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AIRSPACE SECTORIZATION WITH CONSTRAINTS

Huy TRANDAC!, PHILIPPE BAPTISTE? AND VU DUONG?

Abstract. We consider the Airspace Sectorization Problem (ASP) in
which airspace has to be partitioned into a given number of sectors,
each of which being assigned to a team of air traffic controllers. The
objective is to minimize the coordination workload between adjacent
sectors while balancing the total workload of controllers. Many specific
constraints, including both geometrical and aircraft related constraints
are taken into account. The problem is solved in a constraint program-
ming framework. Experimental results show that our approach can be
used on real life problems.

Keywords. Airspace sectorization, constraint programming.

Mathematics Subject Classification.

1. INTRODUCTION

Sectorization is a fundamental architectural feature of Air Traffic Management
(ATM). Airspace is divided into a number of sectors, each one is assigned to a team
of controllers. Controllers of a given sector have (1) to monitor flights; (2) to avoid
conflicts between aircrafts and (3) to exchange information with adjacent sectors
to take or to hand-on the control responsibility of flights. These tasks induce a
workload which is often decomposed into three corresponding parts [8-10]:

e The monitoring workload (MW) comes from the repeated checking of air-
craft trajectories.
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o The conflict workload (CW) results from resolution and avoidance of con-
flicts between aircrafts.

e The coordination workload (OW) is basically related to communications
that have to be performed with controllers of adjacent sectors and with
pilots.

Air traffic volume changes over the day, and often leads to an unbalanced workload
between sectors. Furthermore, it is better to have more sectors in dense traffic
periods of the day than in the low loaded periods. Hence a tool to dynamically
re-sectorize the airspace (more precisely a part of airspace — e.g. the sectors of an
En-Route Air Traffic Control Center) is required to cope with the evolution of the
traffic.

We rely on the following model: airspace is made of routes that cross each
other (routes are provided as a list of successive 3D points). In the following,
G = (V, E) denotes the graph representing the airspace. V is the set of crossing
points v;, and (v;,v;) € E if and only if there is a direct route from v; to v;.

The graph G is labelled both on its vertices and edges. The valuations are used
to model the three parts of workloads mentioned above. We use a static estimation
of each of the workloads (achieving a more precise estimation is a very complex
task and it is beyond the scope of this paper):

e The coordination workload of an edge is proportional to the number of
aircrafts passing this edge. The cost is only taken into account when the
edge crosses two sectors.

e The monitoring workload is proportional to the total time that aircrafts fly
along the edge. So when an edge crosses two sectors, one should compute
the length of the edge in each of the sectors. To simplify the presentation,
we split the monitoring cost of an edge in two equal values, that we allocate
to each of the two vertices of the edge.

e The conflict workload is associated to the vertices and is proportional
to the total number of conflicts that occur at the corresponding crossing
point.

So we have two valuations on G: w;, the weight of v; € V corresponding to the
aggregation of the monitoring workload and the conflict workload, and w;;, the
weight of (v;,v;) € E corresponding to the coordination workload. The similar
workload decomposition schemes have been used (see for instance [10]) and have
been validated by air-traffic controllers.

We follow the idea of [10] that instead of defining sectors through a geometric
description, we can define a sector as a convex set of vertices. The main advantage
of this approach is to resume to a purely discrete problem. And when a solution
of the discrete problem is found, we will compute the boundaries for the sectors.

We now look for a partition of the set V into k subsets Vi, Vo, ..., Vj; Vi #£ j :
ViNV; = ¢ which minimizes the weighted sum of cut routes (called cut-size in the

following)
min g Wij
vi €Vpivj €Vyip#q
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FIGURE 2. Minimum distance constraint.

such that the weights of the subsets are balanced within a tolerance ratio of
0<d<1:

1« 1 ¢

Vp e {1,..., k}, Z wi— ¢ Zwi < 6E Zwl
v, €V)p i=1 i=1

On top of this balance constraint, several specific ATC (Air Traffic Control) con-

straints have also to be taken into account (a formal definition will be provided in

the Sect. 3):

e Route-based convexity constraint. The same aircraft can not enter the
same sector twice. It is not sensitive, but it happened as a constraint in
the past, e.g. national boundaries in European airspace. For instance, the
following case in Figure 1 is not admissible.

o Minimum distance constraint. The distance between a sector border and a
vertex must be not less than a given distance (see Fig. 2). This constraint
ensures that the controller has enough time to solve conflicts at this vertex.

o Minimum sector crossing time constraint. The aircraft must stay in each
crossed sector at least a given amount of time T4, (see Fig. 3). This con-
straint ensures that the controller has enough time to control the aircraft.

e Connectivity constraint. The sector can not be fragmented. For example,
the solution in Figure 4 is not feasible.

