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A QUICK ROUTE TO UNIQUE FACTORIZATION IN
QUADRATIC ORDERS

PAUL POLLACK AND NOAH SNYDER

ABSTRACT. We give a short proof — not relying on ideal classes or the geom-
etry of numbers — of a known criterion for quadratic orders to possess unique
factorization.

1. INTRODUCTION.

Let D be a quadratic discriminant, meaning that D is a nonsquare integer with
D =0,1 (mod 4). Set D = 4d + o, where o € {0,1}, and let 7 = ”+2‘/5. It is easy
to check that 72 € Z + Zr, so that

ZiT|=Z+ 71
_ {u—i—v\/l_)

3 tu,v € Z,u =vD (mod2)}.

In what follows, we write Op (for “order of discriminant D”) in place of Z[7].

Our aim with this note is to showcase a simple proof of the following criterion
for unique factorization in Op. We remind the reader that if R is a domain then
m € R is irreducible if 7 is nonzero and not a unit, and if whenever m = af with
a, B € R, either o or 8 is a unit. The element m € R is prime if 7 is nonzero and
not a unit, and if whenever 7 | o8 (with «, 8 € R) either 7 | « or 7 | 3; equivalently,
a prime is a nonzero element of R for which the principal ideal () is a prime ideal
of R. Prime elements are always irreducible; the converse holds in a UFD (unique
factorization domain), but not in general.

Theorem 1. Suppose that every rational prime number

Q) )< VIDI/3 if D <0,
“\VD/5 ifD>0

that is irreducible in Op is also prime in Op. Then Op is a unique factorization
domain.

1.1. Examples.

(i) [D = 73] Since 4/73/5 = 3.8. .., the conditions of Theorem [Il concern only
the primes p = 2 and p = 3. Neither 2 nor 3 is irreducible, since

9473 9-VT3
2 2
(It is easy to check that all of the factors listed here are nonunits.) We

conclude that Op = Z[*4="2] is a UFD.
1

2 while 3= (2V73+17)- (273 — 17).
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The number 73 is not particularly specialﬂ It is widely believed that
there are infinitely many D > 0 for which Op is a UFD. In fact, Cohen
and Lenstra have precise conjectures predicting, for instance, that O, is a
UFD for 75.44...% of primes p =1 (mod 4) (see [2, §5.10] and [3, [4] 20]).

(ii) [D = —163] Since 4/163/3 = 7.3..., we must check p = 2,3,5,7. As
T = Hi‘/;lw is a root of the monic irreducible polynomial X? — X + 41,
we have that Z[r] = Z[x]/(X? — X + 41). Hence, for each prime p,

Z[r)/(p) = (Z[X]/(p))/(X? = X +41) = Fpla]/(X? — X +41).

It is straightforward to check that X2 — X 4+ 41 is irreducible modulo p
for each of p = 2,3,5,7. (For the odd primes p in this list, it suffices to
observe that the discriminant —163 of X2 — X + 41 is a nonsquare mod
p.) Therefore, Z[7]/(p) is a field, whence (p) is a prime ideal of Op and
p is a prime element. So the criterion of Theorem [Ilis again satisfied and
Op is a UFD. The number —163 is special; as shown by Heegner, it is the
largest (in absolute value) negative D for which Op is a UFD ([9]; see also
[5]).

We do not claim that Theorem [ is new. When Op is the full collection of
algebraic integers inside Q(v/D) (the so-called “maximal order”), basic algebraic
number theory says that Op is a Dedekind domain with finite class group. Fur-
thermore, results from the geometry of numbers imply that every ideal class is
represented by an ideal with norm bounded by the quantities appearing on the
right of (@) (see [I, Theorem 13.7.10, p. 399] for D < 0 and [2, Exercise 17, p. 300]
for D > 0). So Theorem [ follows easily (in this case).

It seems of some interest — e.g., for the teaching of basic courses in algebra and
number theory — to give a proof of Theorem [ requiring as little machinery as
possible. Several close relatives of Theorem [I] have been proved in the literature
without reference to algebraic number theory; see [6, [8, 10, T4, 15 17, 19, 211
22]. However, all of these papers either establish results weaker or less complete
than Theorem [I], or their proofs depend on auxiliary results from the geometry of
numbers or the theory of Diophantine approximation. (For example, the beautifully
simple method of Ramirez V. in [I7] gives a very satisfactory result when D < 0,
but only a partial result for D > 0.) Apart from a few easy lemmas concerning
the “norm” map (see the Notation section below), our proof of Theorem [ is self-
contained, resting only on the commutative ring theory seen in a first graduate
algebra course.

Notation. We let K be the fraction field of Op, so that K = Q(v/D), and we
denote conjugation in K with a bar. The norm of o € K, denoted N («), is defined
by N(a) = aa. We recall that N(af) = N(a)N(B) for all o, 8 € K, that the
norm sends nonzero elements of Op to nonzero integers, and that « is a unit of Op
if and only if N(a) = £1. Readers are invited to prove these results themselves;
alternatively, they may consult, e.g., [T, Chapter 2].

2. PrROOF OoF THEOREM [I].

Our proof makes crucial use of the following lemma, which also features in the
arguments of [8], [T5] 17, 19} 2T, 22].

ISee [13] for a counterpoint to this claim.
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Lemma 2. Let a € Op. If N(a) = +p, where p is a rational prime, then « is
prime in Op.

