
RAIRO-Oper. Res. RAIRO Operations Research
https://doi.org/10.1051/ro/2019096 www.rairo-ro.org

A METAHEURISTIC PENALTY APPROACH FOR THE STARTING POINT1

IN NONLINEAR PROGRAMMING2

David R. Penas1,∗ and Marcos Raydan2
3

Abstract. Solving nonlinear programming problems usually involve difficulties to obtain a starting4

point that produces convergence to a local feasible solution, for which the objective function value5

is sufficiently good. A novel approach is proposed, combining metaheuristic techniques with modern6

deterministic optimization schemes, with the aim to solve a sequence of penalized related problems to7

generate convenient starting points. The metaheuristic ideas are used to choose the penalty parameters8

associated with the constraints, and for each set of penalty parameters a deterministic scheme is used9

to evaluate a properly chosen metaheuristic merit function. Based on this starting-point approach,10

we describe two different strategies for solving the nonlinear programming problem. We illustrate the11

properties of the combined schemes on three nonlinear programming benchmark-test problems, and12

also on the well-known and hard-to-solve disk-packing problem, that possesses a huge amount of local-13

nonglobal solutions, obtaining encouraging results both in terms of optimality and feasibility.14

Mathematics Subject Classification. — Please, give AMS classification codes —.15

Received March 20, 2019. Accepted September 29, 2019.16

1. Introduction17

One of the most important and delicate issues when solving nonlinear programming problems (NLP) is the18

choice of the starting point, often called the initial guess. In general, NLP have many local optima spread19

out over the feasible region that, due to the way in which nonlinear constraints can twist and curve, might20

be the union of multiple different and disconnected (also called discontiguous) not necessarily convex regions. Q121

Usually, the numerical optimization techniques iteratively improve the initial guess to converge to a near local22

solution. Consequently, the starting point determines not only in what parts of the disconnected feasible region23

the iterates will live, but also to which optimum the algorithm will converge. Q224

An approach that has been extensively studied for several applications and incorporated in software packages25

is to explore in advance as much as possible the feasible region using many different starting points. These26

initial points can be generated either randomly, which promotes the use of stochastic heuristic schemes, or using27

the so-called grid search techniques, that consists in choosing a set of points evenly distributed throughout the28

space. Then a quick local search is performed starting at each one of them to get a set of points from which29

Keywords. Nonlinear programming problems, Starting point strategy, Metaheuristics, Penalty methods, Disk packing problem.

1 Modestya Research Group, Department of Statistics, Mathematical Analysis and Optimization, Institute of Mathematics
(IMAT), University of Santiago de Compostela, Santiago, Spain.
2 Centro de Matemática e Aplicações (CMA), FCT, UNL, 2829-516 Caparica, Portugal.
∗Corresponding author: david.rodriguez.penas@usc.es

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2019

2 D.R. PENAS AND M. RAYDAN

the best one, concerning optimality and feasibility, is chosen; see, e.g., [2, 3, 9, 20, 23–25, 31, 32, 37, 40]. Due to1

the size of the space, for medium to large-scale problems, these type of preliminary searching schemes require2

a prohibitive amount of computational work, and as a consequence they become impractical.3

There are two issues involved when choosing the starting point: feasibility and optimality, which can be4

considered simultaneously if we use a suitable penalty approach. Roughly speaking, a penalty method replaces5

a constrained optimization problem by a series of unconstrained problems whose solutions ideally converge to6

the solution of the original constrained problem. The unconstrained problems are formed by adding a term,7

called a penalty function, to the objective function that consists of several penalty parameters multiplied by8

measures of violation of the constraints. The measures of violation are nonzero when the associated constraints9

are violated, and are zero in the regions where constraints are not violated. See, e.g., Luenberger [21] and Fiacco10

and McCormick [6] for details and for a general discussions on penalty methods.11

Our proposal in this work, for choosing the starting point, is to perform a preliminary exploratory work based12

on a properly chosen penalty function for which the penalty parameters, instead of the space variables, are chosen13

stochastically using metaheuristic schemes, i.e., using iterative generation processes that guide subordinate14

heuristics. A numerical unconstrained deterministic scheme can then be applied to this penalty function, using15

as a merit function for the metaheuristic algorithm a proper combination of the objective value of the original16

NLP objective function and a feasibility measure. That way, starting at the same neutral point and allowing the17

same CPU time or the same fixed small number of iterations to the same unconstrained optimization method,18

for each combination of penalty parameters, we identify the point that at the end achieves the best value for19

the merit function, and declare it the starting point to solve the NLP. For that it is fundamental to use only a20

few penalty parameters, to guarantee that the heuristic techniques work effectively in a low-dimensional space.21

Therefore, a key aspect of our approach is to divide the constraints into a few groups, and assign a penalty22

parameter to each one of the groups.23

The rest of this work is organized as follows. In Section 2, we present the general NLP to be considered, we24

develop in detail the metaheuristic penalty approach for choosing the starting point, and we describe two differ-25

ent strategies for solving the NLP problem. In Section 3, we describe the three suitable metaheuristic schemes26

to be considered: Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Particle Swarm Optimization27

(PSO), and Simulated Annealing (SA). In Section 4, we describe the well-known disk packing problem and also28

the benchmark test problems to be used for illustrating the advantages of our approach, and we present and29

analyze the obtained experimental results, when using the three considered metaheuristic schemes, for several30

different dimensions and different weights of feasibility and optimality in the merit function. Finally, in Section 531

we present some final comments and conclusions.32

2. Penalty approach and combined strategies33

We are interested in solving nonlinear programming problems (NLP) of the form:34

Minimize f(x)
subject to h(x) = 0

g(x) ≤ 0,
(2.1)35

where f : R
n → R, h : R

n → R
p, and g : R

n → R
s are sufficiently smooth. We are mainly concerned with36

large-scale NLP problems for which the user cannot supply a good starting point, but nevertheless is interested37

in obtaining a local feasible minimizer for which the function f reaches a sufficiently low value.38

First, let us recall the main ideas of the classical and straightforward penalty approach for solving problem39

(2.1); see, e.g., [6,21]. Penalty methods transform constrained optimization problems into a sequence of uncon-40

strained subproblems, whose solutions ideally converge to a solution of the original optimization problem. In41

that case, NLP problem (2.1) can be reduced to a sequence of unconstrained problems of the following form:42

min f(x) + ρkP (x), x ∈ R
n, (2.2)43

A METAHEURISTIC PENALTY APPROACH 3

where ρk > 0 is the penalty parameter that increases at every k to penalize constraint violations, and the penalty1

function P : R
n → R is a continuous function that involves the constraints in such a way that P (x) ≥ 0 for all2

x ∈ R
n, and such that it enforces feasibility, i.e., P (x) = 0 if and only if x is a feasible point for problem (2.1).3

