
(Re)constructing Code Loops

Ben Nagy and David Michael Roberts

10 March 2020

The Moufang loop named for Richard Parker is a central extension of
the extended binary Golay code. It the prototypical example of a gen-
eral class of nonassociative structures known today as code loops, which
have been studied from a number of different algebraic and combinatorial
perspectives. This expository article aims to highlight an experimental
approach to computing in code loops, by a combination of a small amount
of precomputed information and making use of the rich identities that code
loops’ twisted cocycles satisfy. As a byproduct we demonstrate that one can
reconstruct the multiplication in Parker’s loop from a mere fragment of its
twisted cocycle. We also give relatively large subspaces of the Golay code
over which Parker’s loop splits as a direct product.

1 introduction.

Associativity is one of the standard axioms for groups, along with inverses and the
identity element. At first it can be difficult to imagine what algebraic structures could
be like that are not associative. However, we are all familiar with the nonassociative
operation of exponentiation: (23)

2 6= 2(3
2), for example. But exponentiation is an

ill-behaved binary operation, with neither (a two-sided) inverse nor identity element,
hence very much unlike a group. One class of nonassociative structures as close to
being a group as possible are Moufang loops, which are more or less “groups without
full associativity”, having an identity element and two-sided inverses. This article is
concerned with a special class of Moufang loops now known as code loops, which have
curious connections to sporadic finite simple groups [Con85], [Gri87, §7]. In particular,
we consider in detail a Moufang loop P , introduced by Richard Parker, in unpublished
work in the early 1980s, as the exemplar of a class of loops later shown to be equivalent
to code loops [Gri86].

An early example of a code loop, though not identified as such, appeared in Cox-
eter’s work on integral octonions [Cox46] (see, e.g., [Gri87, §2] for details), but the
most striking appearance was the use of Parker’s loop P as part of John Conway’s
construction of the Monster sporadic simple group [Con85]. A general study of loops
of this type was subsequently made by Robert Griess [Gri86], who named them, based
on the fact that they can be built from doubly-even binary codes. For example, Parker’s
loop P is then constructed by starting with the famous extended Golay code. Griess
also proved the existence of code loops by an algorithmic construction, which we adopt
below. (More recent approaches will be discussed in Section 6.)

The data required to describe a code loop is a function θ : C × C → F2, where
F2 = {0, 1} is the field with two elements, and C ⊂ (F2)

n is a doubly-even binary
code—a subspace with a particular property that we recall below. The function θ must
then satisfy a number of identities that use this property. For the sake of terminology,
we refer to the elements of F2 as bits, and θ is called a twisted cocycle. Note, however,
that both Conway’s and Griess’s treatment of Parker’s loop is rather implicit, merely
using the properties of θ, not examining its structure. The point of the present article is

1

ar
X

iv
:1

90
3.

02
74

8v
2

 [
m

at
h.

C
O

]
 1

1
M

ar
 2

02
0

to give a concrete and efficient approach to code loops in general, and Parker’s loop in
particular—the latter especially so, given its use in constructing the Monster group.

Recall that the elements (or words) in a code C, being vectors, can be combined by
addition—this is a group operation and hence associative. The elements of a code loop
consist of a pair: a code word and one extra bit. The extra bit, together with θ, twists
the addition so that the binary operation ? in the code loop is a nonassociative operation:
(x ? y) ? z 6= x ? (y ? z) in general.

While addition of words in a code is performed by coordinate-wise addition in F2
(that is, bitwise XOR), the algebraic operation in a code loop is not easily described in
such an explicit way—unless one has complete knowledge of the function θ. It is the
computation and presentation of such twisted cocycles that will mainly concern us in
this article, using Griess’s method [Gri86, proof of Theorem 10]. As a result, we will
observe some curious features of Parker’s loop, obtained via experimentation and, it
seems, previously unknown.

The function θ can be thought of as a table of bits, or even as a square image built
from black and white pixels, with rows and columns indexed by elements of C. One of
the main results given here is that θ can be reconstructed from a much smaller subset
of its values. If dim C = 2k, then while θ is a table of (22k)2 values, we need only store
roughly 22k values, and the rest can be reconstructed from equation (6) in Lemma 2

below. For Parker’s loop this means that instead of storing a multiplication table with
approximately 67 million entries, one only need store a 128× 128 table of bits. This
table, given in Figure 3, exhibits several structural regularities that simplify matters
further.