A genetic algorithm [15] to solve the ASP has been proposed in [8]. Chromosomes
are defined as sets of sector center points; the sector is then defined as the Voronoi
diagram [24] associated to the set of center points (i.e., a sector is a set of points
that are closer to its center point than to any others). Voronoi-like sectors are
geometrically convex but this property does not ensure that sectors are route-
based convex (aircraft enter twice the same sector). In Figure 5, by joining v;
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FIGURE 5. Sector is not convex by joining v; and v via vs.

and vs via v, the route-base convexity constraint is violated although the sector

is geometrically convex.

Delahaye et al. [10] have tried to improve this approach. A sector is defined
by a set of connected vertices of the network and the chromosome contains all
information needed to define the sectors. But “connected” sectors do not ensure
the convexity constraint. Again as showed in the example of Figure 5, all vertices
of sectors are connected, but sectors are not route-based convex by joining v

and vz via vs.
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FIGURE 6. Sectors defined by joining elementary units.

A more recent approach suggests that airspace be divided into small volume
units and a sector is obtained by joining some of these elementary units [23] (see
Fig. 6). Unfortunately, the most specific ATC constraints can not be taken into
account and for instance, the sectors can be fragmented in the suggested solution.

In this paper, we rely on the mathematical formulation of the ASP mentioned
above. This problem is closely related to Graph Partitioning, a widely studied
combinatorial problem. Although it is NP-complete [13], very efficient heuristic
procedures have been introduced in the last 30 years and very large problems can
be solved efficiently in a reasonable amount of CPU time [2,11,12,14,16-20].

We firstly show in Section 2 how to compute sectors boundaries when we have
a solution to the discrete partitioning problem. In the Section 3, we introduce
a highly flexible constraint programming (CP) formulation which can help us
to solve small instances of the ASP. To solve larger instances, we use a two-
phase approach: firstly, we apply a recursive bisection schema and a restricted
Kernighan/Lin (RKL) heuristic to find a good solution; and in the second phase,
we enter a re-optimization loop, always relying on the CP model, that improves
this solution (Sect. 4). Experimental results are reported in Section 5.

2. FROM SETS TO GEOMETRICAL SECTORS

Assume that we have an airspace which has to be sectorized into a number of sec-
tors, each represented by a set of vertices, we must then compute non-overlapping
sector boundaries such that each sector boundary contents all its vertices and, as
mentioned above, can not be fragmented.

For example in the 2D case, we must determine for each sector a simple poly-
gon which contents all its vertices. We propose a way to compute such sector
boundaries for the 2D airspace case. Note that it can be easily extended to the
3D case.

Definition 2.1. A Point-based Polygonal Tessellation of a plane with a set of n
points V, denoted by PT'(V), is a partitioning of the plane into n non-overlapping
polygons, called tiles, such that each polygon P(v) contains exactly one point
veV.

Definition 2.2. The Neighboring Relative Graph of a point-based polygonal tes-
sellation PT(V'), denoted by NRG(PT(V)), is the graph constituted by (V, E),
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FIGURE 7. Delauney triangulation (dashed line) and Voronoi diagram.

where edge (u,v) belongs to E if and only if P(u) and P(v) have at least one
common side.

The Figure 7 illustrates us an example of the case in which the Delauney Trian-
gulation is the NRG of Voronoi Diagram [24]. The Voronoi diagram (also known
as the Direchlet tessellation or Theissen tessellation) is a subdivision of a plane
into a number of tiles; each tile has one sample point in its interior called a gener-
ating point. All other points inside the polygonal tile are closer to the generating
point than to any other. Its dual, the Delauney triangulation [24] (the term ¢ri-
angulation is defined in the next), is created by connecting all generating points
which share a common tile edge.