Proof. Since a@ = +p, there is a canonical surjection Op/(p) - Op/(«). Since
@ is not a unit, the corresponding kernel is nontrivial (containing, e.g., & mod p).
Thus, #Op /() is a proper divisor of #0p/(p) = p?. (The last equality comes from
noting that a + b7, for 0 < a,b < p, form a complete residue system mod p.) Since
« is not a unit, #Op/(a) > 1. Therefore, #Op/(a) = p, and so Op/(a) = F,,.
Hence, () is a prime (in fact, maximal) ideal of Op, so that « is prime in Op. O

We turn now to the proof of Theorem[Il A simple induction on |N(a/)| shows that
every nonzero, nonunit « € Op has a factorization into irreducibles. So it remains
only to prove uniqueness. We reduce this (as in [I5, 19, 22]) to the following claim.

Claim. FEvery prime in Z factors as a product of primes in Op.

To see why this suffices, recall that an element with a factorization into primes
necessarily has this as its only factorization into irreducibles (up to order and unit
factors). This is clear from the usual proof of unique factorization in a Euclidean
domain or PID (compare with the proof of Proposition 12.2.14(a) in [I]). Since
every rational integer larger than 1 factors as a product of rational primes, our claim
implies that all those integers factor uniquely in Op. But this implies that every a €
Op, not zero and not a unit, also factors uniquely: If o had two factorizations, we
could cook up two factorizations of | Na| = £ada by concatenating our factorizations
of a with a fixed factorization of +a.

Proof of the claim. Assuming the claim to be false, let p be the smallest prime for
which it fails. Then

2 p>{\/|D|/3 when D < 0,

D/5 when D > 0.

Indeed, suppose otherwise. Since p does not factor as a product of primes, it itself is
not prime. But then the hypothesis of Theorem [l tells us that p factors nontrivially
in Op. Write p = 7y - - -, with £ > 2 and all the 7; irreducible. Taking norms,
p? = N(m)---N(m), and so k = 2 and N (1) = N(m2) = +p. By Lemma 2 both
w1 and 7o are prime, and so p factors into primes after all, an absurdity.

Let
m(X) = X2 —oX + 2= ¢ 7/x]
be the minimal polynomial of 7. Then Z[r] = Z[X]/(m(X)) and Z[7]/(p) =
F,[X]/(m(X)). Since p is not prime in Op, the quotient ring Z[7]/(p) is not a
field, and so m(X) factors nontrivially over F,. Thus, for some integers x and 2,

(3) m(X)=(X —2)(X —2') (mod p).

Comparing coefficients of X on both sides, we find that  + 2’ = ¢ (mod p), and
so we can assume that

?Sxﬁp if D >0, and US:ESI% if D <0.

By @), m(z) =0 (mod p). Moreover, our inequalities for x guarantee that

m(x)| < p*.
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Indeed, if D > 0, then (keeping in mind (2))

> D_p*-D
p2>m(x):(x—%) —ZZP 1 > —p?,

while if D < 0, then

2 D 2+ |D
O<m(x):(x—g) +u<2L||<p2'

2 4 — 4

Write m(x) = pr, where |r| < p. By the minimality of p, every prime dividing r
factors into primes of Op, and so r itself factors, up to sign, as a product of primes
of Op. Thus, for some primes 71, ...,1¢ of Op,

(z —71)(x —7) =m(x) =Lpn e

Since 7 is prime, 77 divides either z — 7 or £ — 7. Divide both sides of the equation
by m1 and continue the process with 7. Eventually we are led to a factorization of
the form

rT—T T —T
g =*p wheee  Ih=]Jn, o=][n
L 2 ieT ieze

for some Z C {1,2,...,k}, where Z¢ = {1,2,...,k} \ Z. Multiplying by +1 if
necessary, we obtain a factorization of p as af, say. If a or 8 is a unit, then the
other is a unit multiple of p. But that implies p |  — 7 or p |  — 7, which is absurd.
(Both {1,7} and {1,7} are Z-module bases of Op, and so when a multiple of p
is written as a + bt or a + b7, both a and b must be multiples of p.) So «, are
nonunits. Now taking norms shows that Naw = N = +p, so that «, 3 are prime
by Lemma 2l Thus, p has a factorization into primes of Op after all, contradicting
the choice of p. (I

Remark. In 1912/1913, Frobenius [7] and Rabinowitsch [16] (independently) pub-
lished the following striking result: For each integer ¢ > 2,

22 — x4+ ¢ is prime for all integers 0 < x < ¢

if and only if Z[3(1 + /1 —4q)] is a UFD;

see [12, Chapter 11] for an exposition. For example, since Z[$(1 + /=163)] is a
UFD, the polynomial 2 — 2 + 41 assumes prime values for x = 1,2,...,40. The
“only if” half of the proof is the more difficult of the two, and for this most modern
treatments fall back on the theory of the class group. Theorem [ allows one to
fashion a completely elementary proof (apply Theorem [ in place of Proposition
11.13 in [12]; alternatively, Ramirez V.’s Theorem 3.1 from [I7] can be used). Indeed,
these arguments prove a sharper version of the forward direction, which has the
following consequence: 2 — x + 41 being prime for just z = 1,2,3, 4 implies that
2% — x + 41 must continue being prime all the way to z = 40. Certain relatives of
Rabinowitsch’s theorem for real quadratic orders can be given elementary proofs in

a parallel way (compare with [18]).
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