We begin the article with a treatment that (re)constructs a small nonabelian finite
group using a cocycle on a 2-dimensional F2-vector space. This will exhibit the technique
we will use to construct code loops, in the setting of undergraduate algebra.

2 extensions and cocycles .

Recall that the quaternion group Q8, usually introduced in a first course in group theory,
is the multiplicative group consisting of the positive and negative basis quaternions:

Q8 = {1, i, j, k, −1, −i, −j, −k}.

The elements of Q8 satisfy the identities

i2 = j2 = k2 = −1, ij = k.

There is a surjective group homomorphism π : Q8 → F2×F2 =: V4 (the Klein 4-group),
sending i to (1, 0) and j to (0, 1), and the kernel of π is the subgroup ({1,−1},×) '
(F2,+). Moreover, this kernel is the center of Q8, the set of all elements that commute
with every other element of the group. This makes Q8 an example of a central extension:
F2 → Q8 → V4.

Now Q8 is a nonabelian group, but both F2 and V4 are abelian. One might think that
it shouldn’t be possible to reconstruct Q8 from the latter two groups, but it is! That is,
if we are given some extra information that uses only the two abelian groups. There is
a function s : V4 → Q8, called a section, defined by

(0, 0) 7→ 1 (1, 0) 7→ i (0, 1) 7→ j (1, 1) 7→ k.

This almost looks like a group homomorphism, but it is not, as (1, 0) + (1, 0) = (0, 0) in
V, but s(1, 0)s(1, 0) = i2 6= 1 = s(0, 0) in Q8. We can actually measure the failure of s
to be a group homomorphism by considering the two-variable function

d : V4 ×V4 → F2

defined by (−1)d(v,w) = s(v)s(w)s(v + w)−1. This function is called a cocycle, or more
properly a 2-cocycle (for a treatment of the general theory, see, e.g., [Bro94], and

2

Chapter IV in particular). It is a nice exercise to see that s(v)s(w)s(v + w)−1 is always
±1, so that this definition makes sense. The values of d(v, w) are given as

v \ w 00 10 01 11
00 0 0 0 0
10 0 1 1 0
01 0 0 1 1
11 0 1 0 1

where we write 00 for (0, 0), 10 for (1, 0), and so on. Clearly, if s were a homomorphism,
d would be the zero function. One can check that d satisfies the cocycle identities

d(v, w)− d(u + v, w) + d(u, v + w)− d(u, v) = 0 (1)

for all triples u, v, w ∈ V4. It is also immediate from the definition that d(0, 0) = 0. An
alternative visualization is given in Figure 1.

Figure 1: A 4× 4 array giving the values of the cocycle d : V4 ×V4 → F2, with white =
0, black = 1. The order of the row/column labels is 00, 10, 01, 11.

The reason for this somewhat mysterious construction is that we can build a bijection
of sets using s and the group isomorphism F2 ' {1,−1}, namely the composite

φ : F2 ×V4 ' ({1} ×V4) ∪ ({−1} ×V4)→{1, i, j, k} ∪ {−1, −i, −j, −k} = Q8 .

Now, if we define a new product operation using the cocycle d on the underlying set of
F2 ×V4 by

(s, v) ∗d (t, w) := (s + t + d(v, w), v + w),

then the cocycle identities ensure that this is in fact associative and further, a group
operation. Finally, φ can be checked to be a homomorphism for multiplication in Q8
and for ∗d, hence is a group isomorphism.

Thus we can reconstruct, at least up to isomorphism, the nonabelian group Q8 from
the two abelian groups V4 and F2, together with the cocycle

d : V4 ×V4 → F2.

If we didn’t know about the group structure of Q8 already, we could construct it from
scratch using d. We can also build loops (particularly code loops) in the same way,
which we will now outline.

3 twisted cocycles and loops .