Proposition 2.3. Let PT(V) be a point-based polygonal tessellation of a set of
points V in a plane and the corresponding NRG(PT(V)). For all subsets V; C V,
if a subgraph of NRG(PT(V)) corresponding to V; is connected, then there exists
a simple polygon which contains all points of V; and no point in V\V;.

The proof of this proposition is given by construction of such a polygon: we
group the tiles corresponding to all points in V; and remove all shared sides. Since
each tile contains only one point of V' by the definition of PT(V'), this polygon
contains only the points of V;, but no point in V\V;.

Hence, the boundary of a sector can be obtained by grouping the corresponding
tiles of its vertices and a sector V; is un-fragmented if NRG(PT(V;)) is connected.
Our problem is now how to obtain a point-based polygonal tessellation of a set of
points in a plane and the corresponding NRG.

Definition 2.4 [5]. A Triangulation of a set of n points V' in the plane, denoted
by T'(V), is joining the points of V' by non-intersecting straight line segments such
that all regions are triangles.

Observation 2.5. For every triangulation T'(V'), we can always determine a point-
based polygonal tessellation PT(V') such that T(V) = NRG(PT(V)).

For instance, in Figure 8, for each triangle, we choose a point inside the triangle
and the tiles are defined by joining these points and the center points of edges.
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FIGURE 8. Triangulation of 5 points and a Tessellation (dotted lines).

Pasypas

FIGURE 9. A constrained triangulation (right) of a given graph (left).

But in our problem, two vertices of an edge in the graph representing airspace
must be considered as neighbors each other. It means that this edge belongs to
the set of edges of NRG. What we need is then a constrained triangulation.

Definition 2.6 [5]. Given a planar graph G = (V, E), a constrained triangulation,
denoted by CT(G), with respect to G is a triangulation T (V') such that all edges
of E are edges of T'(V).

Figure 9 gives an example of a constrained triangulation.

A constrained triangulation can be obtained by adding edges that do not inter-
sect any of existing edges, till no more new edges can be added. This technique
has a poor complexity of O(n*). In [5], an O(nlogn) constrained triangulation
algorithm is described.

Now let us come back to our problem: given an airspace represented by G =
(V, E), we construct a constrained triangulation CT(G) with respect to G. The
airspace then will be sectorized into a number of subsets V; such that, for all V;,
the subgraph of CT(G) corresponding to V; is connected. From this constrained
triangulation, we determine the corresponding point-based polygonal tessellation,
and the boundary for each sector is constructed by grouping the tiles of its vertices.

Note that for a given graph, we can obtain several constrained triangulations. In
fact, in order to respect the connectivity constraint, a vertex v; can be in the subset
V; if and only if it is connected (via the NRG, i.e. the constrained triangulation)
with other vertices in V;. An arbitrary choice of constrained triangulation may
reduce the search space, so the quality of “best” solution. But it is difficult and
outside the scope of this paper to determine which one is the “best”.
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3. A CONSTRAINT PROGRAMMING FORMULATION FOR THE ASP

We firstly give a brief overview of the principles of Constraint Programming
(CP). For more details on CP and its application, we refer to [1,3]. Constraint
Programming is a paradigm aimed at solving Constraint Satisfaction Problems
(CSP). An instance of the CSP is described by:

e a set of variables X = x1,...,z,;
e for each variable z;, a set D, of possible values (domain of variable);
e a set of constraints between the variables.

A solution of the CSP is an instantiation (assignment of values for all variables),
such that all constraints are satisfied. Note that CSPs are decision problems; when
one wants to optimize some objective function, a common technique to look for
an optimal solution is to solve successive decision variants of the CSP.

CSPs can be solved as follows: a search tree is created and the variables are
instantiated sequentially. Each node of the search tree represents a partial solu-
tion (partial assignment) and the algorithm attempts to extend it to a full so-
lution by assigning a value to an uninstantiated variable. Whenever a partial
solution violates a constraint, backtracking is performed.

The searching process may need a search heuristic that describes which decision
is taken at a point of search. For instance, we can define a heuristic determining
which variable to be instantiated with which value.