Under some mild assumptions and some specific choices of P and the sequence {ρk}, it has been established that4

the sequence of solutions of problem (2.2) converges to a solution of (2.1) when k goes to infinity [6,21]. However,5

in practice, when the parameter ρk > 0 reaches very high values the convergence might be extremely slow and6

moreover the problem becomes ill-conditioned. That is why we are not interested in using this approach all7

the way to achieve convergence to a solution of problem (2.1), when k goes to infinity, but instead to use it as8

a framework to apply metaheuristic schemes on the choice of the penalty parameters, combined with very few9

iterations of an unconstrained numerical solver, to produce a good initial guess. For that, we will be interested10

in considering a vector ρ ∈ R
m of few penalty parameters, where m ≪ min{n, p+s} and ρi > 0 for 1 ≤ i ≤ m.11

For our approach, there are many different ways of properly extending the classical penalty functions P12

which have been used for solving (2.1), including some ideas that combine evolutionary algorithms to explore13

the whole space of variables R
n; see, e.g., [4, 15,26,39]. In particular, we will consider the following choice:14

P (x; ρ) = ρ̂1

p1∑

i=1

|hi(x)|β + ρ̂2

p2∑

i=p1+1

|hi(x)|β + · · ·+ ρ̂m1

p∑

i=pm1−1+1

|hi(x)|β (2.3)15

+ ρ̄1

s1∑

i=1

max(0, gi(x))γ + ρ̄2

s2∑

i=s1+1

max(0, gi(x))γ + · · ·+ ρ̄m2

s∑

i=sm2−1+1

max(0, gi(x))γ ,16

17

where m1 + m2 = m, the integer constant powers β and γ can be either 1 or 2, and the vector ρ of penalty18

parameters is given by19

ρ = [ρ̂1, ρ̂2, . . . , ρ̂m1−1, ρ̂m1
, ρ̄1, ρ̄2, . . . , ρ̄m2−1, ρ̄m2

]T .20

Notice in (2.3) that the term |hi(x)|β , as well as the term max(0, gi(x))γ , is strictly positive when the related ith21

constraint is being violated at the vector x. Moreover, the larger the value of that term the larger the violation.22

Notice also that the constraints are grouped ideally based on common characteristics, usually identified by the23

user, and each equality or inequality constraint belongs to one and only one group, and each group is penalized24

by a different penalty entry of the vector ρ. To be precise, the equality constraints hi(x) for 1 ≤ i ≤ p1 are25

penalized by ρ̂1, the ones for p1 + 1 ≤ i ≤ p2 are penalized by ρ̂2, and so on until the last group which is26

penalized by ρ̂m1
. Similarly, the inequality constraint groups are penalized by the penalty entries ρ̄1 up to27

ρ̄m2
.28

In our strategy, the entries of the penalty vector ρ will be automatically trained to produce a good starting29

point for NLP problems using stochastic metaheuristic schemes. For that we need a convenient merit function,30

given by31

f̂(ρ) = αf(x(ρ)) + (1− α)P (x(ρ); e), (2.4)32

where 0 < α < 1 is fixed, e = (1, 1, . . . , 1)T ∈ R
p+s, the optimality is clearly measured by the NLP objective33

function f(x(ρ)), the feasibility is measured by34

P (x(ρ); e) =

p∑

i=1

|hi(x(ρ))|β +
s∑

i=1

max(0, gi(x(ρ)))γ ,35

and x(ρ) ∈ R
n is obtained after applying a fixed small number of iterations of the same unconstrained numerical36

minimization solver to f(x) + P (x; ρ), starting from the same initial guess.37

2.1. Starting point strategy38

Our starting point strategy is based on the following connection between the metaheuristic and the merit39

function. A metaheuristic algorithm is used iteratively to minimize the merit function given by (2.4), which is40

4 D.R. PENAS AND M. RAYDAN

Figure 1. Connection between the metaheuristic and the merit function.

used as a black box, that is, the metaheuristic plays with the values of the penalty vector ρ without having1

any knowledge about what is happening inside the evaluation process of the merit function. Each time the2

metaheuristic needs to evaluate a specific penalty vector ρ ∈ R
m, the merit function returns a fitness (f̂(ρ))3

value. Throughout this optimization process, the heuristic algorithm will try to obtain a combination of values4

for the penalty parameters with the minimum associated value of f̂(ρ) given by (2.4). Figure 1 shows a diagram5

of how the combined process works.6

To evaluate the merit function at a given vector ρ, a call to a deterministic unconstrained numerical method7

is carried out internally, starting at the same neutral initial guess (called x0 in the diagram), and for the same8

fixed small number of iterations. As a result it returns the infeasibility and the cost function used to obtain the9

value of the merit function given by (2.4). Finally, when the termination conditions of the metaheuristic are10

fulfilled, both the calibrated penalty vector ρ and the associated best solution x(ρ) are returned. From now on,11

the best found solution x(ρ) will be denoted as the Metaheuristic Starting Point (MHSP).12

2.2. Combined strategies for solving the NLP problem13

Once a metaheuristic algorithm is applied, as described in Section 2.1, generating the best found solution14

(called MHSP in Figs. 1 and 2), we can proceed using one of the two following strategies for solving the NLP15

problem (2.1): (see also Fig. 2)16

– Strategy A: using MHSP as the starting point, a deterministic constrained numerical optimization method17

is applied to the original model given by (2.1) until convergence is achieved, and the generated solution is18

called Solution1 (see Fig. 2).19

– Strategy B: fixing the calibrated vector ρ generated by the metaheuristic (see Fig. 1), and using MHSP as20

the starting point, a deterministic unconstrained optimization numerical method is applied to the penalized21

model P (x; ρ) (given by (2.3)) until convergence is achieved, and the generated solution is called Solution222

(see Fig. 2). Then, using Solution2 as the starting point, a deterministic constrained numerical optimization23

A METAHEURISTIC PENALTY APPROACH 5

Figure 2. Two different strategies that use the starting point MHSP to solve the NLP problem.

method is applied to the original model given by (2.1) until convergence is achieved, and the generated1

solution is called Solution3 (see Fig. 2).2

Notice that, once MHSP has been obtained, the processes of computing Solution1 and Solution3 are inde-3

pendent. Both strategies (A and B) will be tested and compared in Section 4.4

3. Metaheuristic algorithms5

In the last two decades, metaheuristic algorithms have gained significant attention as efficient solvers for hard6

global optimization problems appearing in real engineering and science modeling applications. A metaheuristic7

is a higher-level procedure designed to find or generate a heuristic that may provide a sufficiently good solution8

to an optimization problem, especially when the set of solutions is too large to be fully sampled; see, e.g.,9