The construction in the previous section is a fairly typical case of reconstructing a
central extension from a cocycle (although in general one does not even need the analog
of the group V4 to be abelian). However, we wish to go one step further, and construct
a structure with a nonassociative product from a pair of abelian groups: the group F2
and additive group of a vector space V over F2. Instead of a cocycle, we use a twisted
cocycle: a function α : V ×V → F2 like d that, instead of (1), satisfies

α(v, w)− α(u + v, w) + α(u, v + w)− α(u, v) = f (u, v, w)

3

for a nonzero twisting function f : V × V × V → F2. We will assume that α satisfies
α(0, v) = α(v, 0) = 0 for all v ∈ V, a property that holds for the cocycle d in the
previous section. The “twisted cocycle” terminology comes from geometry, where they
appear in other guises; another term used is factor set.

From a twisted cocycle α the set F2 ×V can be given a binary operation ∗α:

(s, v) ∗α (t, w) := (s + t + α(v, w), v + w). (2)

We denote the product F2 ×V of sets equipped with this binary operation by F2 ×α V.
If the twisting function f is zero, then α is a cocycle, ∗α is an associative operation, and
F2 ×α V is a group.

Definition. A loop is a set L with a binary operation ? : L× L→ L, a unit element e ∈ L
such that e ? x = x ? e = x for all x ∈ L, and such that for each z ∈ L, the functions
rz(x) = x ? z and `z(x) = z ? x are bijections L → L. A homomorphism of loops is a
function preserving multiplication and the unit element.

The conditions on rx and `x mean that every element x ∈ L has a left inverse x−1
L

and a right inverse x−1
R for the operation ?, and these are unique—but may be different

in general. The following is a worthwhile exercise using the twisting function and the
assumption that α(0, v) = α(v, 0) = 0.

Lemma 1. The operation ∗α makes F2 ×α V into a loop, with identity element (0, 0). The
projection function π : F2 ×α V → V is a surjective homomorphism of loops, with kernel
F2 × {0}.

Groups are examples of loops, but they are, in a sense, the uninteresting case. Arbi-
trary loops are quite badly behaved: even apart from the product being nonassociative,
left and right inverses may not coincide, and associativity can fail for iterated products
of a single element. But there is a special case introduced by Ruth Moufang [Mou35],
with better algebraic properties, while still permitting nonassociativity.

Definition. A Moufang loop is a loop (L, ?) satisfying the identity

x ? (y ? (x ? z)) = ((x ? y) ? x) ? z

for all choices of elements x, y, z ∈ L.

The most famous example of a Moufang loop is probably the set of non-zero
octonions under multiplication, although there are many less-known finite examples.
A key property of a Moufang loop L is that any subloop 〈x, y〉 < L generated by a
pair of elements x, y is in fact a group. By a subloop of L we mean a subset containing
e that is closed under the operation ?. As a corollary, powers of a single element are
well-defined, and do not require extra bracketing: x ? (x ? x) = (x ? x) ? x =: x3, for
example. Additionally, the left and right inverses always agree in a Moufang loop, so
that for each x ∈ L there is a unique x−1 such that x ? x−1 = x−1 ? x = e. Code loops,
defined below as a special case of the construction of F×α V, are examples of Moufang
loops.

Example 1. Let V = (F2)
3. The 16-element Moufang loop M := M16(C2 × C4) of

[Che74, Theorem 2] is isomorphic to F2 ×µ V, where µ : V × V → F2 is the twisted
cocycle given by the 8× 8 array of bits in Figure 2.

Notice that the first four columns/rows correspond to the subgroup U ⊂ V generated
by 100 and 010, and that the restriction of µ to U ×U is identically zero (i.e., white).

This means that the restriction M
∣∣
U < M—the subloop of M whose elements are

mapped to U by M ' F2 ×µ V → V—is isomorphic to the direct product F2 ×U,
using the definition (2) of the product, and in particular is a group.

4

Figure 2: Twisted cocycle for the Moufang loop M of Example 1; white = 0, black = 1.
The order of the row/column labels is 000, 100, 010, 110, 001, 101, 011, 111.

4 codes and code loops.

To describe the twisting function f for our code loops, we need to know about some
extra operations that exist on vector spaces over the field F2. For W an n-dimensional
vector space over F2 and vectors v, w ∈W, there is a vector v & w ∈W given by

v & w := (v1w1, v2w2, . . . , vnwn).

