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Spectral preconditioners are based on the fact that the convergence rate of Krylov sub-
space methods is improved if the eigenvalues of smallest magnitude of the system matrix are
‘removed’. In this paper, two preconditioning strategies are studied to solve a set of linear
systems associated with the numerical integration of the time dependent neutron diffusion
equation. Both strategies can be implemented using the matrix-vector product as the main
operation and succeed at reducing the total number of iterations needed to solve the set of
systems.
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neutron diffusion equation, time integration.

1. Introduction

Nuclear plants are thermal-power systems that generate electricity using the heat
generated by nuclear reactions induced by neutrons which take place inside the
nuclear reactor. For safe operation and to develop new designs of this kind of
plants it is important to have fast and accurate codes that simulate its behaviour.
These simulators consist mainly of two different blocks or modules, which solve the
models implemented to give account of the basic phenomena taking place in the
plant. In this way, there is a neutronic module that simulates the neutron balance
in the reactor core and the thermal-hydraulics module, which simulates the heat
transfer from the fuel to the water used as coolant and the different condensation
and evaporation processes that take place in the core and the condenser systems.

We will focus on the neutronic module. In this way, for a given transient, the
neutron balance in the reactor core is modelled using the time dependent neutron
diffusion equation in the approximation of two groups of energy [7],

[
v−1
] ∂Φ

∂t
+ LΦ = (1− β)MΦ +

Kp∑
k=1

λkχCk , (1)

∂Ck
∂t

= βk[νΣf1 νΣf2]Φ− λkCk , k = 1, . . . ,Kp , (2)
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where, Kp is the number of delayed neutron precursor groups considered,

L =

[
−~∇ · (D1

~∇) + Σa1 + Σ12 0

−Σ12 −~∇ · (D2
~∇) + Σa2

]
, [v−1] =

[ 1
v1

0

0 1
v2

]
,

and

M =

[
νΣf1 νΣf2

0 0

]
, Φ =

[
Φ1

Φ2

]
, χ =

[
1
0

]
.

The diffusion constants and cross-sections, Dg, Σ12, Σag, νΣfg, g = 1, 2, appear-
ing in the equations depend on the reactor materials, that is, they are position and
time dependent functions.

To solve problem (2), a spatial and temporal discretization of the equations has
to be selected.

2. Problem discretization

2.1 Spatial discretization

In a nuclear reactor core, the spatial mesh is naturally defined by the different fuel
bundle compositions of the core. Different geometries of the fuel bundles can be be
found in different kind of reactors. Thus the fuel elements of western reactors as the
PWR or BWR type are rectangular prisms and for example, a nodal collocation
method based on a prismatic mesh can be used for its discretization [8]. Reactors
such as the russian VVER reactors have fuel bundles with hexagonal geometry. In
this case, it is possible to use a high order finite element method [4].

After the spatial discretization process, we obtain a semidiscrete system of ordi-
nary differential equations as follows

[
v−1
]
ψ̇ + Lψ = (1− β)Mψ +

K∑
k=1

λkXCk , (3)

XĊk = βkMψ − λkXCk , (4)

where matrices L, M and X are the matrices associated with for the previous
differential operators.

2.2 Time discretization

The system of ordinary differential equations (4) is a stiff one. Thus, for the time
discretization of this system is convenient to use an implicit method. Particularly,
a one-step implicit finite differences method is considered [2]. This method consists
of solving the above ordinary differential equations (3) and (4) over a series of
time intervals [tn, tn+1]. To solve these equations from tn to tn+1, first we suppose
that the term Mψ varies linearly between these instants, and we approximate the
equation (4) as

XĊk = −λkXCk + βkM
nψn

+
βk
∆t

(t− tn)
(
Mn+1ψn+1 −Mnψn

)
, (5)
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where ∆t = tn+1 − tn, and Mnψn is Mψ evaluated at time tn.
Integrating (5), the solution XCk in tn+1 can be expressed as

XCn+1
k = XCnk e

−λk∆t + βk(akM
nψn + bkM

n+1ψn+1) , (6)

where the coefficients ak and bk are given by

ak =
(1 + λk∆t)(1− e−λk∆t)

λ2
k∆t

− 1

λk
,

bk =
λk∆t− 1 + e−λk∆t

λ2
k∆t

.