[22, 27, 28, 36]. The central common feature of all heuristic optimization methods is that they start off with a10

more or less arbitrary initial guess, iteratively produce new solutions by combining randomness and a generation11

rule, evaluate these new solutions using a suitable merit function, and eventually report the best solution found12

during the search process; see, e.g., [2, 31]. The execution of the iterated search procedure is usually stopped13

when there has been no further improvement over a given number of iterations (or further improvements cannot14

be expected); when the found solution is good enough; or when the allowed CPU time (or some other external15

limit) has been reached.16

6 D.R. PENAS AND M. RAYDAN

For our specific goal of combining a metaheuristic algorithm with a penalty approach for finding a good start-1

ing point to solve NLP problem, we consider three state-of-the-art metaheuristic schemes: Evolution Strategies2

and Covariance Matrix Adaptation, Particle Swarm Optimization, and Simulated Annealing.3

3.1. Covariance Matrix Adaptation Evolution Strategies (CMA-ES)4

CMA-ES is a stochastic method that belongs to the general family of evolutionary algorithms for which the5

search strategy is not based on the use of function derivatives, but instead it is only based on the use of objective6

function evaluations, that in our case is given by f̂ in (2.4). In general, an initial population is generated, and7

then at every cycle new solution candidates or offsprings are generated from the solutions already stored in8

the population matrix. The new candidates are obtained by using random biologically-inspired combinations9

of their parents (crossover), and also by using random mutations; see, e.g., [12–14]. At every cycle, based on10

the objective function evaluation, the new candidates are either accepted to be part of the current population,11

or rejected. An attractive feature of CMA-ES is that a covariance matrix is used to control the generation12

of new candidates. Moreover, the CMA-ES approach includes a dynamic self-updating process of the required13

parameters which are used for the generation of offsprings. Algorithm 1 summarizes the main steps of our14

specific CMA-ES metaheuristic approach.15

Algorithm 1 Covariance Matrix Adaptation pseudocode.

1: procedure CMA()
2: ρ̃ = [ρ1 · · · ρλ] ← initial population matrix (size m× λ)
3: µ, C and σ ← initial parameters
4: while stopping conditions 6= true do

5: for i = 1 to λ do

6: ρi = N(µ,σ2C) ⊲ multivariate normal distribution

7: fi = f̂(ρi) ⊲ evaluate the new random solution generated
8: end for

9: sort ρ̃ ← Sort ρi’s using fi’s
10: µ ← update distribution mean using sort ρ̃

11: bestsol ← select best solution from sort ρ̃

12: C ← update and adapt the covariance matrix
13: σ ← update and adapt the variance
14: end while

15: return bestsol

16: end procedure

Notice that, in Algorithm 1, ρ̃ is the m × λ population matrix, C is the covariance matrix, µ is a vector16

with the mean distribution, keeping a weighted sum of the components of ρ̃ (in descending order, i.e., the first17

elements of the vector have more weight than the last elements), σ is the variance of the population matrix, f is18

the fitness vector corresponding to the current solutions, and bestsol is the best solution found by the searching19

process.20

3.2. Particle Swarm Optimization (PSO)21

PSO is a heuristic optimization method which is biologically-inspired to simulate the behavior of swarms, for22

example, a flock of birds or a school of fish. It starts with a random population of candidate solutions, also called23

particles, and iteratively moves these particles around in the search-space according to simple mathematical24

formulae over the particle’s current position and velocity. Each particle’s movement is influenced by its local25

best known position, but it is also guided towards the best known global positions in the search-space, which26

are both updated as better positions are found by other particles. This scheme is expected to move the swarm27

towards the best solutions. The parameters or weights related to the local best known position and the global28

A METAHEURISTIC PENALTY APPROACH 7

one can be dynamically and stochastically updated during the search process; see e.g., [16, 17, 29]. PSO shares1

many similarities with evolutionary techniques: the iterative process is initialized with a population of random2

solutions, it searches for optima by updating generations, and function derivatives are not required. However,3

unlike evolutionary schemes, PSO has no evolution operators such as crossover and mutation. Algorithm 24

summarizes the main steps of our specific PSO metaheuristic approach.5

Algorithm 2 Particle Swarm Optimization pseudocode.

1: procedure PSO()
2: ρ̃ = [ρ1 · · · ρλ] ← initial population matrix of particles (size m× λ)
3: ϕl, ϕg and ω ← initial parameters
4: Set v = 0 ← size m× λ

5: for each ρi ∈ ρ̃ set locali = ρi and flocali = f̂(ρi)
6: Set fglobal = best flocali and global = best locali
7: while stopping conditions 6= true do

8: for i = 1 to λ do

9: for k = 1 to m do

10: vi,k = ωvi,k + ϕlrl (locali,k - ρi,k) + ϕgrg (globalk - ρi,k)
11: new ρk = ρi,k + vi,k

12: end for

13: fi = f̂(new ρ)
14: if fi improves flocali then locali = new ρ and flocali = fi

15: if fi improves fglobal then globali = new ρ and fglobal = fi

16: ρi = new ρ

17: end for

18: end while

19: return global

20: end procedure

Notice that, in Algorithm 2, ρ̃ is a set of random generated solutions, ρi is a particle or solution that belongs6

to ρ̃, global is the best solution found at the end of the search, locali is the best solution which can be reached7

from ρi, vi is the accumulative vector of velocity, and rl and rg are two random numbers in the interval [0, 1].8

Finally, there are three tunable parameters: the inertia weight (ω), the cognitive constant (ϕl), and the social9

constant (ϕg).10

3.3. Simulated Annealing (SA)11

SA is an iterative stochastic optimization technique that mimics the crystallization process of steel or glass12

during cooling or annealing: When the material is hot, the particles have high kinetic energy and move randomly13

regardless of their and the other particles positions. The cooler the material gets, however, the more the particles14

are moved towards the direction that minimizes the energy (temperature). The SA algorithm does the same15

when searching for the optimal values of the variables involved: It repeatedly suggests random modifications16

to the current solution, but progressively keeps only those that improve (cool down) the current situation,17

until the particles find a position of thermal equilibrium (global optimum); see e.g., [8, 18, 34]. An interesting18

feature is that SA applies a probabilistic rule to decide whether the new solution replaces the current one or19

not. This rule considers the change in the objective function or equivalently the temperature which reflects20

the progress during the iterations. Algorithm 3 summarizes the main steps of our specific SA metaheuristic21

approach.22

8 D.R. PENAS AND M. RAYDAN

Algorithm 3 Simmulated Annealing pseudocode.

