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This paper presents a new approach for the efficient and accurate solution of Singular Optimal Control
Problems (SOCP). A novel feature of the proposed method is that it does not require a priori knowledge of
the structure of the solution. As the first step of this method, the SOCP is converted into a binary optimal
control problem. Then, by utilizing the pseudospectral method, the resulting problem is transcribed to
a mixed-binary non-linear programming problem. This mixed-binary non-linear programming problem,
which can be solved by well-known solvers, allows us to detect the structure of the original optimal control
and to compute the approximating solution of it (getting both the optimal state and control). The main
advantages of the present method are that: (i) without a priori information, the structure of optimal
control is detected; (ii) it produces good results even using a small number of collocation points; and (iii)
the switching times can be captured accurately. These advantages are illustrated through a numerical
implementation of the method on four examples.
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1. Introduction

A classical and challenging subject in the optimal control field is the Singular Optimal Control
Problem(SOCP). In these problems, the Pontryagin’s maximum principle fails to provide infor-
mation on the optimal control over at least one interval. SOCPs arise in many areas, ranging
from aerospace engineering (Goddard, 1920; Powers & McDanell, 1971) to robotic (Y. Chen &
Desrochers, 1993), industrial chemistry (Luus & Okongwu, 1999; Oberle & Sothmann, 1999), bi-
ological science (Ledzewicz, Maurer, & Schättler, 2011; Ledzewicz & Schättler, 2008) and other
applications (Do Rosário De Pinho, Foroozandeh, & Matos, 2016; L’Afflitto & Haddad, 2016).

The main difficulty in solving SOCPs lies in determining the switching structure of optimal
control function, i.e. the sequence of singular and bang-bang sub-arcs and location of switching
points (Maurer, 1976). Despite the considerable advances in the development of numerical meth-
ods to solve optimal control problems, the solution of SOCPs has remained a challenge due to
the switching structure, which is not known a priori. This technical difficulty has been a serious
setback for the computation of the solution of SOCPs for both indirect and direct methods. When
direct methods are used, the accuracy of the solution of SOCPs, especially in singular arcs, is not
satisfactory and the structure of optimal control may not be detected adequately. On the other
hand, indirect methods, such as multiple shooting, require a priori knowledge of the optimal control
structure and furthermore a good initial guess must be provided not only for the states but also
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for the adjoint variables. Accordingly, the development of new methods for solving SOCPs in an
efficient way is highly desirable.

Not surprisingly, the simulation and numerical approximation of SOCPs have received consider-
able attention. In this respect, we refer the reader to gradient techniques (Pagurek & Woodside,
1968), modified gradient techniques (Soliman & Ray, 1972), quasi Newton algorithm (Edge & Pow-
ers, 1976), quasi-linearization technique (Aly & Chan, 1973), indirect multiple shooting method
(Aronna, Bonnans, & Martinon, 2013; Maurer, 1976), direct shooting method (Vossen, 2010), iter-
ative dynamic programming method (Luus, 1992), line-up competition algorithm (Sun, 2010) and
modified Pseudospectral method (Foroozandeh, Shamsi, Azhmyakov, & Shafiee, 2017). In most of
the mentioned papers, the control structure is assumed a priori. However, several authors have
proposed methods to detect the structure of optimal control. Among those, we refer to epsilon
smoothing methods (Bell & Jacobson, 1975), indirect shooting with epsilon smoothing (Bulirsch,
Montrone, & Pesch, 1991) and other relevant methods (Fraser-Andrews, 1989; Szymkat & Ko-
rytowski, 2003; Tsygankov, 1999). As another family of methods of interest, we can refer to the
two-phase methods which are developed to reduce the drawbacks of the aforementioned methods
(Bonnans, Martinon, & Trélat, 2008; Foroozandeh, Shamsi, & Do Rosário De Pinho, 2017; Oberle
& Sothmann, 1999; Siburian & Rehbock, 2004).

The pseudospectral methods were initially used in fluid dynamics (Canuto, Hussaini, Quarteroni,
& Zang, 1991). Since 1990s, the application of the pseudospectral methods for solving optimal
control problems has been popular due to their computational efficiency (Li, 2017; Limebeer,
Perantoni, & Rao, 2014; Ross & Karpenko, 2012; Shamsi, 2011). For recent advances in the pseu-
dospectral methods, see, for example, Gong, Ross, and Fahroo (2016); Tang, Liu, and Hu (2016).
Pseudospectral methods approximate the state and control variables using interpolating polyno-
mials with specific collocation points such as Legendre-Gauss-Lobatto(LGL), Legendre-Gauss(LG)
(Mehrpouya, Shamsi, & Azhmyakov, 2014) and Legendre-Radau(LR) points (Garg et al., 2010).
Then, by collocating the state equations and path constraints and using the differentiation matrix,
the problem is transcribed to a non-linear programming problem(NLP), which can be solved by
the well-developed parameter optimization algorithms. The three most common types of the pseu-
dospectral method are LGL pseudospectral (Elnagar, Kazemi, & Razzaghi, 1995; Fahroo & Ross,
2001), LG pseudospectral (Benson, Huntington, Thorvaldsen, & Rao, 2006) and LR pseudospectral
(Garg, 2011; Garg et al., 2010) methods.

It is well-known that pseudospectral methods, especially LR pseudospectral method, provide
accurate approximations that converge exponentially when the solution of the problem is smooth
(Elnagar et al., 1995; Garg et al., 2010). However, SOCPs are known to have nonsmooth solutions
and so the application of the pseudospectral methods can be problematic and high-order accu-
racy of the method may be deteriorated. Additionally, switching points cannot be captured by
these methods. In this respect, it is important to note that adding more nodes to overcome these
difficulties may lead to inefficiencies and ill-conditioning of the resulted NLP.

In this paper, we propose a new direct approach for solving SOCPs in an efficient and accurate
way. A novel feature of our method is that the control structure is determined automatically.
Moreover, our method also captures the switching times with high accuracy.