If we think of such vectors as binary strings, then this operation is bitwise AND (hence
the notation). Note that if we take a code C ⊂ (F2)

n, then C is not guaranteed to be
closed under this operation. The other operation takes a vector v ∈W and returns its
weight: the sum, as an integer, of its entries: |v| := v1 + · · ·+ vn. Equivalently, it is the
number of nonzero entries in v.

The twisting function for a code loop is then a combination of these two, namely
f (u, v, w) := |u & v & w|. However, as alluded to above, we are going to ask that further
identities hold. For these identities to make sense we need to start with a code with
the special property of being doubly even.

Definition. A code C ⊂ (F2)
n is doubly even if for every word v ∈ C, |v| is divisible by

4.

Example 2. The Hamming (8,4) code is the subspace H ⊂ (F2)
8 spanned by the four

row vectors
1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

and is doubly even.

A more substantial example of a doubly-even code is the following.

Example 3. The (extended binary) Golay code G ⊂ (F2)
24 is the span of the following

(row) vectors, denoted b1, . . . , b6 (left) and b7, . . . , b12 (right):

0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 1
1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1

1 0 1 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0
1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 1
0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1

This basis is different from the more usual ones (e.g., [CS99, Figure 3.4]), which can
be taken as the rows of a 12× 24 matrix whose left half is the 12× 12 identity matrix.
Our basis, however, allows us to demonstrate some interesting properties.

5

The inclusion/exclusion formula applied to counting nonzero entries allows us to
show that, for all v and w in any doubly even code C,

|v + w|+ |v & w| = |v|+ |w| − |v & w| .

In other words: |v & w| = 1
2 (|v|+ |w| − |v + w|), which implies that |v & w| is divisible

by 2. Thus for words v, w in a doubly even code, both 1
4 |v| and 1

2 |v & w| are integers.

Definition (Griess [Gri86]). Let C be a doubly even code. A code cocycle1 is a function
θ : C × C → F2 satisfying the identities

θ(v, w)− θ(u + v, w) + θ(u, v + w)− θ(u, v) = |u & v & w| (mod 2); (3)

θ(v, w) + θ(w, v) = 1
2 |v & w| (mod 2); (4)

θ(v, v) = 1
4 |v| (mod 2). (5)

A code loop is then a loop arising as F2 ×θ C (up to isomorphism) for some code cocycle
θ.

Example 4. Define C := span{b10, b11, b12}, using the basis vectors from Example 3.

Then the composite function C × C ' (F2)
3 × (F2)

3 µ−→ F2, using the twisted cocycle µ
in Figure 2, is a code cocycle. This makes the loop M from Example 1 a code loop.

There is a notion of what it means for two twisted cocycles to be equivalent, and
equivalent twisted cocycles give isomorphic loops. As part of [Gri86, Theorem 10],
Griess proves that all code cocycles for a given doubly even code are equivalent, and
hence give isomorphic code loops.

5 griess’s algorithm and its output.

The algorithm that Griess describes in the proof of [Gri86, Theorem 10] to construct code
cocycles for a code C takes as input an ordered basis {b0, . . . , bk−1} for C. A code cocycle
is then built up inductively over larger and larger subspaces Vi = span{b0, . . . , bi}.

However, the description by Griess is more of an outline, using steps like “determine
the cocycle on such-and-such subset using identity X”, where X refers to one of (3), (4),
(5), or corollaries of these. We have reconstructed the process in detail in Algorithm 1.

We implemented Algorithm 1 in the language Go [NR19], together with diagnostic
tests, for instance to verify the Moufang property. The output of the algorithm is a
code cocycle, encoded as a matrix of ones and zeros, and can be displayed as an array
of black and white pixels. There are steps where an arbitrary choice of a single bit is
allowed; we consistently took this bit to be 0. For the Golay code this image consists of
slightly over 16 million pixels.

As a combinatorial object, a code cocycle θ : G × G → F2 constructed from Algo-
rithm 1 using the basis in Example 3 can be too large and unwieldy to examine for
any interesting structure. Moreover, to calculate with Parker’s loop P := F2 ×θ G one
needs to know all 16 million or so values of θ. It is thus desirable to have a method
that will calculate values of θ by a method shorter than Algorithm 1.