1: procedure SA()
2: ρ ← initial solution
3: T = Tmax

4: ∆T ← cooling factor ⊲ i.e. ∆T = T * 0.1
5: while T > Tmin and stopping conditions 6= true do

6: ρ′ ← random selection of a neighbor solution
7: ∆E = f̂(ρ′) - f̂(ρ)
8: if ∆E < 0 then

9: ρ = ρ′

10: else

11: prob = e−
∆E

T ⊲ An example of acceptance function
12: random ← random number between 0 and 1
13: if prob > random then

14: ρ = ρ′

15: end if

16: end if

17: T = T ∗∆T

18: end while

19: return ρ

20: end procedure

Notice that, in Algorithm 3, ρ is the current solution, ρ′ is the trial solution created for each iteration, T1

is the temperature, prob is the acceptance function that depends on ∆E and T , ∆T is the cooling factor to2

reduce T at each iteration, and random is randomly generated in the interval (0, 1).3

4. Experimental results4

To illustrate the properties of the strategies developed in Section 2, when combined with the metaheuristics5

described in Section 3, we will consider the well-known disk packing problem and some nonlinear programming6

benchmark-test problems. For the deterministic numerical optimization routines we use the solver package7

Knitro 11.0.1 [1] to obtain the penalty vector ρ ∈ R
m and the starting point, as well as to solve the NLP8

problem (4.1), once the starting point has been obtained. Knitro is a software package that implements a9

nonlinear interior method; for additional details see [3]. For comparisons, we report the performance results of10

our schemes and also the results obtained by Knitro directly on the NLP problem (4.1) from the same neutral11

initial guess, which is chosen randomly at the very beginning and then fixed to be used by all the metaheuristics.12

The direct use of Knitro on the NLP problem (4.1) includes its state-of-the-art preliminary exploratory work13

on the space of variables. In all cases, for Knitro directly on the NLP problem and also for our proposals, we14

run the same option 5 times and report the obtained average results.15

In addition, we also compare our results with a custom multistart strategy, which is based on starting the16

solver Knitro several times with a different randomly generated initial point each time. Once a specific number17

of Knitro executions have been carried out (five runs as in our proposed method), the best obtained solution is18

selected and reported.19

Concerning the package Knitro, we use the Interior/CG option and we set max number iter = 10 when it20

is used by the metaheuristic algorithms to obtain MHSP, and max number iter = 10 000 when it is used to21

obtain Solution1, Solution2, Solution3, and the solution obtained when Knitro is applied directly to the original22

problem. All the other required parameters in Knitro are chosen by default.23

Concerning the metaheuristic techniques, we use Python implementations obtained from different reposi-24

tories. For CMA-ES we use the one available at [11], setting the initial population size λ = 20, and for the25

stopping conditions we set tolx = 10−11, tolfun = 10−11, and max number iter = 1000. For PSO we use26

the implementation available at [19], with 20 random particles as the initial population, setting the inertia27

A METAHEURISTIC PENALTY APPROACH 9

weight ω = 0.7, the cognitive constant ϕl = 2, and the social constant ϕg = 2, and for the stopping con-1

ditions we set max number iter = 1000. For SA we use the one available at [35], setting Tmax = 1 and the2

cooling factor ∆T = 0.95, and for the stopping conditions we set Tmin = 0.1, and we use the default values3

max number rejections = 2500, and max number runs = 500.4

4.1. Disk packing problem5

The disk packing problem, which is simple to describe but hard to solve, consists in placing q circles of equal6

radius r > 0 into a rectangular box [0, d1]× [0, d2] ⊂ R
2 in such a way that the common radius r is maximized7

and the intersection between any pair of distinct circles is at most one point, i.e., the circles do not overlap.8

In spite of the simplicity of its description, this problem has a large number of local maximizers that are not9

global solutions, for which the objective function value is quite similar to the global one.10

Consider pi = (pi
1, p

i
2), i = 1, . . . , q, the centers of the desired circles, which together with the radius r form11

the set of variables of the optimization problem. We will focus our attention in the unit square case, i.e.,12

d1 = d2 = 1. In that case, the disk packing problem can be formulated as follows13






Minimize −r
subject to ||pi − pj ||22 ≥ (2r)2 i, j = 1, . . . , q (i < j)

r ≤ pi
1 ≤ 1− r, i = 1, . . . , q,

r ≤ pi
2 ≤ 1− r, i = 1, . . . , q.

(4.1)14

The global solutions of the NLP problem (4.1), for several dimensions, are reported in the following URL [38]:

http://hydra.nat.uni-magdeburg.de/packing/csq/csq.html,

and some of the already known results are surprising, for example when q = k̄2 and k̄ ∈ {2, . . . , 6}, the regular15

grid k̄ × k̄ has been geometrically proved to be the global minimum of the problem. Nevertheless, for k̄ = 7 it16

was computationally shown that the maximum radius is strictly larger than the radius 1/14 associated to the17

regular grid. For our experimental results we tested different dimensions from q = 9 to q = 49. Notice that the18

number of constraints in (4.1) is equal to (q2 + 7q)/2.19

In order to use the penalty function P given by (2.3) and the merit function given by (2.4), we need to divide20

the constraints in problem (4.1) into m groups, where m ≪ min{n, p + s}, and then apply our optimization21

technique to produce the vector ρ ∈ R
m of penalty parameters, where ρi > 0 for 1 ≤ i ≤ m. For our experiments,22

we set m = 5 for all values of q, all values of 0 < α < 1, and all possible metaheuristic schemes. The constraints23

in (4.1), which are all inequality constraints, are grouped as follows: ρ̄1 is associated with the non-overlapping24

constraints −||pi − pj ||22 + (2r)2 ≤ 0 for i, j = 1, . . . , q (i < j), and for i = 1, . . . , q, ρ̄2 with r − pi
1 ≤ 0, ρ̄325

with r − pi
2 ≤ 0, ρ̄4 with pi

1 + r − 1 ≤ 0, and ρ̄5 with pi
2 + r − 1 ≤ 0. Moreover, we set γ = 1 and hence in our26

case, the penalty function in (2.3) is given by:27

P (x; ρ) = ρ̄1

q∑

i<j

max(0,−||pi − pj ||22 + 4r2) + ρ̄2

q∑

i=1

max(0, r − pi
1) (4.2)28

+ ρ̄3

q∑

i=1

max(0, r − pi
2) + ρ̄4

q∑

i=1

max(0, pi
1 + r − 1) + ρ̄5

q∑

i=1

max(0, pi
2 + r − 1).29

30

The results obtained by the two strategies described in Section 2, for different number of disks, are shown31

in the forthcoming tables. At the beginning of each table, the results of the best solution reported in the32

literature [38] are shown, as well as the ones obtained by applying Knitro directly to the original problem and33

the multistart method combined with Knitro. This means, that we compare our proposed method to generate34

initial points, with the one used automatically by Knitro as a default option, and with the best solution obtained35

by the multistart strategy.36

10 D.R. PENAS AND M. RAYDAN

Table 1. Performance of the proposed schemes for solving the disk packing problem with 9 disks.