A key idea of CP is Constraint Propagation: when the domain of a variable is
changed, the constraints are not only used to check the validity of solution, but
they are also used to deduce new constraints, to remove inconsistent values of
uninstantiated variables, so to reduce the search space.

In practice, CP tools such as ILOG Solver[25], PROLOG III, IV [6,7], ECLISPE
[27], CHOCO [21] allow the users to create CSPs by defining variables and con-
straints. Constraints may be stated as one of pre-defined constraints (arithmetic
constraints on integers, constraints on sets, ...) with corresponding propagation al-
gorithms. But new constraints with particular constraint propagation algorithms
may also be defined by the user. Furthermore, these tools also allow the users to
specify their own specific search heuristics.

3.1. VARIABLES AND CONSTRAINTS

We partition the airspace G = (V, E), |V| = n, |E| = m, as mentioned in Sec-
tion 1, with respect to the specific constraints and to the balance constraint, into
k subsets (sectors) Vi, ..., Vi, while minimizing the cut-size. To model ASP, we
introduce n variables x;, which can take the value in {1,...,k} (z; = j means that
the vertex v; is in the subset V;). To simplify the definition of the objective func-
tion and the balance constraints, we introduce the following redundant variables:

m variables ¢;; € {0,1} where ¢; =0 x; =x;
nk variables y;; € {0,1} where y;; =1 2; =j and

Vie{l,...n}, Y0y =1.
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The Objective Function is now defined as follows:

min E CijWij -

The balance constraint is given by

n

Zn:wz‘ < Zn:yij-wi <1 +5)% Zwi
i=1 i=1

=1

Vi€ {1,..k}, (1—9)

> =

and it is propagated thanks to well-known arc-B-consistency algorithms. To state
the specific constraints, we assume that for each flight i, the flight plan is given as
an ordered list of vertices (vf, v, ..., v}).

The Minimum Sector Crossing Time Constraint states that aircraft must stay
in each crossed sector at least a given amount of time. We can then deduce the
minimum distance [y _ i, that the aircraft has to perform in each crossed sector.

Given a fight plan F' = (vi,...,v}), a value j € D(z!), 1 < ¢ <[ is consistent
for the Minimum Sector Crossing Time Constraint along F* if and only if there
are p, g such as:

1<p<ec<qg<l
q
va € [p7 q] : .7 € D(le) et ZZ(U};) Z Zl—min

a=p

where Z(U;) = 1(Z(U;,_l, ’U;) + Z(U;, ’U;H_l)) is the pseudo-length of the vertex U;.

Now for each flight plan, we define a global constraint who relates all its vari-
ables. And an propagation algorithm will be called whenever a domain of a variable
related to the global constraint is modified, to eliminate any value that does not
satisfy (inconsistant with) this constraint.

The Minimum Distance Constraint means that the distance between a sector
border and a vertex must be at least a given distance lo_in. Thus, if we have
two vertices such that the corresponding edge has a length less than 2.l5_ i,
they must be in the same sector. Let [(v:,v}) be the length of the edge (vi,v})
belonging to the flight plan ¢, this constraint can be stated as:

Vi, Vol vl L(vl,vp) < 2.9 min = 2% = b,

The Route-based Convexity Constraint states that aircraft can not enter the same
sector twice. Given a flight plan 7 and a triplet z},, zj, =i , where a < b < ¢, if x,
and z¢ are already in the same sector (have the same value), we can then deduce
that :E?) is also in this sector:

Vi,Va<b<c: zt=2! = =z
But if we state this constraint for all flight plans and for all triplets a < b < ¢,
the number of constraints can be large. More practically, for each flight plan i, we
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can define a global constraint C; and the following propagation algorithm based
on the semantic of this constraint is called whenever a variable v, related to C;
is instantiated:

e If there is a variable “before” v, in the constraint C; that is instantiated to
a value p which differs from the value of v,, it means that the aircraft has
entered another sector, so the aircraft can not return to the previous sector
and hence, we can remove p from the domain of all variables after v,.

e If a variable v, (b # a) is instantiated and has the same value as v,, then
all variables between them are instantiated to this value.

