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BLOCK DECOMPOSITION APPROACH TO COMPUTE
A MINIMUM GEODETIC SET ∗, ∗∗
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Abstract. In this paper, we develop a divide-and-conquer approach,
called block decomposition, to solve the minimum geodetic set problem.
This provides us with a unified approach for all graphs admitting blocks
for which the problem of finding a minimum geodetic set containing a
given set of vertices (g-extension problem) can be efficiently solved.
Our method allows us to derive linear time algorithms for the mini-
mum geodetic set problem in (a proper superclass of) block-cacti and
monopolar chordal graphs. Also, we show that hull sets and geodetic
sets of block-cacti are the same, and the minimum geodetic set problem
is NP-hard in cobipartite graphs. We conclude by pointing out several
interesting research directions.
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1. Introduction

Let G = (V, E) be a connected graph and D ⊆ V (G). The geodetic closure of D,
denoted by I[D], consists of all vertices which lie on some shortest path between
two vertices of D; in this case we say that vertices in I[D] are covered (or generated)
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by D. If D contains only two vertices, say x and y, then we can write I[x, y] instead
of I[{x, y}]. We say that D is a geodetic set if I[D] = V (G). The geodetic number,
denoted by g(G), is the cardinality of a minimum geodetic set in G, and a g-set is
a geodetic set of minimum cardinality. The notion of geodetic sets was introduced
by Harary et al. [17] and it has applications in game theory [4, 18, 25]. Geodetic
sets have strong connections to convexity in graphs which is an extensively studied
topic in the literature [6, 14, 30]. Convexity and the related concept of g-centroids
arises in many practical applications such as telephone switching center, facility
location, distributed computing, information retrieval (see [15, 21, 23, 26]), power
optimization in mobile ad hoc networks [29], hypercube architecture for parallel
processing [24], and communication networks [28]. In this paper, we will restrict
our attention to geodetic sets and the geodetic number of graphs.

There have been some work about the computation of the geodetic number
in special graph classes. In [10], it was shown that deciding whether the geode-
tic number is at most k is NP-complete for chordal graphs and chordal bipartite
graphs, and the exact value of the geodetic number can be computed for cographs
and split graphs in polynomial time. Also, it was proven that the set of simpli-
cial vertices forms the unique g-set in ptolemaic graphs (graphs which are both
chordal and distance hereditary) [13, 14] and a g-set of a P4-sparse graph can be
computed in linear time [13]. In [10], the authors give an upper bound on the
geodetic number of unit interval graphs (Note that a graph is unit interval if and
only if it is proper interval [27] and that they form a proper subclass of chordal
graphs). This result has been recently improved in [11] where a polynomial-time al-
gorithm for computing g-sets of proper interval graphs is presented. More recently,
a polynomial-time algorithm for computing g-sets of distance hereditary graphs
was given in [22]. (Note that a graph is distance hereditary if every induced path
is a shortest path.) Geodetic sets and some related concepts are studied in [31]
for block-cactus graphs and in [2] for median graphs. There are also some studies
about the variation of the geodetic number under some graph operations such as
strong product [5], cartesian product [3], and join [7]. Lastly, the geodetic number
is also studied from the probabilistic point of view in [8].

Now, let us give the definition of another concept related to convexity in graphs.
A subset D of vertices of a graph G is said to be convex if every shortest path
between two vertices of D lies in D. The convex hull of D, denoted by H [D], is
the smallest convex set containing D, and D is a hull set of G if its convex hull is
equal to V (G). The hull number of a graph G, denoted by h(G), is the size of a
minimum hull set of G.

The difference between hull sets and geodetic sets can be observed in Figure 1
where I[a, b] �= V since x /∈ I[a, b] (and therefore the geodetic number is at least 3)
whereas H [{a, b}] = V (and therefore the hull number is 2).