Applying Knitro directly to
the original problem

Multistart method combined
with Knitro

Best found solution reported
in [38]

r t(s) unfeaC r t(s) unfeaC r t(s) unfeaC
.166657 0.05 0 .166666 0.21 0 .166666 – 0

MHSP metaheuristic results Solution2 Knitro results using
the penalized model

exp Metaheur α r t(s) unfeaC r t(s) unfeaC
1 CMA-ES .75 .080912 217 0.0226 .045888 0.05 0.0370
2 CMA-ES .50 .064900 258 0.0080 .063714 0.06 0.0282
3 CMA-ES .25 .056938 244 0.0005 .065293 0.09 0.0110
4 PSO .75 .059831 157 0.0000 .039234 0.07 0.0319
5 PSO .50 .078863 233 0 .050426 0.05 0.0132
6 PSO .25 .059837 157 0.0000 .052224 0.10 0.0524
7 SA .75 .078362 47 1.5026 .044198 0.08 0.0404
8 SA .50 .071450 57 0.5982 .054957 0.07 0.0226
9 SA .25 .060797 67 0.4635 .045296 0.06 0.0121

Solution1 Knitro results using
the original problem, with x0

from MHSP

Solution3 Knitro results using
the original problem, with x0

from Solution2

exp Metaheur α r t(s) unfeaC r t(s) unfeaC
1 CMA-ES .75 .166664 0.16 1.7E-9 .166664 0.02 3.4E-9
2 CMA-ES .50 .166666 0.42 3.4E-9 .166662 0.02 0
3 CMA-ES .25 .166666 0.10 1.7E-9 .166664 0.02 3.1E-9
4 PSO .75 .166664 0.14 3.3E-9 .166664 0.02 3.4E-9
5 PSO .50 .166666 0.19 3.3E-9 .166666 0.02 8.6E-9
6 PSO .25 .166665 0.10 4.3E-9 .166666 0.02 3.4E-9
7 SA .75 .166666 0.34 0 .166666 0.02 3.4E-9
8 SA .50 .166666 0.23 5.1E-9 .166662 0.02 3.4E-9
9 SA .25 .166666 0.36 6.9E-9 .166666 0.02 1.7E-9

The column exp represents the identification number of the experiment (understanding as experiment the1

same configuration for different runs), metaheur indicates the considered metaheuristic, α is the parameter used2

in (2.4), r is the average of the best radius values obtained by the different runs of the experiments, t(s) is the3

average runtime in seconds, and unfeaC is the summation in absolute value of the obtained infeasibility in the4

constrains. For each table there are four sub-tables that are related to the two different strategies as explained5

in Figure 2. These different sub-tables are related to each other by the experiment identification number.6

Due to the stochastic nature of the considered metaheuristic algorithms, for each considered number of disks7

it is convenient to show the distribution of the final high quality solutions (Solution1 and Solution3) via boxplots.8

At each boxplot, each box represents one experiment (combination of α with a specific metaheuristic). Moreover,9

the blue line marks the best solution found in the literature [38], and the green line marks the solution returned10

by Knitro when it is applied directly to the original problem.11

In the case of solving the disk packing problem with 9 disks, the obtained results are reported in Table 1Q3 12

and Figure 3. It can be observed that for all possible combinations of metaheuristic scheme and value of α, the13

obtained results in Solution1 and Solution3 improve the green line, and also that they are very close to the blue14

line of the best found solution reported in [38], which imply a clear success of our combined strategies.15

Table 2 and Figure 4 show the results when solving the disk packing problem in the case of 25 disks. It can be16

observed, as before, that the obtained solutions (Solution1 and Solution3), are close to the best known solution17

(blue line), and each of them improves the solution provided by Knitro when it is applied directly to the original18

A METAHEURISTIC PENALTY APPROACH 11

Figure 3. Distribution of final results for Solution1 (top) and Solution3 (bottom), when solving
the disk packing problem with 9 disks.

problem (green line). In this case, the obtained solution by Knitro (green line) represents a local non-global1

solution for which the objective function value is approximately 4% less than the value at the global solution.2

It is worth recalling that for the disk packing problem a very small change in the radius could produce an3

ineffective distribution of the disks. It can also be observed from Table 2 that the value of infeasibility in some4

cases is slightly higher than the ones observed for 9 disks, but they still represent an insignificant numerical5

value when compared with the obtained optimality value. Thus, in spite of these small infeasibility values, our6

proposals out perform the results obtained by the multistart method. In fact, we note in Table 2 that for every7

possible value of α and for each possible metaheuristic, the result obtained by either Solution1 or Solution3 is8

better than the best solution obtained by the multistart method, and much better than the one obtained by9

Knitro on the original problem. Finally, it can be noted that the PSO metaheuristic stands out for obtaining10

Solution1, and the SA metaheuristic is the best option for obtaining Solution3.11

12 D.R. PENAS AND M. RAYDAN

Table 2. Performance of the proposed schemes for solving the disk packing problem with 25 disks.

Applying Knitro directly to
the original problem

Multistart method combined
with Knitro

Best found solution reported
in [38]

r t(s) unfeaC r t(s) unfeaC r t(s) unfeaC
.096323 0.29 0 .097877 1.07 0 .100000 – 0

MHSP metaheuristic results Solution2 Knitro results using
the penalized model

exp Metaheur α r t(s) unfeaC r t(s) unfeaC
1 CMA-ES .75 .030224 378 0.0038 .008638 1.17 0.0209
2 CMA-ES .50 .025523 375 0.0039 .009631 0.61 0.0261
3 CMA-ES .25 .026200 322 4E-09 .010731 0.79 0.0071
4 PSO .75 .038030 319 0.0124 .016591 0.65 1.1E-2
5 PSO .50 .030735 279 0.0023 .016377 0.81 0.0165
6 PSO .25 .030665 339 9E-06 .016896 1.10 0.0007
7 SA .75 .032978 80 0.4476 .019510 0.87 2.0E-3
8 SA .50 .024775 103 0.4110 .015648 1.26 0.0157
9 SA .25 .025844 116 0.8009 .018503 1.31 5.9E-6

Solution1 Knitro results using
the original problem, with x0

from MHSP

Solution3 Knitro results using
the original problem, with x0

from Solution2

exp Metaheur α r t(s) unfeaC r t(s) unfeaC
1 CMA-ES .75 .098614 0.26 8.6E-7 .098712 0.15 9.8E-7
2 CMA-ES .50 .098710 1.63 1.0E-6 .097894 0.14 2.9E-7
3 CMA-ES .25 .099171 1.11 2.0E-6 .098976 0.14 1.7E-6
4 PSO .75 .099986 1.16 2.0E-6 .098701 0.12 2.5E-6
5 PSO .50 .098600 0.84 6.0E-7 .097924 0.13 9.3E-9
6 PSO .25 .097993 0.29 1.1E-6 .097898 0.16 7.9E-9
7 SA .75 .098310 0.66 2.1E-7 .098501 0.14 8.6E-7
8 SA .50 .098235 1.00 6.6E-7 .098865 0.12 1.5E-6
9 SA .25 .098256 0.47 6.8E-7 .099089 0.14 1.0E-6

Table 3 and Figure 5 show the obtained results for 49 disks. In this case, the number of constraints significantly1

increase as compared to the previous two cases, which increases the complexity of the optimization problems2

to be solved, and as a consequence we observe an increase in the required CPU time. Nevertheless, it can also3

be observed that in many cases the results obtained in Solution1 and Solution3 improve the solution obtained4

by Knitro when applied directly to the original NLP problem. The infeasibility values are also not significant in5

this case. It can be seen from the boxplots in Figure 5 that for Solution1 the average values usually fall above6

the green line, and some of them are very close to the blue line, which is a very good indication. We also note7

that in the average the results are better in Solution1 than in Solution3. However, the best particular solutions8

(upper end of the boxes) are observed in Solution3.9

4.2. Constrained optimization benchmarks10

For our next experiments we consider NLP models from a set of global optimization problems known as the11

Cute subcollection of Nonlinear Optimization Models [33]. We have selected three of them, taking into account12

the necessary features of the objective function and the constraints to guarantee the presence of local-nonglobal13

solutions:14

A METAHEURISTIC PENALTY APPROACH 13

Figure 4. Distribution of final results for Solution1 (top) and Solution3 (bottom), when solving
the disk packing problem with 25 disks.