Our method is based on a modified Legendre-Radau pseudospectral method (Garg et al., 2010)
and on Mixed-Binary Non-Linear Programming(MBNLP) (Lee & Leyffer, 2011). We first consider
some decision variables as candidates for switching points and then we construct a multi-domain
form of SOCP. Next, using feedback law and introducing binary variables, the problem is refor-
mulated into a binary optimal control problem. Finally, the binary optimal control problem is
transcribed to an MBNLP by the Legendre-Radau pseudospectral method. By solving the resulted
MBNLP, the structure of optimal control and position of switching points of our original problem
are provided.

The paper is organized as follows. In Section 2, the formulation of SOCPs and some necessary
definitions are reviewed. Section 3 provides some background helpful to understand LR pseudospec-
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tral methods. Section 4 is dedicated to the description of our method to solve SOCPs. The proposed
method is then applied to four examples in Section 5. In final, a conclusion is given in Section 6.

2. Statement of the Problem and Preliminaries

Consider the following optimal control problems in the Mayer form, where the control function
appears linearly in the dynamic system

min J (x,u, tf ) = g(x(t0),x(tf ), tf ), (1a)

s.t. ẋ(t) = f(x(t),u(t), t) = f1(x(t), t) + F2(x(t), t)u(t), (1b)

ψ(x(t0),x(tf ), tf ) = 0, (1c)

u ∈ U . (1d)

Here, tf may be fixed or free, the state variable x(t) = [x1(t), . . . , xp(t)]
T ∈ Rp is a continuous

vector function, u(t) = [u1(t), . . . , uq(t)]
T ∈ Rq is a piecewise continuous vector function and the

admissible set of control functions is defined as

U =
{
u | umin

i ≤ ui(t) ≤ umax
i , i = 1, . . . , q

}
.

Furthermore, the functions g, f1,F2 and ψ are sufficiently continuously differentiable in all argu-
ments and defined by the following mappings:

g : R2p+1 → R, f1,F2 : Rp+1 → Rp, ψ : R2p+1 → Rr, 0 ≤ r ≤ 2p.

The Hamiltonian function of the above problem is defined by:

H (x,u,λ, t) := λT f1(x, t) + λTF2(x, t)u, (2)

where λ(t) = [λ1(t), . . . , λp(t)]
T ∈ Rp is the so-called adjoint or co-state vector function.

According to the Pontryagin’s minimum principle (Pontryagin, Boltyanskii, Gamkrelidze, &
Mishchenko, 1962), the solution of the problem (1) requires minimization of the Hamiltonian func-
tion (2) with respect to u ∈ U along the entire trajectories, which satisfy (1b), (1c) and the following
conditions:

λ̇∗(t) = −Hx(x∗(t),u∗(t),λ∗, t), (3)

λ∗(t0) = −lx0
(x∗(t0),u∗(tf ), t∗f ,ρ), (4)

λ∗(tf ) = lxf
(x∗(t0),u∗(tf ), t∗f ,ρ), (5)

H (tf ) + ltf (x∗(t0),u∗(tf ), t∗f ,ρ) = 0, if tf is free, (6)

where

l(x0,xf , tf ,ρ) := g(x0,xf , tf ) + ρTψ(x0,xf , tf ). (7)

In the considered problem, u appears linearly in the dynamic equations. So, the Hamiltonian is
linear in the control u as well. The factor associated with u in the Hamiltonian is called switching
function and denoted by:

σ(x,λ, t) := λTF2(x, t) = [σ1(x, t), . . . , σq(x, t)]. (8)
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As a result of Pontryagin’s minimum principle, if there exists an interval [t1, t2] ∈ [t0, tf ] in which the
j-th component of the switching function σ(t) is positive (negative), then uj(t) takes the smallest
(largest) admissible control value umin

j (umax
j ). So, if σj(t) in the time interval [t1, t2] ∈ [t0, tf ] has

finite isolated zeros, then the optimal control uj
∗(t) fulfills:

uj
∗(t) ∈ {umin

j , umax
j }, ∀t ∈ [t1, t2]. (9)

In this case, the uj is called bang-bang in the interval [t1, t2]. However, if there is a time interval
[t1, t2] ∈ [t0, tf ] in which the switching function σj(t) vanishes, then the Pontryagin’s minimum
principle provides no information on how to select u∗j (t). In this case, the problem is said to be
singular, the interval [t1, t2] is called a singular interval and the control over a singular interval
is referred to singular arc (Lamnabhi-Lagarrigue & Stefani, 1990). It is noted that the optimal
control may be singular across the entire interval. In this case, the control function is said to be
entirely (or purely) singular.

In summary, minimization of the Hamiltonian function leads to the following control law (Kirk,
2012; Pontryagin et al., 1962):

u∗j (t) =


umin
j , if σj(t) > 0,

umax
j , if σj(t) < 0,

usin
j , if σj(t) = 0,

j = 1, . . . , q. (10)

In general, singular optimal control contains both bang-bang and singular sub-arcs. A point t ∈
[t0, tf ] is called a switching point if it is a transition between one bang-bang arc and another
bang-bang or singular arc switching point(s).

2.1 Order of singular optimal control problems

For the sake of simplicity, we first focus on SOCPs with scalar control, i.e. q = 1, u(t) = u1(t)
and σ(x,λ, t) = σ1(x,λ, t). Clearly, d

dtσ(x,λ, t) is explicitly a function of x, λ, ẋ, λ̇ and t. By

replacing ẋ and λ̇ with (1b) and (3), one can express d
dtσ(x,λ, t) as a function of x, λ and t.

According to Lewis (1980), the control function u does not appear in d
dtσ. For j > 1, dj

dtj σ(x,λ, t)

is also expressed as a function of x, λ, t and possibly u. Furthermore, if u appears in dj

dtj σ, then

it appears linearly (Lewis, 1980). It is possible that the control u does not appear in dj

dtj σ for any

j. However, if w is the first integer number, in which u appears in dw

dtwσ, then w is always even
(Lamnabhi-Lagarrigue, 1987; Lewis, 1980). In the former case, the order of SOCP is defined to be
infinite and in the latter case, the integer number κ = w

2 is called the order of the singular problem.