The hull number and the geodetic number problems are both defined through
convexity, however their computation usually require quite different arguments.
It is clear that every geodetic set is a hull set and hence h(G) ≤ g(G) for every
graph G. However, the converse does not necessarily hold. It was shown that the



Title Suppressed Due to Excessive Length 499

a b x 

Figure 1. A graph whose hull number and geodetic number are different.

difference between these two parameters can be made arbitrarily large [19]. In this
paper, we show that in block-cactus graphs hull sets and geodetic sets are the same.
Intuitively, it seems that the geodetic number problem is more difficult than the
hull number problem. Indeed, it is known that while the geodetic number problem
is NP-hard in chordal graphs [10], the hull number problem can be solved in poly-
nomial time in the same graph class [22]. This fact should support that intuition
however there is not much study that will allow us to compare the hardness of
these two problems in general. The complexity of the hull number problem is still
open in many important graph classes like bipartite graphs [9]. In [9], the authors
give a polynomial-time algorithm for computing the hull number of a proper inter-
val graph. However, this result does not imply an efficient algorithm for computing
minimum geodetic sets of proper interval graphs; the latter is solved in [11] using
a different approach.

Our paper is organized as follows. In Section 2, we prove that the geodetic
number problem is NP-hard in cobipartite graphs. Section 3 is devoted to the de-
velopment of the block decomposition approach and the subsequent results. This
approach suggests a simple polynomial time algorithm for the minimum geodetic
set problem whenever the so-called g-extension problem can be solved in polyno-
mial time in the blocks of a given graph. Using the block decomposition approach,
we show that a minimum geodetic set can be computed in (a proper superclass of)
block-cacti and in monopolar chordal graphs (which generalize split graphs). As a
byproduct, we also show that hull sets and geodetic sets coincide for block-cacti.
We conclude with further research directions in Section 4.

2. Definitions and preliminaries

We consider simple finite undirected graphs. Let G = (V, E) be a graph with
vertex set V and edge set E. An edge uv consists of two adjacent vertices. The
neighbourhood of v, denoted as NG(v), is the set of vertices of G that are adjacent
to v, and we may omit the subscript whenever there is no ambiguity. A graph H is
a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G), and it is an induced subgraph
of G if V (H) ⊆ V (G) and E(H) = {uv ∈ E(G)|u, v ∈ V (H)}. The intersection of
two subgraphs H and H ′ of G, denoted by H ∩ H ′, is the subgraph of G whose
vertex set is V (H)∩V (H ′) and edge set is E(H)∩E(H ′). For a vertex x of G, G−x
denotes the graph obtained from G by deleting vertex x and all edges incident to
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x. A set X of vertices of G is a clique (respectively independent set) of G if the
vertices in X are pairwise adjacent (respectively non-adjacent) in G. Say that G is
a complete graph if V (G) is a clique. A vertex v is called simplicial if N(v) forms a
clique. A sequence (y0, . . . , yr) of pairwise distinct vertices of G is called a y0, yr-
path of length r in G if yiyi+1 ∈ E(G) for every 0 ≤ i ≤ r−1. For a pair of vertices
u, v of G, the distance between u and v in G, denoted as dG(u, v), is the smallest
integer k such that there is a u, v-path of length k in G; if G has no u, v-path then
dG(u, v) =def ∞. A shortest u, v-path in G is a u, v-path in G of length dG(u, v).
A cycle of length r in G is a path of length r − 1 where y0yr−1 ∈ E(G). A chord
in a cycle is an edge between two non-consecutive vertices of the cycle; a chord in
a path is defined analogously. A graph G is called chordal if every cycle of length
at least four in G has a cycle. Graph G is connected if G has a u, v-path for every
pair of vertices u, v; otherwise, G is disconnected. A connected component of G is
a maximal connected induced subgraph of G.

It is not difficult to see that x ∈ IG[u, v] if and only if dG(u, v) = dG(u, x) +
dG(x, v), and if C1, . . . , Cs are connected components of G then a set D ⊆ V (G)
is a geodetic set for G if and only if D ∩ V (Ci) is a geodetic set for Ci for every
1 ≤ i ≤ s. Therefore, it suffices to restrict to connected graphs when studying the
computational complexity of finding geodetic sets.

Another important remark is that, every simplicial vertex necessarily belongs
to any geodetic set; indeed, a simplicial vertex cannot be covered by two other
vertices. It follows directly that if the set of simplicial vertices forms a geodetic
set, then it is both minimum and unique.