Lemma 2. Let C be a doubly even code and θ a code cocycle on it. Given C = V ⊕W a
decomposition into complementary subspaces, then for v1, v2 ∈ V and w1, w2 ∈W,

θ(v1 + w1, v2 + w2) = θ(v1, v2) + θ(w1, w2) + θ(v1, w1) (6)

+ θ(w2, v2) + θ(v1 + v2, w1 + w2)

+ 1
2 |v2 & (w1 + w2)|+ |v1 & v2 & (w1 + w2)|

+ |w1 & w2 & v2|+ |v1 & w1 & (v2 + w2)| (mod 2) .

1 Griess uses the alternative term “factor set”.

6

Proof. We apply the identity (3) three times and then the identity (4) once:

θ(v1 + w1, v2 + w2) = θ(v1, w1) + θ(v1, v2 + w1 + w2) + θ(w1, v2 + w2)

+ |v1 & w1 & (v2 + w2)|
= θ(v1, w1) +

{
θ(v1, v2) + θ(v1 + v2, w1 + w2))

+ θ(v2, w1 + w2) + |v1 & v2 & (w1 + w2)|
}

+
{

θ(w1, w2) + θ(w1 + w2, v2) + θ(w2, v2)

+ |w1 & w2 & v2|
}
+ |v1 & w1 & (v2 + w2)|

= θ(v1, w1) +
{

θ(v1, v2) + θ(v1 + v2, w1 + w2))

+ |v1 & v2 & (w1 + w2)|
}

+
{

θ(w1, w2) + θ(w2, v2) + |w1 & w2 & v2|
}

+ |v1 & w1 & (v2 + w2)|+ 1
2 |v2 & (w1 + w2)|.

Observe that in Lemma 2, on the right-hand side of (6), the code cocycle θ is only ever
evaluated on vectors from the subset V ∪W ⊂ C. This means we can throw away the
rest of the array and still reconstruct arbitrary values of θ using (6). If we assume that
C is 2k-dimensional, and that V and W are both k-dimensional, then the domain of the
restricted θ has (2k + 2k − 1)2 = 22(k+1) − 2k+2 + 1 = O((2k)2) elements. Compared to
the full domain of θ, which has 22k × 22k = (2k)4 elements, this is roughly a square-root
saving.

However, one heuristic for choosing the subspaces V and W is to aim for a reduction
in the apparent randomness of the plot of the restricted code cocycle, or equivalently,
less-granular structural repetition. This is true, even if the size of V ∪W is not
minimized by choosing V and W to have dimension (dim C)/2 (or as close as possible).

Now it should be clear why the Golay code basis in Example 3 was partitioned into
two lists of six vectors: we can reconstruct all 16 777 216 values of the resulting code
cycle θ, and hence the multiplication in Parker’s loop, from a mere 214− 28 + 1 = 16 129
values. The span of the left column of vectors in Example 3 is the subspace V ⊂ G, and
the span of the right column of vectors is W ⊂ G.

The top left quadrant of Figure 3 then contains the restriction of θ to V ×V, and the
bottom right quadrant the restriction to W ×W. The off-diagonal quadrants contain
the values of θ restricted to V ×W and W ×V. From Figure 3 and formula (2) we can
see that the restriction P

∣∣
V of Parker’s loop is a direct product (hence is a group), as

θ
∣∣
V×V is identically zero. Moreover, the restriction of P

∣∣
W is isomorphic to the direct

product (F2)
3 ×M, where M is the Moufang loop from Example 1. This is because

what was a single pixel in Figure 2 is now an 8× 8 block of pixels in the lower right
quadrant of Figure 3.

6 discussion and comparison.

Parker’s loop P is an algebraic structure that has spawned a small industry trying to
understand and construct code loops in general, as they form a class of Moufang loops
that are relatively easy to describe. Parker’s original treatment of this class of Moufang
loops used vector spaces V over F2 equipped with a function V → F2 satisfying certain
conditions analogous to those in Definition 4 (see [Gri86, Definition 13]).