Definition 1 (order of singular problem (Lamnabhi-Lagarrigue, 1987)): The integer number κ is
called the order of SOCP (1) when 2κ is the lowest order derivative of switching function σ such
that u appears explicitly. In other words

d2κ

dt2κ
σ(x,λ, t) ≡ e(x,λ, t) + d(x,λ, t)u, d 6= 0. (11)

If u never appears explicitly in the differentiation process, then the optimal control problem is
called an infinite-order singular problem.

Let the order of SOCP (1) is κ and [t1, t2] is the singular interval. So, in this interval σ = 0 and
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using (11), we conclude

d2κ

dt2κ
σ(x,λ, t) = 0 = e(x,λ, t) + d(x,λ, t)u, d 6= 0. (12)

Now, by solving the equation (12) for u, we get

u = u(x,λ, t) = −e(x,λ, t)
d(x,λ, t)

, t ∈ [t1, t2].

In summary, if the singularity order of the problem is finite, then the control function u can be
expressed as a function of x, λ and t.

In some cases, the right-hand side of Eq. (12) does not depend on λ or λ can be eliminated due
to:

dj

dtj
σ(x,λ, t) ≡ 0, j = 0, . . . , 2κ− 1. (13)

In these cases, in the singular interval [t1, t2], the control u can be obtained in feedback form, i.e.
there is a known function using : R× Rp → R such that

u(t) = using(t; x(t)), ∀t ∈ [t1, t2]. (14)

We now turn to problems with vector-valued control. In these problems, let uj has a singular

arc and wj be the first integer number, in which uj appears in dwj

dtwj σj . According to Krener (1977);
Vossen (2010), wj is even and κj = wj

2 is called the order of singular component uj . If such wj
does not exist, then it is said that the order of singular component uj is infinite. If the order of

singular control uj is finite, then using dwj

dtwj σj = 0, the control uj can be obtained as a function of
x, λ and t in the corresponding singular interval.

In most problems, by using additional conditions such as the generalized Legendre-Clebsch con-
dition (Krener, 1977), we can eliminate the adjoint functions and express the singular arc as a
function of just x, and t. For more details refer, e.g., to Krener (1977); Michel (1996); Vossen
(2010). In other words, if uj be singular in [t1, t2], then it can be obtained in the following feedback
form

uj(t) = using
j (t; x(t)), ∀t ∈ [t1, t2]. (15)

In this paper, we consider a family of optimal control problems, which is stated with the following
assumptions.

Assumption 1: It is supposed that “chattering phenomenon” (Zelikin & Borosov, 1991) does not
occur, i.e. we consider problems with a finite number of singular arcs and switching points.

Assumption 2: We assume that the singularity order of the problem is finite and in the singular
arcs, the control function can be obtained in the feedback form (15).

3. Background of Legendre-Gauss-Radau pseudospectral Method

In the pseudospectral methods (Fornberg, 1996), the unknown solution is approximated by inter-
polating polynomials based on some suitable points. On the other hand, its derivatives are approxi-
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mated by discrete derivative operators(the differentiation matrix). So, the concepts of interpolation
and differentiation matrices are useful to understanding the pseudospectral method.

3.1 Approximation by polynomial interpolation

A function g defined on [−1, 1] may be approximated by Lagrange polynomials as:

g(τ) '
n∑
i=0

g(ξi)`i(τ). (16)

Here, ξi, i = 0, . . . , n are distinct points in [−1, 1] and called collocation points. Moreover, `i(τ), i =
0, . . . , n are the Lagrange polynomials corresponding to these collocation points, which may be
expressed as:

`i(τ) =

n∏
j=0,j 6=i

τ − ξj
ξi − ξj

, i = 0, . . . , n,

with the Kronecker property:

`i(ξj) = δij =

{
0, if i 6= j,
1, if i = j.

(17)

It is a well-established fact, that a proper choice of collocation points is crucial in terms of accuracy
and computational stability of the approximation (16). As a typically good choice of such collocation
points, we refer to the well-known Gauss, Gauss-Lobatto and Gauss-Radau points (Funaro, 1992),
which lie on [−1, 1] and are clustered near the endpoints.

In Legendre-Gauss-Radau pseudospectral method for optimal control problems (Garg, 2011), the
first n nodes are Legendre-Gauss-Radau nodes and the last node is selected as ξn = +1. It is noted
that Legendre-Gauss-Radau nodes are the roots of Pn−1(τ)+Pn(τ), where Pn(τ) is the well-known
Legendre polynomial of degree n. No explicit formula of the LGR nodes is known. However, these
points can be determined by accurate and stable numerical methods (Gautschi, 2004).

To develop a matrix-oriented method, we express Eq. (16) in the following matrix form:

g(τ) ' [φ(τ)]T g,

where φ(τ) = [`0(τ), . . . , `n(τ)]T is a (n+1)-dimensional vector function and g = [g(ξ0), . . . , g(ξn)]T .

3.2 Differentiation matrix

In the pseudospectral methods, it is crucial to express the derivative ġ(τ) in terms of g(τ) at the
collocation points ξi. This expression can be done by using the so-called differentiation matrices.

Let g be a function with a sufficient degree of smoothness and approximated as (16). The first
derivative of g can be approximated by:

ġ(τ) '
n∑
i=0

g(ξi) ˙̀
i(τ).
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By noting that ˙̀
i(τ) is a polynomial of degree n, we can write

˙̀
i(τ) =

n∑
j=0

˙̀
i(ξj)`j(τ).

Using the above two equations, we get

ġ(τ) '
n∑
i=0

n∑
j=0

˙̀
i(ξj)g(ξi)`j(τ),

so, the value of ġ(τ) in τ = ξj can be approximated as:

ġ(ξj) '
n∑
i=0

dijg(ξi),

where

dij = ˙̀
i(ξj), i, j = 0, . . . , n, (18)

If we consider dij as the (i, j)-th component of a matrix D, then D is called differentiation matrix
(Fornberg, 1996). According to (18), the entries of differentiation matrix D are computed by taking
the analytical derivative of `i(τ) and evaluating it at the collocation points ξj for i, j = 0, . . . , n.
However, more accurate and stable computational methods to compute these entries can be found
in Baltensperger and Trummer (2003); Weideman and Reddy (2000); Welfert (1997).

