is
the main result of this paper.

Theorem 3.1. Let y be the output of the full model (1.1) with x(0) = 0 and yr
be the output of the ROM (3.3) with xr(0) = 0. Then, for all T > 0, it holds that

(

E ‖y − yr‖
2
L2

T

)
1
2

≤ 2(σ̃1 + σ̃2 + . . .+ σ̃κ) ‖u‖L2
T
exp

(

0.5 ‖u‖2L2
T

)

,

where σ̃1, σ̃2, . . . , σ̃κ are the distinct diagonal entries of Σ2 = diag(σr+1, . . . , σn) =
diag(σ̃1I, σ̃2I, . . . , σ̃κI).

Proof. We compute an upper bound for E[xT
−(t)Σx−(t)] making use of Lemma

A.1. Taking (3.4a) into account then yields

E
[

xT
−(t)Σx−(t)

]

=2

∫ t

0

E

[

xT
−Σ

(

Ax− +

m
∑

k=1

(Nkx−uk) +
[

0
c0

]

)]

ds (3.6)

+

∫ t

0

v
∑

i,j=1

E

[

(

Hix− +
[

0
ci

])T
Σ
(

Hjx− +
[

0
cj

])

]

kijds,
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where the time dependence of all functions is omitted for a shorter notation. Ap-
plying an estimate as in (2.5) provides

m
∑

k=1

2xT
−(s)ΣNkx−(s)uk(s) ≤ xT

−(s)Σx−(s) ‖u(s)‖
2
2 +

m
∑

k=1

xT
−(s)N

T
k ΣNkx−(s).

Hence, (3.6) becomes

E
[

xT
−(t)Σx−(t)

]

≤E

∫ t

0

xT
−



ATΣ+ ΣA+
m
∑

k=1

NT
k ΣNk +

v
∑

i,j=1

HT
i ΣHjkij



 x−ds

+ E

∫ t

0

2xT
−Σ
[

0
c0

]

+
v
∑

i,j=1

(

2Hix− +
[

0
ci

])T
Σ
[

0
cj

]

kijds (3.7)

+

∫ t

0

E
[

xT
−Σx−

]

‖u‖22 ds.

Using the partition for x− and Σ, we see that xT
−Σ
[

0
c0

]

= xT
2 Σ2c0. With the

partition of Hi, we additionally obtain
(

2Hix− +
[

0
ci

])T
Σ
[

0
cj

]

=
(

2Hix− +
[

0
ci

])T [ 0
Σ2cj

]

= (2 [Hi,21 Hi,22 ] (x− [ xr

0 ]) + ci)
T
Σ2cj = (2 [Hi,21 Hi,22 ]x− ci)

T
Σ2cj .

Inserting (3.2) and (3.4b) into inequality (3.7) and taking the above rearrangements
into account leads to

E
[

xT
−(t)Σx−(t)

]

≤− E ‖y − yr‖
2
L2

t
+

∫ t

0

E
[

xT
−Σx−

]

‖u‖22 ds

+ E

∫ t

0

2xT
2 Σ2c0 +

v
∑

i,j=1

(2 [Hi,21 Hi,22 ]x− ci)
T
Σ2cjkijds.

We define α−(t) := E
∫ t

0
2xT

2 Σ2c0+
∑v

i,j=1 (2 [Hi,21 Hi,22 ]x− ci)
T Σ2cjkijds. Then,

Lemma A.3 implies

E
[

xT
−(t)Σx−(t)

]

≤α−(t)− E ‖y − yr‖
2
L2

t

+

∫ t

0

(α−(s)− E ‖y − yr‖
2
L2

s
) ‖u(s)‖

2
2 exp

(∫ t

s

‖u(w)‖
2
2 dw

)

ds.

Thus, we find

E ‖y − yr‖
2
L2

t
≤ α−(t) +

∫ t

0

α−(s) ‖u(s)‖
2
2 exp

(∫ t

s

‖u(w)‖
2
2 dw

)

ds.