Aside from Parker’s approach and the description by Griess using code cocycles,
there was an unpublished thesis [Joh88], characterizations as loops with specified
commutators and associators [CG90], an iterative construction using centrally twisted
products [Hsu00], and a construction using groups with triality [Nag08]. The LOOPS
library [NV18] for the software package GAP [GAP19] contains all the code loops of
order 64 and below, although “the package is intended primarily for quasigroups and
loops of small order, say up to 1000”. Even the more recent [OV17], which classifies
code loops up to order 512 in order to add them to the LOOPS package, falls short of

7

the 8192 elements of Parker’s loop; the authors say “our work suggests that it will be
difficult to extend the classification of code loops beyond order 512”. In principle, there
is nothing stopping the construction of P in LOOPS, but it will essentially be stored
as a multiplication table, which would comprise 67 108 864 entries, each of which is
a 13-bit element label. The paper [MGO11] describes an algebraic formula for a code
cocycle that will build Parker’s loop, as a combination of the recipe in the proof of
Proposition 6.6 and the generating function in Proposition 9.2 appearing there. This
formula is a polynomial with 330 cubic terms and 12 quadratic terms in 24 variables,
being coefficients of basis vectors of G. To compare, combined with the small amount
of data in Figure 3 together with a labelling of rows/columns by words of the Golay
code, Lemma 2 only requires eight terms, of which four are cubic and the rest come
from the 16 129 stored values of θ (the term θ(v1, v2) vanishes identically, for P). Since
large-scale computation in large code loops (for instance in a package like LOOPS)
requires optimizing the binary operation, we have found a space/time trade-off that
vastly improves on existing approaches.

In addition to computational savings, the ability to visually explore the structure of
code loops during experimentation more generally is a novel advance—the recognition
of (F2)

3 ×M inside P was purely by inspection of the picture of the code cocyle then
consulting the (short) list of Moufang loops of small order in [Che74]. Discovery of
the basis in Example 3 occurred by walking through the spaces of bases of subcodes
and working with the heuristic that more regularity in the appearance of the code
cocycle is better. Additionally, our software flagged when subloops thus considered
were in fact associative, and hence a group, leading to the discovery of the relatively
large elementary subgroups (F2)

7 < P and (F2)
6 < (F2)

3 ×M < P .
Finally, one can also remark that because of the identity (4), one can replace the

formula in Lemma 2 by one that is only ever evaluated on V2, W2, or V ×W, with
just one more term. This allows the reconstruction the top right quadrant of Figure 3

Figure 3: The restriction of the code cocycle θ for Parker’s loop to (V ∪W)2. A machine-
readable version is available in [NR19] or as an arXiv ancillary file. The order
of the row/column labels is 0, b1, b2, b1 + b2, b3, . . . , b1 + · · ·+ b6, b7, b8, b7 +
b8, . . . , b7 + · · ·+ b12.

8

from the bottom left quadrant. Thus one can describe Parker’s loop as being generated
by the subloops (F2)

7 and (F2)
3 × M, with relations coming from the information

contained in the bottom left quadrant of Figure 3, and the formulas (4) and (6). The
apparent structure in that bottom left quadrant is intriguing, and perhaps indicative of
further simplifications; this will be left to future work.

Data: Basis B = {b0, b1, . . . , bk−1} for the code C
Result: Code cocycle θ : C × C → F2, encoded as a square array of elements from F2,

with rows and columns indexed by C

// Initialise

forall c1, c2 ∈ C do
θ(c1, c2)← 0

end
θ(b0, b0)← 1

4 |b0|

forall 1 ≤ i ≤ length(B) do
Define Vi := span{b0, . . . , bi−1}
// (D1) define theta on {bi} x Vi then deduce on Vi x {bi}
forall v ∈ Vi do

if v 6= 0 then
θ(bi, v)← random // In practice, random = 0

θ(v, bi)← 1
2 |v & bi|+ θ(bi, v)

else
// θ(bi, v) is already set to 0

θ(v, bi)← 1
2 |v & bi|

end
end
// (D2) deduce theta on {bi} x Wi and Wi x {bi}
forall v ∈ Vi do

θ(bi, bi + v)← 1
4 |bi|+ θ(bi, v)