4. Mixed-Binary-Non-Linear-Programming Method

In this section, we introduce a direct method for solving SOCP that is based on Mixed-Binary
Non-Linear Programming(MBNLP). The first step is to convert SOCP (1) into a binary optimal
control problem. Next, using the Radau pseudospectral method, the binary optimal control problem
is transformed into an MBNLP. The solution of this last problem gives us an approximate solution
of the original SOCP.

4.1 Conversion of SOCP to Binary Optimal Control Problem

Based on Assumption 1, we assume that SOCP (1) has a finite number of switching points. However,
the number of switching points is not known. The presented method just needs a guess for the
upper bound on the number of switching points. Moreover, if this guess is incorrect, then this
incorrect choice can be detected by the results of the method. Details on how to choose this guess
will be discussed in Section 4.3.

Let the integer and positive number s be the upper bound on the number of switching points.
We consider the decision variables t1, . . . , ts as candidates for switching points, where t0 ≤ t1 ≤
· · · ≤ ts ≤ tf . It is worth noting that, these s variables are candidates for switching points and it
does not mean that, the optimal control switch at each one. In fact, we do not consider exactly s
switch points, but we consider at most s switches.

The decision variables t1, . . . , ts break the total domain [0, tf ] into s + 1 sub-domains, i.e. if we
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set t0 = 0 and ts+1 = tf , then we have

[0, tf ] = [t0, t1] ∪ [t1, t2] ∪ · · · ∪ [ts, ts+1], (19)

For k = 0, . . . , s, denote the restriction of x(t) and u(t) in the k-th subinterval [tk, tk+1] by

x[k](t) = [x
[k]
1 (t), . . . , x

[k]
p (t)]T and u[k](t) = [u

[k]
1 (t), . . . , u

[k]
q (t)]T , respectively. So, the control and

state functions are now expressed as:

u(t) =


u[0](t), t ∈ [t0, t1],

u[1](t), t ∈ [t1, t2],
...

u[s](t), t ∈ [ts, ts+1],

, x(t) =


x[0](t), t ∈ [t0, t1],

x[1](t), t ∈ [t1, t2],
...

x[s](t), t ∈ [ts, ts+1].

(20)

It is worthwhile to note that, in each sub-domain, the j-th component of the control function u(t)
is either singular or takes its maximum value (i.e. umax

j ) or minimum value (i.e. umin
j ).

Based on (19) and (20), the problem (1) is now reformulated to the following multi-domain
minimization problem:

min J (x,u, tf ) := g(x[0](t0),x[s](tf ), tf ), (21a)

s.t. ẋ[k](t) = f(x[k](t),u[k](t), t), t ∈ [tk, tk+1], k = 0, . . . , s, (21b)

umin ≤ u[k](t) ≤ umax, t ∈ [tk, tk+1], k = 0, . . . , s, (21c)

ψ(x[0](t0),x[s](tf ), tf ) = 0, (21d)

x[k](tk+1) = x[k+1](tk+1), k = 0, . . . , s− 1. (21e)

Note that, Eq.(21e) is considered to guarantee the continuity of state functions at the switching
points.

As mentioned previously, in the k-th sub-domain [tk, tk+1], the j-th component of u[k](t) takes
its value in {umin

j , umax
j , usin

j (t; x[k])}. However, these components should be assigned such that
the constraints are satisfied and the objective function is minimized. To achieve this goal, we
introduce some binary decision variables and the obtaining of optimal solution are carried over the
finding of optimal values of these binary decision variables. For this purpose, in each sub-domain

[tk, tk+1], k = 0, . . . s, two vectors µ
[k]
1 and µ

[k]
2 with binary components are considered as follows

µ
[k]
1 = [µ

[k]
11 , µ

[k]
21 , . . . , µ

[k]
q1 ]T ∈ {0, 1}q, µ

[k]
2 = [µ

[k]
12 , µ

[k]
22 , . . . , µ

[k]
q2 ]T ∈ {0, 1}q.

Then the control function, in this sub-domain, is expressed as

u
[k]
j = µ

[k]
j1u

min
j + µ

[k]
j2u

max
j + (1− µ[k]

j1 − µ
[k]
j2 )using

j (t; x[k]). (22)

Clearly, if µ
[k]
j1 = 1 and µ

[k]
j2 = 0 then u

[k]
j = umin

j . Similarly, if µ
[k]
j1 = 0 and µ

[k]
j2 = 1 then u

[k]
j = umax

j

and if µ
[k]
j1 = 0 and µ

[k]
j2 = 0 then u

[k]
j = usin

j . It is noted that the case µ
[k]
j1 = 1 and µ

[k]
j2 = 1 should

not happen, and for avoiding this case, the following conditions are imposed

µ
[k]
j1 + µ

[k]
j2 ≤ 1, j = 1, . . . , q. (23)
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Based on (22), the control function u[k](t) can be expressed as follows

u[k](t) = µ
[k]
1 ◦ umin + µ

[k]
2 ◦ umax +

(
1− µ[k]

1 − µ
[k]
2

)
◦ using(t; x[k]), (24)

where ◦ denotes Hadamard product or element by element multiplication, 1 is a q-vector which all
of its elements are 1 and

using(t; x[k]) =

 using
1 (t; x[k](t))

...

using
q (t; x[k](t))

 .
Using (24), we can eliminate the control u[k] from the optimal control problem (21) and conse-
quently the following binary optimal control problem is derived

min J
(
x,µ

[k]
1 ,µ

[k]
2 , tf

)
:= g

(
x[0](t0),x[s](tf ), tf

)
(25a)

s.t. ẋ[k](t) = f̂
(
x[k](t),µ

[k]
1 ,µ

[k]
2 , t

)
, k = 0, . . . , s, (25b)