Finally, the Connectivity Constraint ensures that the sectors are not fragmented.
As mentioned above we have an airspace G = (V, E) and a constrained triangu-
lation CT(G) (see Sect. 2). The airspace then will be sectorized into k subsets
V; and the connectivity holds if all subgraphs V; of CT(G) are connected. We
define a global constraint to ensure the connectivity. Our propagation algorithm
is applied whenever a vertex is assigned to a sector p:

e We first compute the set of variables V,, = {x;|p € D;} which can take
the value p and determine the connected components of the subgraph of
CT(Q) corresponding to Vj,:

Vpr UV U .. U Vg, = V.

e No more than one of these subsets belongs to sector p hence, if a variable
x; in a subset V}; takes already the value p, then p can be removed from
the domain of the variables of all other subsets.

The first step can be performed in O(n); the second one is in O(m) by the Tarjan
algorithm [26] and the last one in O(n). We check the connectivity for all parti-
tions, the algorithm is then in O(k.m)

3.2. HEURISTIC FOR VARIABLE AND VALUE SELECTING

Inspired from the notion of gain of the Kernighan/Lin algorithm for Graph
Partitioning, we propose a heuristic for variable and value ordering, which can
reduce significantly the complexity of backtrack search.

Let X : V. — {1,...,k} be the partitioning vector of the graph G = (V, E)
(X (u) = 7 means that the vertex u is in the partition V;) and w,, be the weight
of edge (u,v). The internal cost and the external cost of the vertex u are defined
as follows (see example in Fig. 10):

int(u) = Z Wyw;  ext(u) = Z Wayy -
(u,0)€E, X (u)=X(v) (u,0)€E, X (u)#X (v)

Then, the gain of moving a vertex u from its partition to the other is given by:

g(u) = ext(u) — int(w).
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FIGURE 10. Internal and external cost.
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FIGURE 11. Temporary cut-edges.

Now, based on this notion, we introduce the estimated gain for each uninstantiated
variable and for each value in its domain. Given a partial instantiation, the set V' of
the graph’s vertices is partitioned into two subsets: Vinown= {v;i|D; is singleton}
and Vinknown = V' \ Vknown. The temporary cut-edge set Ct is defined as follow:

C' ={(vi,v5) | (vi,v;) € E,
(D" 7& D]) v (v’i € Viknown Uj ¢ anown)
v (Uj € anowrw Vi ¢ anown)}’-

Informally speaking, for every edge (v;,v;): if the domains of corresponding vari-
ables x; and z; are different, we are sure that the edge belongs to the cut-edge set;
if one of x; and x; is instantiated, we consider the edge to be in the cut-edge set;
in other cases, we ignore it. In Figure 11, C* = {(va,v3), (v1,v4), (v1,v5), (v2,v4),
(v3,v4), (v3,v6)}-

We define an estimated internal cost and an estimated external cost for each ver-
tex v; such that x; is not yet instantiated, and for each value val in its domain D;,
as follows:

int*(vi,val) = {(vi,v})|(vi,v;) € E,zj = val}
ext*(vi,val) = {(vi,v;)|(vi,v5) € E, v & Vinown }-

The int*(v;,val) is the subset of C* which become internal edges (and can be
removed from C?) if vertex v; is put in partition V,q;; while the ext*(v;, val) is the
set of new edges which will belong to C?.
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FIGURE 12. A two-phase approach for airspace sectorization.

So, the estimated gain, if the variable x; is instantiated to val (vertex v; is in
partition Viq;) is:

g% (x;,val) = Z Wij — Z Wi

(vi,v5)€intx*(v;,val) (vi,v;)€extx(vi,val)

For instance, in the previous example, g*(x4,1) = (w14 + woq) —(wap + wag);
9*(24,2) = w34 —(was + wae).

We use the following heuristic at each node of the search tree: the variable with
maximal estimated gain is chosen. It is instantiated to the value leading to the
largest estimated gain.

4. A TWO-PHASE APPROACH

Although the above CP formulation gives good results as reported in the next
section, it can not find an optimal solution for large size instances.

Therefore we propose a two-phase approach: firstly, we try to find a good
solution, and then, we re-optimize it locally with our efficient CP algorithm. The
behavior of our approach is illustrated in Figure 12.