We begin by showing that computing a minimum geodetic set is NP-hard even
for cobipartite graphs. A graph G is called bipartite if its vertex set admits a
partition into sets A and B such that A and B are independent sets of G; we
call (A, B) a bi-partition of G. Analogously, if V (G) admits a partition into A and
B such that A and B are cliques of G then G is cobipartite. Cobipartite graphs
are the complements of bipartite graphs. Our hardness result complements the
known hardness results for chordal graphs and chordal bipartite graphs by Dourado
et al. [10]. The construction follows the same ideas in their paper. The dominating
set problem is defined as follows: given a graph G and an integer k, decide whether
G has a dominating set of size at most k, i.e., whether there is D ⊆ V (G) such
that |D| ≤ k and every vertex of G that is not in D has a neighbour in D. The
dominating set problem is NP-complete on connected bipartite graphs [1].

The geodetic set problem is defined as follows: given a graph G and an integer k,
decide whether G has a geodetic set of size at most k. Then we have the following:

Theorem 2.1. The geodetic set problem is NP-complete for cobipartite graphs.

Proof. For a graph G and a set D ⊆ V (G), IG[D] can be computed in polynomial
time. It directly follows that the geodetic set problem is in NP. For the hardness,
we reduce from the dominating set problem on connected bipartite graphs [1]. Let
G be a connected bipartite graph with bi-partition (A, B). Let a, a′, b, b′ be new
vertices, and let H =def (V (G) ∪ {a, a′, b, b′}, E(G) ∪ {ab′, a′b, a′b′} ∪ E1 ∪ E2),
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where E1 and E2 are the subsets of edges obtained by making A ∪ {a, a′} and
B∪{b, b′} into cliques, respectively. Note that H is a connected cobipartite graph.
It is important to observe that every pair of vertices of H is at distance at most
2. We show that G has a dominating set of size at most k if and only if H has a
geodetic set of size at most k + 2.

Let D be a dominating set for G. We show that D ∪ {a, b} is a geodetic set for
H . Let x be a vertex of H that is not in D∪{a, b}. If x = a′ or x = b′ then (a, x, b)
is a shortest a, b-path in H . If x ∈ A then there is a vertex u ∈ D with ux ∈ E(G).
Since G is bipartite, u ∈ B, and (u, x, a) is a shortest u, a-path in H ; analogously,
if x ∈ B then there is u ∈ D∩A such that (u, x, b) is a shortest u, b-path in H . For
the converse, let D be a geodetic set for H . Let x be a vertex of G with x �∈ D.
There is a pair of vertices u, v from D with x ∈ IH [u, v]. Since dH(u, v) ≤ 2, it
follows that (u, x, v) is a u, v-path in H , which means that u, v ∈ NH(x). Assume
that u, v �∈ V (G). Then, u, v ∈ {a, a′, b, b′}, and since uv �∈ E(H), it holds that
u, v ∈ {a, b}. Thus, x ∈ {a′, b′}. Hence, D \ {a, a′, b, b′} is a dominating set for G.
It remains to consider the size of D \ {a, a′, b, b′}. If a �∈ D then b′ ∈ D, if b �∈ D
then a′ ∈ D. It follows that |D ∩ {a, a′, b, b′}| ≥ 2. �

3. Block decomposition approach

A vertex b of a graph G is called cut-vertex of G if there is a connected compo-
nent C of G such that C−b is disconnected. A block of G is a maximal connected
induced subgraph of G that has no cut vertex. We will see that cut-vertices provide
a divide-and-conquer approach to the computation of geodetic sets. In this sec-
tion, we give linear time algorithms to compute a minimum geodetic set of a proper
superclass of block-cactus graphs and a subclass of chordal graphs called monopo-
lar chordal. This latter generalizes the split graphs, for which a polynomial-time
algorithm for computing g-sets is already known [10].

Assume that G is connected and that b is a cut-vertex of G. Let C1, . . . , Ct be
the connected components of G−b. Let Ki =def G[V (Ci)∪{b}] for every 1 ≤ i ≤ t.
We call K1, . . . , Kt the b-components of G. Note that each b-component has at
least two vertices.