Using backward Euler method in equation (3), we obtain

[v−1]
1

∆t
(ψn+1 − ψn) + Ln+1ψn+1

= (1− β)Mn+1ψn+1 +
K∑
k=1

λkXC
n+1
k . (7)

Taking into account equation (6), we reexpress (7) as the system of linear equa-
tions

[
Tn+1

]
ψn+1 = [Rn]ψn +

K∑
k=1

λke
−λk∆tX [Cnk ] , (8)

where the matrices are defined as

[
Tn+1

]
=

1

∆t

[
v−1
]

+ Ln+1 − b̂Mn+1 ,

[Rn] =
1

∆t

[
v−1
]

+ âMn ,

the coefficients â and b̂ are

â =
K∑
k=1

λkβkak , b̂ = 1− β +
K∑
k=1

λkβkbk ,

∆t = tn+1 − tn, and ak and bk are given by [2].

ak =
(1 + λk∆tn)(1− e−λk∆tn)

λ2
k∆tn

− 1

λk
, bk =

λk∆tn − 1 + e−λk∆tn

λ2
k∆tn

.

Then, for each time step, a system of linear equations has to be solved. These
systems are large and sparse and to solve then an iterative Krylov method is used,
but these methods suffer from slow convergence unless a preconditioner is used.
The most popular preconditioners for linear systems are based on incomplete fac-
torizations of the coefficient matrix [6]. Incomplete LU preconditioners are robust,
but for very large matrices they are very expensive from the point of view of the
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memory needed for their storage. In this way, alternative methodologies are pro-
posed here that can be implemented using only vector-matrix products and have
not storage problems.

3. Spectral preconditioners

It is known that the rate of convergence of Krylov subspace methods depend of the
distribution of the eigenvalues of the system matrix together with its eigenvectors
[3]. In many cases that the convergence of these methods can be greatly improved
if the smallest eigenvalues of the matrix are shifted. Spectral preconditioners use
this idea to improve the convergence implementing transformations on the linear
system, in such a way that the matrix obtained after the spectral transformation
has its eigenvalues shifted away from zero. The spectral transformations can be
implemented using matrix-vector products and can be applied without the necessity
of building explicitly the system matrix [3].

Here, we study methods for preconditioning a sequence of linear systems based
on modifying the eigenvalues distribution of the coefficient matrices, by using the
information provided by the Krylov subspaces previously computed. Two strategies
have been implemented and its performance has been compared to solve the sys-
tems associated with the numerical solution of the time dependent neutron diffusion
equation. One precondition methodology is based on low rank corrections on the
system matrix that modify the eigenvalues distribution of this matrix and another
methodology based on recycling an invariant subspace using the the FGCRO-DR
method.

To solve the time dependent neutron diffusion equation, it is necessary to solve
a sequence of linear systems

Anxn = bn , n = 1, 2, . . . (9)

In many transients can be assumed that the spectral properties of the system
matrix vary slowly in time, and they are similar from one linear system to the next
one. In this way, the invariant subspace associated with the preconditioned matrix
at linear system n will be used to precondition the linear system n+ 1.

Invariant subspaces of dimension k should be calculated to precondition the sys-
tems. One possibility is to use the GMRES-DR method [5], which in each external
iteration recycles an approximate invariant subspace to deflate eigenvalues of small-
est magnitude. In particular, to obtain approximate invariant subspaces we have
used a variant of GMRES-DR method known as the FGMRES-DR method [1].
The algorithm known as FGMRES(m) to solve a system

Ax = b ,

of dimension n, relies on the Arnoldi relation

AZm = Vm+1Hm,

ZHmZm = Im,

V H
m+1Vm+1 = Im+1.

with Zm ∈ Cn×m, Vm+1 ∈ Cn×(m+1) has orthonormal columns andHm ∈ C(m+1)×m

is an upper Hessemberg matrix. Columns of Vm+1 form an orthonormal basis of
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the subspace spanned by the following vectors

{r0, Az1, . . . , Azm}

with r0 = b−Ax0, Zm = [z1, . . . , zm] and Vm = [v1, . . . , vm] are related by

Zm = [Mj(v1), . . . ,Mj(vm)] with v1 =
r0

||r0||

where M(v) is the action of a preconditioner M on v.
To obtain approximations of k eigenvalues of the matrix A and their correspond-

ing eigenvectors, the harmonic Ritz pairs of A, (λj , Vmgj), are obtained solving(
Hm + |hm+1,m|2H−Hm eme

T
m

)
gj = λjgj ,

which is an eigenvalue problem of small dimension.