4.1. FINDING AN INITIAL SOLUTION

Given a huge airspace, which has to be partitioned into k sectors, we can not
find directly an optimal solution. We must firstly find a good initial solution. This
phase is performed by using a recursive bisection scheme. To handle the case in
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which the number of sectors k is not a power of 2, we can use the unbalanced
recursive bisection: the graph representing the airspace is at first divided into
two unbalanced subsets, the first one has a desired weight of a sector (can be
computed from a given k) and the second one is the remaining. We fix the first
subset and continue to bisect the second one, and so on.

At each step of the bisection, an initial solution can be found with the constraint
programming formulation (however, it is far from optimal yet) and then improved
by using the idea of the Kernighan/Lin (KL) heuristic. The KL heuristic is used
to improve locally a solution of graph bisection. The algorithm takes as input an
initial solution V' = V3 U V5, and tries to find a sequence of vertices pair exchanges
that leads to a better solution.

Let g(u) and g(v) be the gains of vertices u € V; and v € V3 if we move them
from their partition to the other, and wy, be the weight of edge (u,v). The gain
of exchanging these vertices is:

g(u, ’l)) = g(u) + g(v) - 2wuv-

An iteration of the KL algorithm (called a pass) is as follows [20]:

procedure KLPass(V1,V2) : boolean {
Unmark and compute gain for all vertices;
1:=1;
Repeat {
Select u' € Vi, v* € Vo such that g(uf,v') is max;
Mark u' and vi;
Update gain for all unmarked vertices such
as ui, v* have been exchanged;
t=14+1;
}
Until all vertices of Vi or V, are marked;
Choose j such that G =7 g(u',v") is max;
If (G >0) Then {
Move ul.uw/ to Va, vl.v9 to Vi;
Return true; }
Else Return false;

3

In a KL pass, firstly we unmark and compute the gains for all vertices. In each
step i, we find an unmarked pair u* € Vi, v® € V4 such that the gain g(u’,v?) of
exchanging u’ and v is maximum (it may be negative). We mark u’ and v* and
update the gain values of all remaining unmarked vertices such as u* and v* have
been exchanged. Repeat this procedure of pair selecting until all vertices in one
of Vi, V5 are marked. Now we have an ordered list of pairs (u?,v*), and we find the
index j such that Y 7_; g(u’,v") is maximal. If this sum is positive, we perform
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FicUrE 13. Example for RKL Heuristic.

the exchanges of j vertices pairs and the result of this pass can be taken as input
of another pass. Otherwise, we end the algorithm.

procedure KLBisection(Graph G = (V, E)){
Find an initial bisection V =V; U Vy;
Repeat {changed := KLPass(Vy,V2)}
Until not(change)

}

In the KL algorithm, the search of a sequence of vertices pairs to be exchanged
is performed for all vertices of the graph. But the exchange of an arbitrary vertices
pair could violate our ATC constraints. We propose so a Restricted Kernighan/Lin
(RKL) heuristic for airspace bisection: at each step, we find a set of vertices such
that their moves do not violate the ATC constraints; furthermore, the validity of
each exchange is verified before it is performed.

Consider the graph in Figure 13 for example, we have three flight plans: (1, 2,
3,4,5,6),(7,8,9,4, 10) and (11, 4, 12, 13). We can distinct two cases as follows:

e If all the vertices of a flight plan are in the same sector, as (11, 4, 12, 13),
it is easy to see that only its two extremities, 11 and 13 in this case, can
be moved to other sector without violation of the convexity constraint and
without violation of connectivity constraint if they are connected to the
other sector by the edges of constrained triangulation. We put them in
a set of potential vertices. The others must be put in a set unchangeable
vertices.

e If the flight plan crosses the border of sectors, as (1, 2, 3, 4, 5, 6) and (7, 8,
9, 4, 10), only two extremities of the cut route can be exchanged and then
can be put in the potential vertices set (but note that these two vertices
can not be exchanged directly). We have three vertices 3, 4 and 9 for the
case.

So, we find a pair to be exchanged only among the potential vertices, but which
are not unchangeable.

Because of minimum sector crossing time and minimum distance constraints,
some vertices must be in the same sector. To meet these constraints, we introduce
the notion of cluster of exchange: if vq,v2...v4 must be in the same sector, we call
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them a cluster. Naturally, vertices of a cluster must be moved all at once and, if
one of them is unchangeable, so is the cluster.