We assume for the moment that Σ2 = σI and set α+(t) := E
∫ t

0
2xT

2 Σ
−1
2 c0 +

∑v
i,j=1 (2 [Hi,21 Hi,22 ]x− ci)

T
Σ−1

2 cjkijds. Hence,

E ‖y − yr‖
2
L2

t
≤ σ2

[

α+(t) +

∫ t

0

α+(s) ‖u(s)‖
2
2 exp

(
∫ t

s

‖u(w)‖
2
2 dw

)

ds

]

. (3.8)

Let us turn our attention to the expression E[xT
+(t)Σ

−1x+(t)] for the further analysis
of (3.8). Due to (3.5) and Lemma A.1 it holds that

E
[

xT
+(t)Σ

−1x+(t)
]

=2

∫ t

0

E

[

xT
+Σ

−1

(

Ax+ + 2Bu+

m
∑

k=1

(Nkx+uk)−
[

0
c0

]

)]

ds

(3.9)

+

∫ t

0

v
∑

i,j=1

E

[

(

Hix+ −
[

0
ci

])T
Σ−1

(

Hjx+ −
[

0
cj

])

]

kijds.
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As above, for the case of x−, we use the estimate

m
∑

k=1

2xT
+(s)Σ

−1Nkx+(s)uk(s) ≤ xT
+(s)Σ

−1x+(s) ‖u(s)‖
2
2 +

m
∑

k=1

xT
+(s)N

T
k Σ−1Nkx+(s),

which leads to

E
[

xT
+(t)Σ

−1x+(t)
]

≤ E

∫ t

0

xT
+



ATΣ−1 +Σ−1A+

m
∑

k=1

NT
k Σ−1Nk +

v
∑

i,j=1

HT
i Σ

−1Hjkij



x+ds

− E

∫ t

0

2xT
+Σ

−1
[

0
c0

]

+

v
∑

i,j=1

(

2Hix+ −
[

0
ci

])T
Σ−1

[

0
cj

]

kijds (3.10)

+

∫ t

0

E
[

xT
+Σ

−1x+

]

‖u‖
2
2 ds+ 4E

∫ t

0

xT
+Σ

−1Buds.

From inequality (3.1) and the Schur complement condition on definiteness it follows
that

[

ATΣ−1+ Σ−1A+
∑m

k=1 N
T
k Σ−1Nk +

∑v

i,j=1 H
T
i Σ

−1Hjkij Σ−1B

BTΣ−1 −I

]

≤ 0.

(3.11)

We multiply (3.11) with [ x+

2u ]
T

from the left and with [ x+

2u ] from the right. This
leads to

4 ‖u‖
2
2 ≥

xT
+



ATΣ−1 +Σ−1A+
m
∑

k=1

NT
k Σ−1Nk +

v
∑

i,j=1

HT
i Σ

−1Hjkij



x+ + 4xT
+Σ

−1Bu.

Applying this result to inequality (3.10) gives

E
[

xT
+(t)Σ

−1x+(t)
]

≤4 ‖u‖
2
L2

t
+

∫ t

0

E
[

xT
+Σ

−1x+

]

‖u‖
2
2 ds (3.12)

− E

∫ t

0

2xT
+Σ

−1
[

0
c0

]

+

v
∑

i,j=1

(

2Hix+ −
[

0
ci

])T
Σ−1

[

0
cj

]

kijds.

We further analyze the terms in (3.12). We find that xT
+Σ

−1
[

0
c0

]

= xT
2 Σ

−1
2 c0 using

the partitions of x+ and Σ. With the partition of Hi, we moreover have

(

2Hix+ −
[

0
ci

])T
Σ−1

[

0
cj

]

=
(

2Hix+ −
[

0
ci

])T
[

0
Σ−1

2
cj

]

= (2 [Hi,21 Hi,22 ] (x+ [ xr

0 ])− ci)
T
Σ−1

2 cj = (2 [Hi,21 Hi,22 ]x+ ci)
T
Σ2cj .