3.1 Low-rank transformations preconditioning

Let us consider a system

Ax = b

and M an initial preconditioner.
Considering V the matrix associated with a right invariant subspace of the matrix

AM of dimension k

AMV = V Jk

where the eigenvalues of Jk are {λ1, . . . , λk}, the following theorem is satisfied, [3]

Theorem 3.1 Let W be such that Ac = WAMV is non singular. Defining

M (2) = M +MVA−1
c W

the eigenvalues of AM (2) are{
η

(2)
i = λi + 1 if i ≤ k
η

(2)
i = λi if i > k

In our implementation we have chosen W (j) = V (j)H .
This preconditioner allows to shift the lowest (in magnitude) k eigenvalues of the

system matrix to be solved and can be applied in a recursive way as follows,

M (l+1) = M +

l∑
j=1

M (j)V (j)
(
W (j)AM (j)V (j)

)−1
W (j) .

To maintain the required memory by the preconditioner under a user-defined
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Table 1. Types of materials

1 Fuel 22 Mixed
2 Absorber 23 Mixed
3 Reflector 24 Mixed

bound, it will be used in the following form

M (l+1) = M +

Lmax∑
j=1

M (j)V (j)
(
W (j)AM (j)V (j)

)−1
W (j)

where the Lmax terms

M (j)V (j)
(
W (j)AM (j)V (j)

)−1
W (j)

are the ones associated with the Lmax smallest eigenvalues of the matrix to optimize
the performance of the preconditioner.

3.2 FGCRO-DR method

Flexible GCRO-DR method [1] is an inner-outer method that combines GCRO as
the outer method and Flexible GMRES-DR as the inner method, and it allows
deflated restarting and subspace recycling.

GCRO method is used to compute optimal approximation over a given set of
search vectors in the sense that the residual is minimized, and the inner method
FGMRES-DR computes a new search vector by approximately solving the residual
equation. GCRO uses two matrices, Uk = (u1, . . . uk) and Ck = AUk, with the
property that CTk Ck = Ik, and solves the minimization problem

min
x∈span(Uk)

||b−Ax|| (10)

with solution x = UkC
T
k b, and the residual r = b−Ax satisfies r = b−CkCTk b, r ⊥

span(Ck).
To preserve optimality with respect to the search directions of the outer method

(GCRO), the inner method (FGMRES-DR) uses the operator (I−CkCTk )A instead
of A, preserving the orthogonality relations from GCRO also in the inner method.

During the process the Ritz pairs of the system matrix can be computed and
this spectral information can be easily adapted to a new linear system as the initial
search direction of the outer methods thus, the spectral information can be recycled
from one system to the next one in a natural way.

4. Numerical Results

To test the preconditioning strategies exposed above for the neutron diffusion
equation, we have considered a transient in a small reactor of type VVER. The
initial configuration for the material distribution in the core is shown in Fig-
ures 1(a) and 1(b). There are three different materials, denoted by the numbers 1,
2 and 3 depending on their type (see Table 1), and other three mixed materials
(22, 23 and 24) used to denote the initial axial position of the simple types (see
Fig 1(b)) on the radial configuration of the reactor (see Fig 1(a)).

The transient defined is defined as follows:
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Figure 1. Small reactor

• At time t = 0.0s, starting form the initial configuration, the height of the ab-
sorber (material 2) at position 23 becomes smaller at constant velocity until it
is completely removed at time t = 0.15s, remaining only the fuel (material 1) in
the unrodded cells, simulating a rod ejection accident.