θ(bi + v, bi)← 1
2 |bi & (bi + v)|+ 1

4 |bi|+ θ(bi, v)
end
// (D3) deduce theta on Wi x Wi

forall v1 ∈ Vi do
forall v2 ∈ Vi do

w← bi + v2
a← θ(v1, bi)
b← θ(v1, bi + w)
c← θ(w, bi)

r ← 1
2 |v1 & w|+ a + b + c

θ(w, bi + v1)← r
end

end
// (D4) deduce theta on Wi x Vi and Vi x Wi

forall v1 ∈ Vi do
forall v2 ∈ Vi do

w← bi + v2
a← θ(w, v1 + w)

θ(w, v1)← 1
4 |w|+ a

θ(v1, w)← 1
2 |v1 & w|+ 1

4 |w|+ a
end

end
end

Algorithm 1: Reverse-engineered from proof of [Gri86, Theorem 10].

9

7 acknowledgments .

DMR is supported by the Australian Research Council’s Discovery Projects scheme
(project number DP180100383), funded by the Australian Government. The authors
thank an anonymous referee for providing Coxeter’s example and clarifying the details
of Parker’s construction.

references

[Bro94] Kenneth Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87,
Springer-Verlag, New York, 1994, Corrected reprint of the 1982 original.

[CG90] Orin Chein and Edgar G. Goodaire, Moufang loops with a unique nonidentity
commutator (associator, square), J. Algebra 130 (1990), no. 2, 369–384.

[Che74] Orin Chein, Moufang loops of small order. I, Trans. Amer. Math. Soc. 188 (1974),
31–51.

[Con85] John. H. Conway, A simple construction for the Fischer-Griess monster group,
Invent. Math. 79 (1985), no. 3, 513–540.

[Cox46] H. S. M. Coxeter, Integral Cayley numbers, Duke Math. J. 13 (1946), 561–578.

[CS99] John H. Conway and Neil J. A. Sloane, Sphere Packings, Lattices and Groups,
third ed., Grundlehren der Mathematischen Wissenschaften, vol. 290,
Springer-Verlag, New York, 1999.

[GAP19] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.10.2,
2019, www.gap-system.org.

[Gri86] Robert L. Griess, Jr., Code loops, J. Algebra 100 (1986), no. 1, 224–234.

[Gri87] , Sporadic groups, code loops and nonvanishing cohomology, J. Pure Appl.
Algebra 44 (1987), no. 1-3, 191–214.

[Hsu00] Tim Hsu, Explicit constructions of code loops as centrally twisted products, Math.
Proc. Cambridge Philos. Soc. 128 (2000), no. 2, 223–232.

[Joh88] Peter Malcolm Johnson, Gamma spaces and loops of nilpotence class two, Ph.D.
thesis, University of Illinois at Chicago, 1988.

[MGO11] Sophie Morier-Genoud and Valentin Ovsienko, A series of algebras generalizing
the octonions and Hurwitz-Radon identity, Comm. Math. Phys. 306 (2011), no. 1,
83–118.

[Mou35] Ruth Moufang, Zur Struktur von Alternativkörpern, Math. Ann. 110 (1935),
no. 1, 416–430.

[Nag08] Gábor P. Nagy, Direct construction of code loops, Discrete Math. 308 (2008),
no. 23, 5349–5357.

[NR19] Ben Nagy and David Michael Roberts, codeloops library, 2019, github.com/
bnagy/codeloops.

[NV18] Gábor P. Nagy and Petr Vojtěchovský, loops, computing with quasigroups
and loops in gap, Version 3.4.1, gap-packages.github.io/loops/, Nov 2018,
Refereed GAP package.

[OV17] Eamonn A. O’Brien and Petr Vojtěchovský, Code loops in dimension at most 8,
J. Algebra 473 (2017), 607–626.

10

www.gap-system.org
github.com/bnagy/codeloops
github.com/bnagy/codeloops

	1 Introduction.
	2 Extensions and cocycles.
	3 Twisted cocycles and loops.
	4 Codes and code loops.
	5 Griess's algorithm and its output.
	6 Discussion and comparison.
	7 Acknowledgments.