The block decomposition of a graph G is the set of blocks of G. A block decom-
position can be obtained by repeatedly choosing a cut-vertex b and computing the
b-components. We will see that computing a minimum geodetic set for a graph
with cut-vertices can be reduced to computing special geodetic sets for its blocks.

Remark 3.1. Let G be a graph and B1, . . . , Bk be its blocks, where k ≥ 2. Then
there is a block which has exactly one cut-vertex of G. Moreover, if x is a cut-
vertex and D is a geodetic set of G, then every connected component of G − x
contains at least one vertex of D.

Then the following holds for general graphs.

Remark 3.2. A cut-vertex can not belong to a minimal geodetic set.
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Indeed, if a geodetic set D contains a cut-vertex x, then D\{x} is also a geodetic
set. We now state the main theorem about the block decomposition approach.

Theorem 3.3. Let G be a graph and let A be the set of cut-vertices of G. Let
{B1, . . . , Bt} be the block decomposition of G. For 1 ≤ i ≤ t, let Di be a geodetic
set for Bi of smallest possible size such that A∩V (Bi) ⊆ Di. Then, (D1∪· · ·∪Dt)\A
is a minimum geodetic set for G.

Proof. First let us show that (D1 ∪ · · · ∪ Dt) \ A is a geodetic set. Let x be a
vertex of G and assume that x belongs to a block Bi. Then x ∈ I[u, v] for some
u, v ∈ Di, since Di is a geodetic set of Bi. Now, if both u and v are in Di \A then
we are done. So assume without loss of generality that u is a cut-vertex. Let G1 be
a u-component of G which does not contain Bi. There is a block Bj of G1 which
has exactly one cut-vertex of G. By Remark 3.1, Bj contains a vertex u′ ∈ Dj \A.
Thus x ∈ I[u′, v]. Similarly if v is a cut-vertex, we can find a vertex v′ in Dk \ A
for some k �= j such that x ∈ I[u′, v′].

Assume for a contradiction that G has a geodetic set D such that |D| < |(D1 ∪
· · · ∪ Dt) \ A|. Then there is a block Bi such that |D ∩ V (Bi)| < |Di \ A| since D
does not contain a cut-vertex. Now we show that V (Bi)∩ (D∪A) is a geodetic set
of Bi. Let x be a vertex of V (Bi); then x is on a shortest u, v-path P where u and v
are in D. If u is not in Bi, then there is a cut-vertex u′ ∈ Bi which separates x and
u. So x lies on a shortest u′, v-path. Similarly if v is not in Bi, there is a cut-vertex
v′ ∈ Bi separating x and v and which is different from u′. Therefore, x is on a
shortest u′, v′-path where u′ and v′ are both in A. Moreover, V (Bi)∩ (D ∪A) is a
geodetic set of Bi containing all cut-vertices of Bi and such that its size is strictly
less than that of Di; thus we obtain a contradiction. �

Theorem 3.3 provides a simple algorithm for computing a minimum geodetic
set for a graph with cut-vertices, if the subproblem of computing a geodetic set
of smallest size containing a given set of vertices can be solved efficiently in the
blocks of the input graph. Naturally, this problem cannot be solved efficiently
for arbitrary graphs. It is therefore necessary to restrict the blocks to specially
structured graphs. Here, we compute the minimum geodetic sets of block-cactus
graphs and monopolar chordal graphs by solving efficiently the following minimum
geodetic extension problem in the blocks of these graphs.

Let A be a subset of vertices of a graph G. We say that D is a g-extension of A
if D is a minimum geodetic set that contains A. Finding such a set D is referred
as the g-extension problem.

A block-cactus graph is a graph whose block decomposition contains only chord-
less cycles and complete graphs. Block-cactus graphs generalize trees, block graphs
and cacti.