And at last, the CP formulation is used to validate the new solution after all
exchanges.

4.2. RANDOM LOCAL RE-OPTIMIZATION

To improve the solution obtained in the previous step, we propose a random
local re-optimization scheme as follows. We repeat to choose randomly a group
of adjacent sectors and use the constraint programming formulation to find its
optimal solution. The procedure ends if after predefined N consecutive iterations,
the solution is not longer improved.

5. EXPERIMENTAL RESULTS

The constraint based model has been implemented with the constraint program-
ming library CHOCO[22] in language CLAIRE [4]. All programs have been run on
a PC Athlon 2000+, 1GB RAM, under Windows XP. For our experimental study,
we have generated several classes of graphs; each class containing 50 problem in-
stances with the same number of vertices. At first, some vertices representing
airports are generated, the coordinates are uniformly distributed. We have an
edge between two vertices if there is at least a flight between these two airports.
The probability of existence of an edge between two vertices is uniform and num-
ber of flights passing this edge is also from uniform distribution n € [1,200]. We
then compute all crossing points and treat them as vertices of the graph G. If
the number of vertices does not correspond to the desired number, the graph is
“rejected” and the random graph generation procedure is run again. The values
of the parameters relates to the specific constraints have been chosen to be close
to real life situations.

Table 1 and Figure 14 report the results obtained when we try to find the
optimal solution of the bisection problem (k = 2). In these results, it is clear
that, as far as bisection is concerned, the model is applicable for up to 100 vertices
instances, with a reasonable execution time.

Table 2 reports the execution time to find first solution of the partitioning
100 vertices into 8 sectors, 200 vertices into 16 sectors, 500 vertices into 40 sec-
tors and 1000 vertices into 80 sectors. It shows also the performance of the re-
optimization phase with N = 5,10,15,20 and at each iteration, we re-optimize
two neighbor sectors with the optimal bisection. Avg CPU time is the average ex-
ecution time to find a first solution. Avg 1st cutsize and Avg re-optimized cut-size
are respectively the average cutsize of the first solution and the average cutsize
of the solution re-optimized. In this result, we can see that, the bigger N is, the
more the cutsize is improved, but in most cases, N = 20 is sufficient so that the
cutsize approaches the minimum.

And at last, Figure 15 give us a view of a 500-vertices graph which is sectorized
into 40.
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TABLE 1. Average backtracks and Average CPU time for an Op-
timal Bisection.

Instance | Average Average Average
classes cutsize | Backtracks | CPU time (ms)
30 659 352 167

40 739 934 604

50 823 2599 2173

60 829 4375 5370

70 921 9870 15191

80 886 18228 38231

90 987 39295 92356
100 1019 56 144 158015

TABLE 2. Experimental results of finding first solutions and re-optimizations.

Class/k | Avg 1st | Avg CPU | Avg reoptimized cutsize CPU (ms) | % reduction
cutsize | time (ms) [N =5 N=10|N=15|N=20| (N =20)

100/8 6909 524 | 5432 4689 4617 4615 33
200/16 | 15349 6283 | 13240 | 11584| 10976| 10638 31
500/40| 39114 95254 | 37046 | 33359| 31296| 30041 23
1000/80| 40632 | 441860|39905| 37497| 35185| 35092 14

6. CONCLUSION

In this paper, we have proposed a constraint programming formulation to op-
timize the airspace sectorization that satisfies all the specific ATC constraints.
Based on the notion of gain of the Kernighan/Lin heuristic for Graph Partition-
ing, we have defined a heuristic for variables and values ordering while searching
solutions. A restricted Kernighan/Lin heuristic is also proposed to improve the
initial solution of a bisection. This formulation can find optimal solution for small
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FIGURE 15. A 500-vertices graph sectorized into 40.

size instances of the problem. For larger instances, we use a two-step approach:
find an initial solution and then re-optimize it locally. This model is implemented
and has been tested on several sets of data. The initial results are promising since
a 1000-vertices graph can be sectorized into 40 sectors within 8 minutes. How-
ever, to improve and extend the model to even more realistic situations, many of
prospects should be taken into account, such as parallelization of the search for
solution, optimization of the geometrical form of the sectors, taking into account
the third dimension of airspace, the military zones...
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