ϕ(x[0](t0),x[s](tf ), tf ) = 0, (25c)

x[k] (tk+1) = x[k+1] (tk+1) , k = 0, . . . , s− 1, (25d)

umin ≤ µ[k]
1 ◦ umin + µ

[k]
2 ◦ umax +

(
1− µ[k]

1 − µ
[k]
2

)
◦ using(t; x[k]) ≤ umax,

k = 0, . . . , s, (25e)

µ
[k]
1 + µ

[k]
2 ≤ 1, k = 0, . . . , s, (25f)

µ
[k]
1 , µ

[k]
2 ∈ {0, 1}

q, k = 0, . . . , s, (25g)

such that

f̂
(
x[k](t),µ

[k]
1 ,µ

[k]
2 , t

)
=

f
(
x[k](t),µ

[k]
1 ◦ umin + µ

[k]
2 ◦ umax +

(
1− µ[k]

1 − µ
[k]
2

)
◦ using(t; x[k]), t

)
.

4.2 Discretization of the Resulted Binary Optimal Control

In this section, the Radau-pseudospectral method is employed to transcribe the binary optimal
control problem (25) to an MBNLP problem. In this way, at first, the time-domains [tk−1, tk], k =
0, . . . , s are mapped into [−1, 1] via the following affine transformations:

t =
tk+1 − tk

2
τ +

tk+1 + tk
2

, k = 0, . . . , s. (26)

9



June 17, 2017 International Journal of Control Paper˙F3˙R2

Using these mappings and noting that dt
dτ = tk+1−tk

2 , the binary optimal control problem (25) is
converted to the following minimization problem in the time-domain [−1, 1]:

min J
(
x,µ

[k]
1 ,µ

[k]
2 , tf

)
:= g

(
x[0](−1),x[s](1), tf

)
(27a)

ẋ[k](τ) =
tk+1 − tk

2
f̂(x[k](τ),µ

[k]
1 (τ),µ

[k]
2 (τ), τ), k = 0, . . . , s, (27b)

ϕ(x[0](−1),x[s](1), tf ) = 0, (27c)

x[k] (1) = x[k+1] (−1) k = 0, . . . , s− 1 (27d)

umin ≤ µ[k]
1 ◦ umin + µ

[k]
2 ◦ umax +

(
1− µ[k]

1 − µ
[k]
2

)
◦ using(t; x[k]) ≤ umax,

k = 0, . . . , s, (27e)

µ
[k]
1 + µ

[k]
2 ≤ 1, k = 0, . . . , s, (27f)

µ
[k]
1 , µ

[k]
2 ∈ {0, 1}

q, k = 0, . . . , s. (27g)

It is noted that, by applying this transformation, the symbols of variables will change and new
symbols should be used for them. For simplicity, however, we retained the symbols already used.

Now, by considering (16), the l-th component of state x[k](t) is approximated by Lagrange poly-
nomials as:

x
[k]
l (τ) '

n∑
i=0

x
[k]
l (ξi)`i(τ), k = 0, . . . , s. (28)

So, the vector function x[k](t) is approximated as:

x[k](τ) '
n∑
i=0

αki `i(τ), k = 0, . . . , s, (29)

where for k = 0, . . . , s and i = 0, . . . , n, the coefficients αki are unknown p-vector and

αki = x[k](ξi) = [x
[k]
1 (ξi), . . . , x

[k]
p (ξi)]

T .

Using (29), we have:

ẋ[k](τ) '
n∑
i=0

αki
˙̀
i(τ), k = 0, . . . , s. (30)

By substituting approximations (29) and (30) in the dynamic equations (27b) and then by collo-
cating it at LGR points ξj , j = 0, . . . , n− 1, we get:

n∑
i=0

αki
˙̀
i(ξj)−

tk+1 − tk
2

f̂

(
n∑
i=0

αki `i(ξj),µ
[k]
1 ,µ

[k]
2 , ξj

)
= 0,

k = 0, . . . , s, j = 0, . . . , n− 1.

It is worthwhile to note that, although ξn = +1 is used beside the LGR points to approximate
x[k](τ), this point is not used as a collocation point.

10
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By (18) and the Kronecker property (17), the above equation is reduced to the following algebraic
equations:

n∑
i=0

αki dji =
tk+1 − tk

2
f̂
(
αkj ,µ

[k]
1 ,µ

[k]
2 , ξj

)
, j = 0, ..., n− 1, k = 0, . . . , s. (31)

By noting that, for k = 0, . . . , s, x[k](−1) = α
[k]
0 and x[k](1) = α

[k]
n , finally, the binary optimal

control problem (27) is converted to the following finite-dimensional MBNLP

min J
(
x,µ

[k]
1 ,µ

[k]
2 , tf

)
:= g

(
α0

0,α
s
n, tf

)
(32a)

n∑
i=0

djiα
k
i −

tk+1 − tk
2

f̂
(
αkj ,µ

[k]
1 ,µ

[k]
2 , ξj

)
= 0, (32b)

j = 0, 1, ..., n− 1, k = 0, . . . , s, (32c)

ϕ(α0
0,α

s
n, tf ) = 0, (32d)

αkn = αk+1
0 , k = 1, . . . , s− 1 (32e)

umin ≤ µ[k]
1 ◦ umin + µ

[k]
2 ◦ umax +

(
1− µ[k]

1 − µ
[k]
2

)
◦ using(t; x[k]) ≤ umax,

k = 0, . . . , s, (32f)

µ
[k]
1 + µ

[k]
2 ≤ 1, k = 0, . . . , s, (32g)

µ
[k]
1 , µ

[k]
2 ∈ {0, 1}

q, k = 0, . . . , s. (32h)

Recall that, the decision variables of the above BINLP are αki , tk, µ
[k]
1 , µ

[k]
2 and maybe tf , where

i = 0, . . . , n, k = 0, . . . , s.