Corollary 3.4. A minimum geodetic set for a block-cactus graph can be computed
in linear time.
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Proof. We solve the g-extension problem on each block as follows and apply
Theorem 3.3 to conclude. Obviously a complete graph has a unique geodetic set
which is equal to all of its vertices; so the g-extension necessarily contains all ver-
tices of a complete graph. Now, we consider cycles. Let C be a cycle of length n
and A ⊆ V (C). We shall find a g-extension of A in C. If A is empty and n is even,
we take two vertices u and v where d(u, v) = n/2 so that {u, v} is a minimum
geodetic set. If A is empty and n is odd, we take three vertices u, v and w where u
and v are adjacent and d(u, w) = d(v, w) = 
n/2� so that {u, v, w} is a minimum
geodetic set. Now assume that A has only one vertex x. If n is even, then we take
a vertex y on the cycle where d(x, y) = n/2 so that {x, y} is the desired geodetic
set. If n is odd, then we take two adjacent vertices y and z on the cycle where
d(x, y) = d(x, z) = 
n/2� so that {x, y, z} is the desired geodetic set. For the rest
we may assume that A has cardinality larger than one. If there is a u, v-path P
on the cycle C where u, v ∈ A, V (P ) ∩ A = {u, v} and the length of P is larger
than 
n/2�, then take any vertex x lying on the middle of P (there is one (respec-
tively two) middle vertex (respectively vertices) if the length of the path P is even
(respectively odd)). In this case A ∪ {x} is the desired geodetic set. If there is no
path as described above, then A itself is the desired geodetic set. �

Since every simplicial vertex has to be in a geodetic set and that they form a
geodetic set of a ptolemaic graph [14], given a ptolemaic graph G and A ⊆ V (G),
the set A∪S, where S denotes the set of simplicial vertices of G is the g-extension of
A. We can therefore extend the result of Corollary 3.4: if the block decomposition
of a graph G contains only chordless cycles and ptolemaic graphs (note that every
complete graph is a ptolemaic graph) then a minimum geodetic set for G can be
computed in linear time.

In the sequel, we show that the hull sets of block-cacti are precisely its geodetic
sets.

Theorem 3.5. Hull sets and geodetic sets of a block-cactus graph G coincide.

Proof. Let S ⊆ V (G). It suffices to show that I[S] is convex, since then it follows
that I[S] = H [S]. Let Pu,v denote a shortest u, v-path for u, v ∈ S and let P be
the subgraph which is the union of all such paths, that is, P =

⋃
u,v∈S Pu,v. Note

that V (P ) = I[S]. It is easy to see that the intersection of P with each clique
block is a clique. Now, we claim that P is a block-cactus graph such that for each
cycle block C of G, P ∩C is equal to either C itself or the empty set or a shortest
path in C between two vertices of S.

First of all, we show that P ∩C is a connected subgraph of C. Assume that it is
disconnected, then take two consecutive disjoint maximal paths P1, P2 in P ∩ C.
Let x and y be the end-vertices of P1 and P2 respectively such that there is a path
joining x and y, say Px,y, which has no intersection with P other than x and y.
Clearly such vertices exist by the choices of P1 and P2. Since x and y are the
end-vertices of some maximal paths in P ∩ C, each one of x and y either belongs
to S or is a cut-vertex of G which is covered by some shortest path between two
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vertices of S. It follows that we have three cases for x and y:

• both x and y are in S;
• one of x and y, say without loss of generality x, is in S and y is a cut-vertex

such that G − y contains a connected component H with V (H) ∩ V (C) = ∅
and V (H) ∩ S �= ∅;

• both x and y are cut-vertices having the same properties as in the previous
case.

In all cases, we obtain the contradictions that P ∩ Px,y �= {x, y} if Px,y is the
shortest x, y-path, and P1 and P2 are not disjoint otherwise. Hence, P ∩ C must
be connected.