(1) eg3 model. This NLP optimization problem contains 101 variables and 400 constraints (200 linear and 2001

nonlinear). It is described in [5], and for m = 5 it can be formulated as follows2






Minimize
1

2
((x1 − x100)x2 + x101)

2,

subject to C1 : x101 + x1xi+1 +
1 + 2

i
xix100 ≤ 0, i = 1, . . . , 99;

C2 : −0.5 + sin(xi)
2 ≤ 0, i = 1, . . . , 100;

C3 : (x1 + x100)
2 − 1 = 0,

C4 : −1− xi ≤ 0, i = 1, . . . , 100;
C5 : xi − i ≤ 0, i = 1, . . . , 100.

3

14 D.R. PENAS AND M. RAYDAN

Table 3. Performance of the proposed schemes for solving the disk packing problem with 49 disks.

Applying Knitro directly to
the original problem

Multistart method combined
with Knitro

Best found solution reported
in [38]

r t(s) unfeaC r t(s) unfeaC r t(s) unfeaC
.071133 1.94 0 .071240 7.80 9.5E-11 .071692 – 0

MHSP metaheuristic results Solution2 Knitro results using
the penalized model

exp Metaheur α r t(s) unfeaC r t(s) unfeaC
1 CMA-ES .75 .018424 1612 0.0200 .004259 4.0 9.4E-4
2 CMA-ES .50 .011636 1126 0.0155 .005267 5.7 0.0360
3 CMA-ES .25 .010005 1331 0.0114 .003685 38 1.2E-2
4 PSO .75 .018648 1077 0.0105 .005024 6.7 2.2E-2
5 PSO .50 .011520 579 5.1E-4 .005266 5.4 1.0E-1
6 PSO .25 .009121 772 2.2E-8 .009110 5.6 0.0416
7 SA .75 .014964 524 1.4074 .004274 3.4 0.0421
8 SA .50 .008912 838 4.7E-1 .004932 3.2 2.3E-3
9 SA .25 .006936 1061 2.3740 .006847 3.3 5.4E-2

Solution1 Knitro results using
the original problem, with x0

from MHSP

Solution3 Knitro results using
the original problem, with x0

from Solution2

exp Metaheur α r t(s) unfeaC r t(s) unfeaC
1 CMA-ES .75 .071016 3.5 0 .070994 1.3 0
2 CMA-ES .50 .071014 5.1 0 .071253 1.3 0
3 CMA-ES .25 .071260 21.8 0 .071320 1.5 7.6E-8
4 PSO .75 .071220 9.2 0 .071052 1.1 0
5 PSO .50 .071211 25.2 0 .071000 1.1 5.6E-9
6 PSO .25 .071023 14.3 0 .071179 1.2 3.0E-9
7 SA .75 .071216 3.8 0 .070906 1.4 0
8 SA .50 .071148 16 0 .071132 1.5 0
9 SA .25 .071203 8.4 1.3E-9 .071071 1.3 2.0E-9

(2) expfitc model. This NLP problem consists of 5 variables and 502 linear inequality constraints. It was presented1

in [30], and for m = 4 it can be formulated as:2






Minimize
∑251

i=1

(
x1 + x2ti + x3t

2
i

eti(1 + x4(ti − 5) + x5(ti − 5)2))
− 1

)2

, where ti =
i− 1

50
,

subject to C1 : −(x1 + x2ti + x3t
2
i − (ti − 5)etix4

−(ti − 5)2etix5 − eti) ≤ 0 i = 1, . . . , 125;
C2 : −(x1 + x2ti + x3t

2
i − (ti − 5)etix4

−(ti − 5)2etix5 − eti) ≤ 0 i = 126, . . . , 251;
C3 : −((ti − 5)x4 + (ti − 5)2x5 + 0.99999) ≤ 0 i = 1, . . . , 125;
C4 : −((ti − 5)x4 + (ti − 5)2x5 + 0.99999) ≤ 0 i = 126, . . . , 251.

3

A METAHEURISTIC PENALTY APPROACH 15

Figure 5. Distribution of final results for Solution1 (top) and Solution3 (bottom), when solving
the disk packing problem with 49 disks.

(3) haldmads model. This NLP problem has 6 variables and 42 nonlinear inequality constraints (see [10] for1

additional details). For m = 4 it can be formulated as follows:2






Minimize x6, where yi = −1 + 0.1(i− 1) i = 1, . . . , 21,

subject to C1 :
x1 + yix2

1 + x3yi + x4y2
i + x5y3

i

− x6 − eyi ≤ 0 i = 1, . . . , 10;

C2 :
x1 + yix2

1 + x3yi + x4y2
i + x5y3

i

− x6 − eyi ≤ 0 i = 11, . . . , 21;

C3 : −
x1 + yix2

1 + x3yi + x4y2
i + x5y3

i

− x6 + eyi ≤ 0 i = 1, . . . , 10;

C4 : −
x1 + yix2

1 + x3yi + x4y2
i + x5y3

i

− x6 + eyi ≤ 0 i = 11, . . . , 21;

3

16 D.R. PENAS AND M. RAYDAN

Table 4. Performance of the proposed schemes for the Cute NLP test models.