4.3 Selecting the number of initial switching points in the proposed algorithm

As mentioned, in the proposed method, a guess on the number of switching points is needed. In the
following, we describe how to choose the number of switching points and how to avoid incorrect
choices of s.

Let s be our guess on the number of switching points and s∗ be the exact number of switching
points. Based on the choice of s, the following three cases are distinguished:

I. If s = s∗, then the proposed method performs best and the approximate position of i-th
switch is obtained as ti.

II. If s < s∗, naturally the proposed method cannot find the optimal solution. With this choice,
two things happen. Whether MBNLP solver cannot find any feasible solution or the solver
converges to a solution that is not optimal.

III. If s > s∗, then the proposed method considers t1, . . . , ts as the candidates of switching points.
Naturally, the obtained control function does not switch at any ti. Indeed s−s∗ of the obtained
t1, . . . , ts are not switching point and we call them by artificial switching points. For instance,
when all the components of control function do not change at ti, then we can easily recognize
that ti is not a switching point and we consider it as an artificial switching point. As another
instance, if the computation shows that ti−1 = ti, then ti is an artificial switching point too.
Moreover, when ti and ti+1 are distinct but the difference ti+1−ti is very small, then we must
consider ti and ti+1 as artificial switching points and eliminate the arc between ti and ti+1.
This small arc happens because of round-off error in MBNLP solver, however, the length of

11
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this arc is smaller than the considered error tolerance in the used MBNLP solver. It is noted
that the artificial switching points do not influence the structure of optimal control.

Based on the above discussions, to capture the exact number of switching points, we apply the
proposed method with a guess s. If a solution with some artificial switching points is obtained, then
by removing the artificial switching points, the exact number of switching points and structure of
optimal control are detected. Otherwise, if either the MBNLP solver fails or a solution without
artificial arc is obtained, then, we must try the method with a larger guess for s.

5. Illustrative examples

This section is devoted to illustrating the presented method in Section 4, using numerical exper-
iments. We have implemented the method using Matlab in a personal computer and to solve
the final BINLP (32), the solver Knitro (Byrd, Nocedal, & Waltz, 2006) has been interfaced and
function knitromatlab mip is used.

We test the feasibility and validity of the presented method on four optimal control problems.
Each of these problems highlights one capability of the presented method. In the first, the ability of
the presented method in finding the structure of optimal control is illustrated and it is shown that
the presented method can be used for solving bang-bang problems as well. In the second example,
we show the accuracy of the presented method on the benchmark Goddard’s problem. In the third,
the ability of the method in solving problems with vector value control is investigated. By the last
example, we show that the presented method is applicable to the singular problems with entirely
singular control.

5.1 Example 1 (Rayleigh Control Problem With Mixed Control-State Constrains)

In this example, we consider the following Rayleigh control problem with mixed control-state
constraints (J. Chen & Gerdts, 2012; Maurer & Augustin, 2001; Maurer & Osmolovskii, 2013;
Osmolovskii & Maurer, 2012)

min J = x3(tf ),
ẋ1 = x2,
ẋ2 = −x1 + x2(1.4− 0.14x2

2) + u,
ẋ3 = (x2

1 + x2
2),

x1(0) = −5, x2(0) = −5, x3(0) = 0,
α ≤ u(t) + x1(t) ≤ β, ∀t ∈ [0, tf ],

where the final time tf is fixed and equal to 4.5. Following Maurer and Osmolovskii (2013), by
introducing the new control variable v(t) = u(t)+x1(t), the above Rayleigh problem is transformed
to the following problem with box constraints on control v(t)

min J = x3(tf ),
ẋ1 = x2,
ẋ2 = −x1 + x2(1.4− 0.14x2

2) + v − x1,
ẋ3 = x2

1 + x2
2,

x1(0) = −5, x2(0) = −5, x3(0) = 0,
α ≤ v(t) ≤ β, ∀t ∈ [0, tf ].

12
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The Hamiltonian function of the above optimal control problem is:

H (x, u,λ, t) = λ1x2 + λ2(−x1 + x2(1.4− 0.14x2
2) + v − x1) + λ3(x2

1 + x2
2).

In this problem the adjoint equations are:

λ̇1 = −2x1 + λ2, (33)

λ̇2 = −2x2 − λ1 + λ2(0.42x2
2 − 1.4), (34)

λ̇3 = 0. (35)

The switching function for v is σ(x,λ, t) = λ2(t). From the Pontryagin’s minimum principle, we
conclude

v(t) =

 α, if λ2 > 0,
vsing(x(t)), if λ2 = 0,
β, if λ2 < 0.

Computing the first two derivatives of the switching function, we get

d

dt
σ(x,λ, t) = λ̇2(t) = −λ1(t)− 2x2(t),

d2

dt2
σ(x,λ, t) = −λ̇1(t)− 2ẋ2(t),

= 6x1(t)− 2x2(t)(1.4− 0.14x2
2(t))− 2v(t).

It can be seen that the control v appears in the second derivative of σ, therefore the order of the
problem is κ = 1. Moreover, by extracting v from d2

dt2σ = 0, the control function on the singular
interval [t1, t2] is obtained as:

v = vsing(x) = 3x1 + x2(0.14x2
2 − 1.4).

Following Maurer and Osmolovskii (2013), we consider three cases for α and β as:
Case I: α = −5, β = 0.
Case II: α = −8, β = 0.
Case III: α = −10, β = 0.
According to Maurer and Osmolovskii (2013), the structure of optimal control is bang-bang in

Case I, bang-bang in Case II and bang-bang-singular in Case III. Accordingly, this example is
suitable to test the ability of our method in finding the structure of the optimal control.

Results For Case I(α = −5, β = 0)

At first, we applied the presented method, with s = 6 and n = 20. The resulted switching points
and the control function are obtained as

v(t) =



0, if 0.0 ≤ t ≤ 0.779970995585,
−5, if 0.779970995585 ≤ t ≤ 2.307546460159,

0, if 2.307546460159 ≤ t ≤ 2.307546460255,
0, if 2.307546460255 ≤ t ≤ 2.307546460351,
−5, if 2.307546460351 ≤ t ≤ 2.683557086284,

0, if 2.683557086284 ≤ t ≤ 4.5.