• From time t = 0.15s until time t = 1.0s nothing happens.

• When the security system acts, a scram is produced inserting absorbers at po-
sitions 22 from time t = 1.0s until the bottom of the reactor is reached at time
t = 9.0s.

Evolution of the normalized mean power, starting from a critical situation of the
reactor, is monitored until time t = 7.0s. Figure 4 shows the evolution of the power
during the transient.

0 1 2 3 4 5 6 7
0

0.5

1

1.5
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2.5

3

time

p
o
w
e
r

Figure 2. Power along the transient.

From this transient we have considered 80 systems of linear equations corre-
sponding to the time interval [0, 1]s with a time step ∆t = 0.0125s.

First, for the spatial discretization with the high order finite element method,
we have considered Kx,y = 1 and kz = 1 in the polynomial expansions obtain-
ing matrices of dimension N = 1898 with NNZ=65860 non-zero elements (linear
discretization), and Kx,y = 2 and kz = 2 in the polynomial expansions obtaining
matrices of dimensionN = 12950 with NNZ=1064284 non-zero elements (quadratic
discretization).

The the low rank transformations preconditioning is used to update an initial
preconditioner M , which is taken initially as the diagonal of the matrix. This pre-
conditioner is used in combination with FGMRES-DR(m,k) method. The number
of iterations needed to solve each of the systems values of Lmax = 15 and Lmax = 25
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(a) Linear discretization
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(b) Quadratic discretization

Figure 3. Number of iterations used by the preconditioned FGMRES-DR(m,k) with different values for
the dimension k of the recycled space, setting Lmax = 15.
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(a) Linear discretization
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(b) Quadratic discretization

Figure 4. Number of iterations used by the preconditioned FGMRES-DR(m,k) with different values for
the dimension k of the recycled space, setting Lmax = 25.

using different values of k are shown in Figure 3 and in Figure 4, for linear and
quadratic spatial discretizations. These results have been obtained with a fixed di-
mension m = 20 of the restarting Krylov subspace. For comparison, the results of
solving the same transient with the classical GMRES(m) method, that is the same
that taking Lmax = 0 and k = 0 with the FGMRES-DR(m,k), is included. There
can be observed the improvement of using FGMRES-DR(m,k) with the low rak
transformations preconditioning, even when recycling little information. It can be
also observed than the improvement scales well with the size of the matrix systems.

The same set of systems has been solved using FGCRO-DR(m,k) method and
an approximate invariant subspace associated with the smallest eigenvalues of one
system matrix is recycled to precondition the solution of the next system. The
number of iterations needed to solve each system setting the dimension of the
restarted Krylov subspace to m = 20 and m = 40 for different values of the
dimension of the recycled space, k, are shown in Figures 5 and 6, respectively, for
linear and quadratic spatial discretizations.

In all the cases the use of the spectral preconditioners is efficient to reduce the
total number of iterations needed to solve the total set of linear systems associated
with the transient in the reactor.
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(b) Quadratic discretization

Figure 5. Number of iterations needed by FGCRO-DR(m,k) method setting m = 20 with different com-
binations for the dimension k of the recycled space.
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Figure 6. Number of iterations needed by FGCRO-DR(m,k) method setting m = 40 with different com-
binations for the dimension k of the recycled space.

5. Conclusions

In this paper two spectral methodologies to precondition the solution of a set of
linear systems are analyzed using sets of linear systems arising in the simulation
of a transient in a nuclear power reactor using the time dependent neutron diffu-
sion equation. The first methodology uses low rank transformations to update an
initial preconditioner to shift the smallest eigenvalues of the system matrix. This
preconditioning technique is combined with the FGMRES-DR(m,k) method. The
second methodology uses the recycling of an approximate invariant subspace asso-
ciated with the smallest eigenvalues of a system matrix to precondition the solution
of the next system. This second methodology is implemented using the FGCRO-
DR(m,k). Both methodologies have been tested with two sets of linear systems
associated with the numerical solution of the time dependent neutron diffusion
equation. In the studied cases it is observed that the use of these preconditioners
succeeds reducing the total number of iterations needed to solve the set of linear
systems associated with the transient.
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