Applying Knitro directly to
the original problem

Multistart method combined
with Knitro

Best found solution reported
in [7]

Problem f(x) t(s) unfeaC f(x) t(s) unfeaC f(x) unfeaC
eg3 0.31407 0.05 0 0.06718 0.39 5.3E-2 0 0
expfitc 57.415 0.07 0 0.02330 0.79 0 0.0233 0
haldmads 2.5885 0.03 0 0.03206 0.17 0 1.2E-4 0

MHSP metaheuristic results Solution2 Knitro results using
the penalized model

Problem Metaheur α f(x) t(s) unfeaC f(x) t(s) unfeaC
eg3 CMA-ES .5 0.24515 146 5.5E-5 0.24515 0.02 0
eg3 PSO .5 0.11927 699 2.4E-1 0.11920 0.02 9.1E-2
eg3 SA .5 0.21669 261 2.3E- 0.21667 0.02 2.2E-2
expfitc CMA-ES .5 50.384 65 8.2E-6 49.264 0.05 4.5E-2
expfitc PSO .5 33.729 730 8.5E0 32.358 0.33 9.09E0
expfitc SA .5 434.18 166 8.7E-2 337.99 0.6 1.3E-2
haldmads CMA-ES .5 0.06002 132 2.8E-3 0.05163 0.01 0
haldmads PSO .5 0.04508 230 1.9E-1 0.09414 0.01 0
haldmads SA .5 0.11303 257 2.48E0 0.02019 0.02 0

Solution1 Knitro results using
the original problem, with x0

from MHSP

Solution3 Knitro results using
the original problem, with x0

from Solution2

Problem Metaheur α f(x) t(s) unfeaC f(x) t(s) unfeaC
eg3 CMA-ES .5 0.06718 0.02 4.7E-2 0.06718 0.03 4.7E-2
eg3 PSO .5 0.06718 0.02 5.1E-2 0.06718 0.03 5.1E-1
eg3 SA .5 0.06718 0.02 4.8E-2 0.06718 0.03 4.8E-2
expfitc CMA-ES .5 0.02330 0.05 0 0.02331 0.17 0
expfitc PSO .5 0.02330 0.33 0 0.02331 0.25 0
expfitc SA .5 0.02513 0.6 0 0.02450 0.12 0
haldmads CMA-ES .5 0.35340 0.01 0 0.00675 0.01 6.7E-9
haldmads PSO .5 0.33917 0.01 5.E-10 0.01364 0.01 7.0E-9
haldmads SA .5 0.33670 0.02 0 0.02023 0.01 0

As in Section 4.1, to build a penalized model of these NLP problems we need to add the penalty term P (x; ρ)1

to the objective function. For that, P (x; ρ) is obtained multiplying each group of constraints Ci by an associated2

penalty parameter as indicated in (2.3).3

Table 4 shows the results of all the considered methods, using an AMPL implementation of eg3, expfitc and4

haldmads, provided by [7]. For our combined strategies, only the results for α = 0.5 have been reported since5

this choice is the one that produced the best results. In all the results, the solutions generated by our calibration6

method remain close to the best known solution, and out perform the results reported by Knitro when it is7

applied directly to the original problem. On the other hand, the comparison with the multistart strategy is8

also positive: the average solution values of our proposals are competitive or slightly better than the solutions9

reported by the multistart method, when solving problems eg3 and expfitc. Moreover, in the particular case of10

problem haldmads, the results obtained by Solution3 are clearly much better than the ones obtained by the11

multistart method and also by Knitro on the original problem, specially when using the CMA-ES metaheuristic12

in which an improvement up to an order of magnitude is observed.13

A METAHEURISTIC PENALTY APPROACH 17

We close this section with some special comments concerning the execution time required by the metaheuristic1

calibration, which in our tables is significantly higher than the time required by the Knitro package. This2

difference has a simple computational explanation: Knitro is a very efficient software written in a high level3

language (C/C++). In contrast, the metaheuristics used in this work are implemented in Python, downloaded4

from free code repositories, without an implementation based on efficiency. Moreover, the AMPL API used by5

our strategies for the evaluation of the merit function, and also to manipulate the mathematical optimization6

problems, clearly produces an additional communication overhead (between AMPL, Knitro, and Python) that7

affects the performance in terms of required time. On the other hand, Knitro incorporates in its structure the8

optimization problems, and moreover it does not need to call any API to evaluate the merit function. Since our9

most important objective in this work is to evaluate the performance of new strategies for obtaining the starting10

point in terms of quality of the solution, we do not consider at this point the required calculation time to be11

an important issue. For a fair comparison concerning required time, our combined algorithms should also be12

implemented in a compiled language, and the problem should be charged in a native structure to avoid overload13

in the process of calling APIs. In that case, the execution time required by our combined schemes would be14

drastically reduced by a few orders of magnitude. Nevertheless, for the sake of completeness, we have reported15

the required execution time for all the experiments.16

5. Concluding remarks17

We have developed a new approach for choosing the starting point in nonlinear programming that combines18

modern metaheuristic stochastic schemes with numerical unconstrained deterministic optimization techniques.19

For that we have presented a convenient penalty function that involves very few penalty parameters, and20

also a suitable merit function, that combines optimality and feasibility, to measure the quality of the penalty21

parameters. The metaheuristic schemes are in charge of producing different combinations of penalty parameters,22

whereas the numerical optimization techniques evaluates the merit function for each different combination. Using23

this combined approach, we have presented a starting point strategy, and also two different strategies (denoted24

as Solution1 and Solution3) to solve the NLP problem. We have illustrated the properties of our proposal on25

three nonlinear programming benchmark-test problems and also on the disk-packing problem, that has many26

local-nonglobal solutions. We have used as the deterministic optimization technique the software package Knitro,27

and we have considered and adapted three different metaheuristic schemes: CMA-ES, PSO, and SA.28

Our experiments show that in general the average results obtained by Solution1 and Solution3 are clearly29

better than the average ones obtained by applying directly the software Knitro on the NLP problem, and are30

competitive or slightly better than best ones (out of 5) obtained by the multistart strategy. Our results indicate31

that, in general, it is convenient to spend some extra time and effort using our two combined strategies to32

obtain a starting point with a good option of converging to either a feasible global solution or to a feasible local33

solution for which the objective function value is very close to the value at the global ones. We note that even34

a relatively small improvement in the objective function value, while keeping feasibility, could produce a more35

convenient solution vector x ∈ R
n, in the sense that it could represent a significant practical gain when solving36

real industrial applications. In particular, our conclusion is that in the overall, the best combined strategies are37

the ones obtained when using the CMA-ES or the PSO metaheuristics.38

It is worth mentioning, that in general, a software package like Knitro with local behavior, when applied39

directly on the NLP problem tends to converge fast to a local non-global solution from which it cannot escape. At40

this point, we notice that instead of using Knitro we could have used, for our experiments, any other deterministic41

numerical package as long as it includes trustable unconstrained as well as constrained optimization routines.42

Similarly, concerning the metaheuristic techniques, in addition to the ones considered in this work we can43

combine our approach with some other available options; see, e.g., [20,22,36]. Moreover, we could also increase44

their strength and capacity, for example increasing the maximum number of iterations or runs, specially for45

solving larger and harder NLP problems.46

18 D.R. PENAS AND M. RAYDAN

Finally, concerning the so-called neutral initial guess, we have used for our experiments a fixed one that has1

been generated at random at the beginning. Nevertheless, a much better neutral initial guess could be supplied2

by the user, in such a way that the combined strategies take advantage of the user’s knowledge of the specific3

problem to be solved. It is worth recalling that the user’s guess not necessarily leads the convergence process4

to a good point, and hence our combined approach is still needed.5

Acknowledgements. We would like to thank two anonymous referees for their constructive comments and suggestions that6

helped us to improve the final version of this paper. The second author was financially supported by the Fundação para a7

Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the project UID/MAT/00297/20198

(CMA).9

References10

[1] Artelys, Knitro nonlinear optimization solver. https://www.artelys.com/en/optimization-tools/knitro (2019).11

[2] J.R. Banga, Optimization in computational systems biology. BMC Syst. Biol. 2 (2008) 1–47.12

[3] R.H. Byrd, J. Nocedal and R.A. Waltz, Knitro: an integrated package for nonlinear optimization. In: Large-scale Nonlinear13

Optimization. Springer (2006) 35–59.14

[4] C.A.C. Coello, Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the15

state of the art. Comput. Methods Appl. Mech. Eng. 191 (2002) 1245–1287.16

[5] A.R. Conn, G. Gould and P.L. Toint, In: Vol. 17 of LANCELOT: A Fortran Package for Large-scale Nonlinear Optimization17

(Release A). Springer Science & Business Media (2013).18

[6] A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques. John Wiley19

and Sons, New York (1968).20

[7] GAMS World site, Cute models section. http://www.gamsworld.org/performance/princetonlib/htm/group5stat.htm (2019).21

[8] W.L. Goffe, G.D. Ferrier and J. Rogers, Global optimization of statistical functions with simulated annealing. J. Econ. 6022

(1994) 65–99.23

[9] J.D. Griffin and T. Kolda, Nonlinearly constrained optimization using heuristic penalty methods and asynchronous parallel24

generating set search. Appl. Math. Res. Express 2010 (2010) 36–62.25

[10] J. Hald and K. Madsen, Combined lp and quasi-newton methods for minimax optimization. Math. Program. 20 (1981) 49–62.26

[11] N. Hansen, A Python implementation of CMA-ES. https://github.com/CMA-ES/pycma (2017).27

[12] N. Hansen and S. Kern, Evaluating the CMA evolution strategy on multimodal test functions. In: International Conference on28

Parallel Problem Solving from Nature. Springer (2004) 282–291.29

[13] N. Hansen and A. Ostermeier, Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix30

adaptation. In: Proceedings of IEEE International Conference on Evolutionary Computation. IEEE (1996) 312–317.31

[14] N. Hansen, S.D. Müller and P. Koumoutsakos, Reducing the time complexity of the derandomized evolution strategy with32

covariance matrix adaptation (CMA-ES). Evol. Comput. 11 (2003) 1–18.33

[15] A. Homaifar, C.X. Qi and S.H. Lai, Constrained optimization via genetic algorithms. Simulation 62 (1994) 242–253.34

[16] M. Kaucic, A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained35

global optimization. J. Global Optim. 55 (2013) 165–188.36

[17] J. Kennedy and R. Eberhart, Pso optimization. In: Vol. 4 of Proc. IEEE Int. Conf. Neural Networks. IEEE Service Center,37

Piscataway, NJ (1995) 1941–1948.38

[18] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing. Science 220 (1983) 671–680.39

[19] A. Lee, Particle swarm optimization (PSO) with constraint support. https://github.com/tisimst/pyswarm (2015).40

[20] K.S. Lee and Z.W. Geem, A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory41

and practice. Comput. Methods Appl. Mech. Eng. 194 (2005) 3902–3933.42

[21] D.G. Luenberger, Linear and Nonlinear Programming. Addison-Wesley, Menlo Park, CA (1984).43

[22] S. Luke, Essentials of Metaheuristics, 2nd edition. Lulu. Available for free at http://cs.gmu.edu/~sean/book/metaheuristics/44

(2013).45

[23] M.E.-B. Menai and M. Batouche, Efficient initial solution to extremal optimization algorithm for weighted maxsat problem.46

In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Springer (2003)47

592–603.48

[24] Z. Michalewicz, Genetic algorithms for numerical optimization. Int. Trans. Oper. Res. 1 (1994) 223–240.49

[25] Z. Michalewicz and C.Z. Janikow, Genetic algorithms for numerical optimization. Stat. Comput. 1 (1991) 75–91.50

[26] K.E. Parsopoulos and M.N. Vrahatis, Particle swarm optimization method for constrained optimization problems. Int.51

Technol.–Theory App.: New Trends Intell. Technol. 76 (2002) 214–220.52

[27] D.R. Penas, P. González, J.A. Egea, J.R. Banga and R. Doallo, Parallel metaheuristics in computational biology: an asyn-53

chronous cooperative enhanced scatter search method. Proc. Comput. Sci. 51 (2015) 630–639.54

A METAHEURISTIC PENALTY APPROACH 19

[28] D.R. Penas, D. Henriques, P. González, R. Doallo, J. Saez-Rodriguez and J.R. Banga, A parallel metaheuristic for large1

mixed-integer nonlinear dynamic optimization problems, with applications in computational biology. PLoS One 12 (2017)2

1–32.3

[29] R. Poli, J. Kennedy and T. Blackwell, Particle swarm optimization. Swarm Intell. 1 (2007) 33–57.4

[30] M. Powell, A tolerant algorithm for linearly constrained optimization calculations. Math. Program. 45 (1989) 547–566.5

[31] R.L. Rardin and R. Uzsoy, Experimental evaluation of heuristic optimization algorithms: a tutorial. J. Heuristics 7 (2001)6

261–304.7

[32] M. Rieck, M. Richter, M. Bittner and F. Holzapfel, Generation of initial guesses for optimal control problems with mixed8

integer dependent constraints. In: ICAS 29th International Conference (2014).9

[33] J. Robert, Vanderbei website. University of Princeton. https://vanderbei.princeton.edu/ampl/nlmodels/ (2019).10

[34] B. Suman and P. Kumar, A survey of simulated annealing as a tool for single and multiobjective optimization. J. Oper. Res.11

Soc. 57 (2006) 1143–1160.12

[35] T. Takahashi, Metaheuristic Algorithms Python. https://github.com/tadatoshi/ (2015).13

[36] E. Talbi, Metaheuristics: From Design to Implementation, 1st edition. Wiley (2009). ISBN:9780470278581.14

[37] Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly and R. Mart́ı, Scatter search and local NLP solvers: a multistart framework15

for global optimization, INFORMS J. Comput. 19 (2007) 328–340.16

[38] University of Magdeburg, The best known packings of equal circles in a square. http://hydra.nat.uni-magdeburg.de/packing/17

csq/csq.html (2013).18

[39] Ö. Yeniay, Penalty function methods for constrained optimization with genetic algorithms. Math. Comput. App. 10 (2005)19

45–56.20

[40] F. Zhang, A.C. Reynolds and D.S. Oliver, An initial guess for the levenberg–marquardt algorithm for conditioning a stochastic21

channel to pressure data. Math. Geol. 35 (2003) 67–88.22