13
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For better vision, the obtaining control is plotted in Figure 1. As we see, t2 = 2.307546460159, t3 =
2.307546460255 and t4 = 2.307546460351 are reported as switching points, but these points are
very close to each other. As mentioned in Section 4.3, these small differences occur because of error
tolerance in MBNLP solver. Inspecting Figure 1, we deduce that these points(t2, t3 and t4) are
artificial switching points and can be removed. Accordingly, the exact number of switching points
is s = 2.

Next, we apply the presented method with s = 2 and n = 20. In Figure 2, the optimal control and
state functions are plotted. To show the accuracy and convergence of the method, the switching
points and objective function are reported in Table 1 for various values of n.

It is worth noting that, in Case I, the optimal control is purely bang-bang and not singular.
Although the present method is developed for solving SOCPs, it can be applied to the bang-bang
problems as well. In other words, in the presented method, we do not need to know that the optimal
control is bang-bang or singular.

Results For Case II(α = −8, β = 0)

For detecting the structure of optimal control, we first applied the method, with s = 5 and n = 20.
The obtained control and state functions are plotted in Figure 3. Clearly, the exact number of
switching points is s = 2. To address the accuracy and convergence of the method, in Table 2, the
obtained switching points and objective function are reported for various values on n.

Results For Case III(α = −10, β = 0)

At first, in a similar manner to Cases I and II, we found that the exact number of switching points
is s = 1.

The obtained control and state functions with n = 20 are plotted in Figure 4. Moreover, the
obtained switching points and objective function value are reported in Table 3 for various values
on n.

5.2 Example 2 (Goddard’s Problem)

In the second example, we consider Goddard’s problem as presented in Bryson and Ho (1975). This
problem now is considered as a benchmark problem for SOCPs (Aronna et al., 2013; Betts, 2010;
Bonnans et al., 2008; Martinon, Bonnans, Laurent-Varin, & Trélat, 2009; Maurer, 1976; Vossen,
2010). Goddard’s problem is to maximize the final altitude of a vertically ascending rocket under
the influence of atmospheric drag and the gravitational field.

This problem is modeled as follows

max J = h(tf ),

ḣ = v,

v̇ =
1

m
(cu−D(v, h))− g(h),

ṁ = −u,
h(0) = 0, v(0) = 0, m(0) = m0, m(tf ) = mf ,

0 ≤ u(t) ≤ umax, ∀t ∈ [0, tf ],

where the final time is free and the state variables are altitude h, speed v and mass m of the rocket
during the flight. The control u is the thrust of the rocket. Moreover, D(v, h) and g(h) are the drag
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and gravity functions defined as:

D(v, h) = αv2 exp(−βh), g(h) = g0.

We consider the following two cases for the parameters of the problem

• Case I:

α = 0.01227, β = 0.000145, g0 = 9.81, c = 2060,
m0 = 214.839, mf = 67.9833, umax = 9.52551.

• Case II.

α = 5.49153485e−5, β = 1/23800, g0 = 32.174, c = 1580.9425,
m0 = 3, mf = 1, umax = 193/c.

The problem data in Case I and II are taken from Maurer (1976) and Betts (2010), respectively.
According to Aronna et al. (2013); Maurer (1976); Vossen (2010), the problem order is equal to

κ = 1 and the singular control is obtained as:

using(h, v,m) = D
c +m (c−v)Dh+(Dv+cDvv)g+c(mgh−Dvhv)

D+2cDv+c2Dvv
.

After applying the present method with s = 4 and n = 20, the resulting control functions in Case I
and II are plotted in Fig 5. As a result, we conclude that in the both cases, the structure of optimal
control is max-singular-min, i.e. s = 2. To check the accuracy and convergence of the method,
in Table 4, the obtained switching points and the objective function with s = 2 are reported for
various values on n. The resulting control and state functions, in Case I, with s = 2 and n = 20,
are shown in Figure 6.

5.3 Example 3 (Mathematical Model For Combined Anti-angiogenesis And
Chemotherapy Treatments )

Now, we consider the following tumor anti-angiogenesis and chemotherapy optimal control problem
treated in Ledzewicz, Maurer, and Schättler (2009)

min J = p(tf ),
ṗ = −ζp ln(pq )− ϕpv,
q̇ = bq

2

3 − dq
4

3 − µq − γqu− ηqv,
ẏ = u,
ż = v,
p(0) = p0, q(0) = q0, y(0) = 0, z(0) = 0,
0 ≤ u(t) ≤ 15 ∀t ∈ [0, tf ],
0 ≤ v(t) ≤ 20 ∀t ∈ [0, tf ],
z(tf ) ≤ 135,
y(tf ) ≤ 45.

In this problem, u and v are control functions. We consider this optimal control problem with the
following parameters

ζ = 0.192, b = 5.85, d = 0.00873, µ = 0.02,
γ = 0.15, η = 0.025, ϕ = 0.01 .
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These parameters are based on biologically validated data (Ledzewicz et al., 2009) and taken from
Hahnfeldt, Panigrahy, Folkman, and Hlatky (1999). According to Ledzewicz et al. (2009, 2011),
the control v is bang-bang and the control u is singular. Furthermore, in the singular interval, we
have

γu(t) + ηv = ψ( 3
√
q(t)),

where

ψ(θ) =
b− dθ

2

3

θ
1

3

+ 3ζ
b+ dθ

2

3

b− dθ
2

3

− µ.