We plug this into (3.12), such that

E
[

xT
+(t)Σ

−1x+(t)
]

≤4 ‖u‖
2
L2

t
+

∫ t

0

E
[

xT
+Σ

−1x+

]

‖u‖
2
2 ds (3.13)

− E

∫ t

0

2xT
2 Σ

−1
2 c0 +

v
∑

i,j=1

(2 [Hi,21 Hi,22 ]x+ ci)
T
Σ−1

2 cjkijds.
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Adding 2E
∫ t

0

∑v

i,j=1 c
T
i Σ

−1
2 cjkijds to the right side of (3.13), which is a nonnegative

term due to Lemma A.2, we have

E
[

xT
+(t)Σ

−1x+(t)
]

≤ 4 ‖u‖
2
L2

t
− α+(t) +

∫ t

0

E
[

xT
+(s)Σ

−1x+(s)
]

‖u(s)‖
2
2 ds.

Lemma A.3 yields

E
[

xT
+(t)Σ

−1x+(t)
]

≤4 ‖u‖
2
L2

t
− α+(t) (3.14)

+

∫ t

0

(4 ‖u‖
2
L2

s
− α+(s)) ‖u(s)‖

2
2 exp

(∫ t

s

‖u(w)‖
2
2 dw

)

ds.

Moreover, we have

∫ t

0

‖u‖
2
L2

s
‖u(s)‖

2
2 exp

(∫ t

s

‖u(w)‖
2
2 dw

)

ds ≤ ‖u‖
2
L2

t

[

− exp

(∫ t

s

‖u(w)‖
2
2 dw

)]t

s=0

= ‖u‖
2
L2

t

(

exp

(
∫ t

0

‖u(s)‖
2
2 ds

)

− 1

)

. (3.15)

Combining (3.14) with (3.15), we get

α+(t) +

∫ t

0

α+(s) ‖u(s)‖
2
2 exp

(∫ t

s

‖u(w)‖
2
2 dw

)

ds ≤ 4 ‖u‖
2
L2

t
exp

(∫ t

0

‖u(s)‖
2
2 ds

)

.

Comparing this result with (3.8) implies

(

E ‖y − yr‖
2
L2

t

)
1
2

≤ 2σ ‖u‖L2
t
exp

(

0.5 ‖u‖
2
L2

t

)

. (3.16)

For the proof of a general Σ2, we remove the HSVs step by step. We use the triangle
inequality to bound the error between the outputs y and yr:

(

E ‖y − yr‖
2
L2

T

)
1
2

≤
(

E ‖y − yrκ‖
2
L2

T

)
1
2

+
(

E
∥

∥yrκ − yrκ−1

∥

∥

2

L2
T

)
1
2

+ . . .+
(

E ‖yr2 − yr‖
2
L2

T

)
1
2

,

where the dimensions ri of the corresponding states are defined by ri+1 = ri+m(σ̃i)
for i = 1, 2 . . . , κ− 1. The number m(σ̃i) denotes the multiplicity of σ̃i and r1 = r.
In the first step only the smallest HSV σ̃κ is removed from the system. By inequality
(3.16), we have

(

E ‖y − yrκ‖
2
L2

T

)
1
2

≤ 2σ̃κ ‖u‖L2
T
exp

(

0.5 ‖u‖2L2
T

)

.

The same kind of bound can be established when comparing the reduced order outputs
yrκ and yrκ−1

. Again, only one HSV, namely σ̃rκ−1
, is removed. Moreover, the

matrix inequalities in the ROM have the same structure as (3.1) and (3.2). To be
more precise, evaluating the left upper blocks of (3.1) and (3.2), we obtain

AT
11Σ

−1
1 +Σ−1

1 A11 +

m
∑

k=1

NT
k,11Σ

−1
1 Nk,11 +

v
∑

i,j=1

HT
i,11Σ

−1
1 Hj,11kij ≤ −Σ−1

1 B1B
T
1 Σ

−1
1 ,

AT
11Σ1 +Σ1A11 +

m
∑

k=1

NT
k,11Σ1Nk,11 +

v
∑

i,j=1

HT
i,11Σ1Hj,11kij ≤ −CT

1 C1
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applying Lemma A.2. Thus, by repeatedly applying the above arguments, we have

(

E
∥

∥yrj − yrj−1

∥

∥

2

L2
T

)
1
2

≤ 2σ̃rj−1
‖u‖L2

T
exp

(

0.5 ‖u‖
2
L2

T

)

for j = 2, . . . , κ. This concludes the proof.
The result in Theorem 3.1 is the first one of that type for deterministic/stochastic
systems. In contrast to [31], we assume no bound on the control u which possibly
can be small. We pay a price for dealing with general L2

T controls, since we obtain
an exponential term in Theorem 3.1 which is due to the bilineararity. However, this
result is still very meaningful, because it tells us that the ROM (3.3) yields a very
good approximation if the truncated HSVs (diagonal entries of Σ2) are small and,
e.g., a normalized control is used. At the same time, the exponential term in the
error bound can be an indicator that BT performs terribly bad if the control energy
is large.