For our numerical calculations, we take p0 = 9000 and q0 = 6000. Applying our method with s = 5
and n = 20, the following results are obtained for the control functions

u(t) =



15, if 0.0 ≤ t ≤ 0.765171962162,
15, if 0.765171962162 ≤ t ≤ 0.952984945517,
15, if 0.952984945517 ≤ t ≤ 1.063190258452,
usin, if 1.063190258452 ≤ t ≤ 2.333116025109,
usin, if 2.333116025109 ≤ t ≤ 4.940379282478,
0, if 4.940379282478 ≤ t ≤ 7.515171962157.

v(t) =



0, if 0.0 ≤ t ≤ 0.765171962162,
20, if 0.765171962162 ≤ t ≤ 0.952984945517,
20, if 0.952984945517 ≤ t ≤ 1.063190258452,
20, if 1.063190258452 ≤ t ≤ 2.333116025109,
20, if 2.333116025109 ≤ t ≤ 4.940379282478,
20, if 4.940379282478 ≤ t ≤ 7.515171962157.

These control functions are plotted in Figure 7. From the obtained results, we conclude that the
exact number of switching points is s = 3.

Choosing s = 3 and varying n, the obtained values for switching points and objective function
are reported in Table 5. In Figure 8, the obtained control and state functions with n = 20 are
plotted.

5.4 Example 4 (A particle moving under friction)

As the final example, the following problem is considered (Gong, Kang, & Ross, 2006; Ross, 2015)

min J =

∫ 1

0
x2u,

ẋ1 = x2,

ẋ2 = −x2 + u,

−x2(t) ≤ 0,

x1(0) = 0, x2(0) = 1,

x1(1) = 1, x2(1) = 1,

0 ≤ u(t) ≤ 2, ∀t ∈ [0, 1],
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It can be shown that the singular control can be obtained as:

using(x, t) = x2(t), (36)

After applying the present method, with s = 5 and n = 20, the resulting control function is
obtained as

u(t) =


using, if 0 ≤ t ≤ 0.140649593909000,
using, if 0.140649593909000 ≤ t ≤ 0.227909561633000,
using, if 0.227909561633000 ≤ t ≤ 0.600924779862000,

0, if 0.600924779862000 ≤ t ≤ 0.600924802286000,
using, if 0.600924802286000 ≤ t ≤ 1.

Also, for a better observation, the control function is plotted in Figure 9. According to this figure,
we find that the control is entirely singular, i.e. s = 0. Now, after detecting the structure of the
optimal control problem, the presented method is applied to the problem, with s = 0 and n = 20
and the obtained control and states functions are plotted in Figure 10. As we see, this method can
efficiently solve the problems with entirely singular control.

6. Conclusion

The proposed method represented a unified approach for finding the structure of optimal control
and accurate solution of SOCPs. The main idea is that by introducing binary variables and utilizing
Legendre-Radau pseudospectral method, the singular optimal control problem is transcribed to an
MBNLP problem. In addition, the control function is considered as feedback form and the state
variable is approximated by a piecewise continuous polynomial. The computational technique was
illustrated on four benchmark problems. The results showed that the present method successfully
detects the structure of the optimal control function without a priori information and captures
switching points with high accuracy, even by using a small number of collocation points.
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Figure 1. (Rayleigh Problem-Case I) The obtained Control function with s = 6 and n = 20.
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Figure 5. (Goddard Problem-Cases I and II) The obtained control history with s = 4 and n = 20.
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Table 1. (Rayleigh Problem-Case I) The obtained values of switching times and performance index for s = 2 and various

values of n.

n t1 t2 J
5 0.762366612521 2.686623895525 62.159210594759
10 0.780002093663 2.683550480205 62.165184675530
12 0.779970073508 2.683557300887 62.165171125420
15 0.779970994514 2.683557086664 62.165171372819
18 0.779970995257 2.683557086495 62.165171372970
20 0.779970996007 2.683557086330 62.165171372960
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Figure 7. (Tumor Anti-Angiogenesis and Chemotherapy Problem) The obtained control function with s = 5 and n = 20.
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Table 2. (Rayleigh Problem-Case II) The obtained values of switching times and performance index for s = 2 and various
values of n.

n t1 t2 J
5 0.880015547157 2.054454140463 58.090656805179
10 0.880219799773 2.054427603716 58.090500334180
12 0.880194766862 2.054430279825 58.090498130729
15 0.880194544846 2.054430308001 58.090498220480
18 0.880194532908 2.054430291559 58.090498194399
20 0.880194534140 2.054430309052 58.090498215789
22 0.880194533669 2.054430309176 58.090498215940

Table 3. (Rayleigh Problem-Case III) The obtained values of switching time and performance index for s = 1 and various
values of n.

n t1 J
5 0.913222334416 58.000599024549
10 0.913247093644 58.001683110229
12 0.913246767042 58.00170760159
15 0.913246741986 58.001700222990
18 0.913246741800 58.001700235780
20 0.913246741799 58.001700235910

Table 4. (Goddard Problem) The obtained values of switching times, final time and performance index for various values of
n.

Case n t1 t2 tf J
5 3.8962984347 46.0628324467 2064411581494 157254.0220728
10 4.1208322283 45.9617898769 206.6904108521 157346.7714617
15 4.1209123258 45.9608091368 206.6927763403 157347.3567926

Case I. 20 4.1209139238 45.9608128828 206.6926967098 157347.3570357
25 4.1209116491 45.9608174215 206.6928010327 157347.3570367
30 4.1209116962 45.9608168451 206.6929168216 157347.3570367
5 13.75358711054 21.98402662383 42.88484515140 157254.0220728
10 13.75524832958 21.98889104879 42.88990410852 157346.7714617

Case II. 15 13.75531085002 21.98893805934 42.8890787640 157347.3567926
20 13.75531021839 21.98893476820 42.8890786696 18549.5866295
25 13.75531021821 21.98893476769 42.8890786699 18549.5866295

Table 5. (Tumor Anti-angiogenesis and Chemotherapy Problem) The obtained values of switching times, final time and

performance index for various values of n.

n t1 t2 t3 tf J
5 0.7653950 1.0630676 4.940685 7.5153950 213.51808362
10 0.7654275 1.0630519 4.9407259 7.5154275 213.51804362
12 0.7654079 1.0630615 4.9407013 7.5154079 213.51804369
15 0.7654078 1.0630615 4.9407013 7.5154078 213.51804368
18 0.7654078 1.0630615 4.9407013 7.5154078 213.51804368
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