4. Conclusions. In this paper, we investigated a large-scale stochastic bilinear
system. In order to reduce the state space dimension, a model order reduction
technique called balanced truncation was extended to this setting. To do so, we
proposed a reachability and an observability Gramian. We proved energy estimates
with the help of these Gramian that allow us to find the unimportant states within
the system. The reduced system was then obtained by removing these states from
the stochastic bilinear system. Finally, we provided a new error bound that can be
used to point out the cases in which the reduced order model by balanced truncation
delivers a good approximation to the original model.

Appendix A. Supporting Lemmas.

In this appendix, we state three important results and the corresponding refer-
ences that we frequently use throughout this paper.

Lemma A.1. Let a, b1, . . . , bv be Rd-valued processes, where a is adapted and
almost surely Lebesgue integrable and the functions bi are integrable with respect to
the mean zero square integrable Lévy process M = (M1, . . . ,Mv)

T with covariance
matrix K = (kij)i,j=1,...,v. If the process x is given by

dx(t) = a(t)dt+
v
∑

i=1

bi(t)dMi,

then, we have

d

dt
E
[

xT (t)x(t)
]

= 2E
[

xT (t)a(t)
]

+
v
∑

i,j=1

E
[

bTi (t)bj(t)
]

kij .

Proof. We refer to [32, Lemma 5.2] for a proof of this lemma.
Lemma A.2. Let A1, . . . , Av be d1 × d2 matrices and K = (kij)i,j=1,...,v be a

positive semidefinite matrix, then

K̃ :=

v
∑

i,j=1

AT
i Ajkij

is also positive semidefinite.
Proof. The proof can be found in [32, Proposition 5.3].
Lemma A.3 (Gronwall lemma). Let T > 0, z, α : [0, T ] → R be measurable

bounded functions and β : [0, T ] → R be a nonnegative integrable function. If

z(t) ≤ α(t) +

∫ t

0

β(s)z(s)ds,



12 M. REDMANN

then it holds that

z(t) ≤ α(t) +

∫ t

0

α(s)β(s) exp

(∫ t

s

β(w)dw

)

ds (A.1)

for all t ∈ [0, T ]. Moreover, a non-decreasing function α implies that (A.1) becomes

z(t) ≤ α(t) exp

(∫ t

0

β(s)ds

)

for all t ∈ [0, T ].
Proof. The result is shown as in [13, Proposition 2.1].
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[19] C. Hartmann, B. Schäfer-Bung, and A. Thöns-Zueva. Balanced averaging of bilinear systems
with applications to stochastic control. SIAM J. Control Optim., 51(3):2356–2378, 2013.

[20] E. Hausenblas. Approximation for Semilinear Stochastic Evolution Equations. Potential

Anal., 18(2):141–186, 2003.
[21] A. Jentzen and P. E. Kloeden. Overcoming the order barrier in the numerical approximation

of stochastic partial differential equations with additive space-time noise. Proc. R. Soc.

A 2009, 465:649–667, 2009.
[22] R. Khasminskii. Stochastic stability of differential equations. Monographs and Textbooks

on Mechanics of Solids and Fluids. Mechanics: Analysis, 7. Alphen aan den Rijn, The
Netherlands; Rockville, Maryland, USA: Sijthoff & Noordhoff., 1980.



ENERGY ESTIMATES AND MOR FOR STOCHASTIC BILINEAR SYSTEMS 13
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evolution equation approach. Encyclopedia of Mathematics and Its Applications 113.
Cambridge: Cambridge University Press, 2007.
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