By using similar arguments, it is easy to see that P ∩ C is a shortest path
between two vertices of S unless it is an empty set or C itself. It follows from the
above that V (P ) is convex and we have the result. �

Although the minimum geodetic set problem is NP-hard in the class of chordal
graphs [10], it can be solved in polynomial time in some subclasses of it as men-
tioned earlier in Section 1. As a further application of Theorem 3.3, we deal with a
subclass of chordal graphs. A graph G is called monopolar if its vertex set can be
partitioned into two sets A and B such that A induces an independent set and B
a disjoint union of cliques (that is a P3-free graph) [12]. We consider the minimum
geodetic set problem in monopolar chordal graphs, that is graphs which are both
chordal and monopolar. It can be easily seen that monopolar chordal graphs gen-
eralize split graphs; a split graph G is a graph whose vertex set can be partitioned
into an independent set I and a clique C. Moreover, it is known that 2-connected
components of monopolar chordal graphs are precisely split graphs [12]. (Recall
that the blocks of a graph are its isolated vertices, its brigdes and its maximal
2-connected subgraphs.) Therefore, solving the g-extension problem in split graphs
provides an algorithm to find a g-set of a monopolar chordal graph. To this end, we
generalize the result of finding a g-set in split graphs (see [10]) to the g-extension
problem as follows.

Theorem 3.6. Let G be a connected split graph and I ∪ C be a partition of its
vertices such that I is an independent set and C is a clique. Let S denote the set
of simplicial vertices of G and A ⊆ V (G). Then, a g-extension of A can be found
in linear time. Moreover, it has size |A ∪ S|, |A ∪ S| + 1 or |A ∪ S| + 2.

Proof. First we define a set Ū which consists of vertices u ∈ C \ (S ∪A) such that

• u has exactly one neighbor in I, say u′;
• u′ is adjacent to all vertices of C ∩ (S ∪ A);
• u′ has a common neighbor with every vertex of I.

By definition of Ū , it is clear that Ū = V (G) \ I[S ∪ A]. Obviously, if Ū = ∅ then
S ∪ A is a g-extension of A. Hence, for the rest we may assume that Ū �= ∅. Now
we claim that a g-extension of A has size |S ∪A|+1 if and only if there is a vertex
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u ∈ Ū such that N(u) ∩ N(v) ∩ I = ∅ for every v ∈ Ū \ {u}. If a g-extension of A
has size |S ∪A|+ 1 then there must be a vertex u such that every vertex which is
not covered by S ∪A is covered by u and another vertex of S ∪A, and the vertex
u must belong to Ū since we assume that Ū �= ∅. For the converse, if there is a
vertex u ∈ Ū such that N(u)∩N(v)∩I = ∅ for every v ∈ Ū \{u} then S∪A∪{u}
is a g-extension of A. Now we assume that a g-extension of A has size larger than
|S ∪ A| + 1. Then Ū contains at least two vertices. If all vertices of Ū have the
same neighbor in I, say x, then there is a vertex y in C which is nonadjacent to
x since the vertices of Ū are non-simplicial. And in that case S ∪ A ∪ {x} would
be a g-extension of A since all vertices of Ū are covered by I[x, y]. Hence, there
are two vertices u1 and u2 of Ū such that u1 and u2 have distinct neighbors in
I. Now we prove that S ∪ A ∪ {u1, u2} is a g-extension of A. It suffices to show
that every vertex u of Ū \ {u1, u2} lies on a shortest path between two vertices of
S ∪A ∪ {u1, u2}, as S ∪ A covers all of V (G) \ Ū . Let u ∈ Ū \ {u1, u2} and u′, u′

1,
and u′

2 be the unique neighbors of u, u1 and u2 in I respectively. If u′ is not equal
to any of u′

1 or u′
2, then u ∈ I[u′, u1]. So without loss of generality assume that

u′ = u′
1. In this case we have u ∈ I[u′

1, u2] which completes the proof. �

The following corollary is a direct consequence of Theorems 3.3 and 3.6 since
the 2-connected components of monopolar chordal graphs are precisely split
graphs [12].

Corollary 3.7. A minimum geodetic set of a monopolar chordal graph can be
computed in linear time.

One can also note that in the special case of threshold graphs which are P4-free
split graphs, the g-extension is reduced to the set S ∪ A since S forms a g-set.
A minimum geodetic set for P4-free monopolar chordal graphs easily follows from
this remark.

4. Final remarks and related problems

As future research, it would be interesting to determine other classes of graphs
for which our block decomposition method would provide polynomial time algo-
rithms for solving the minimum geodetic set problem. To this end, we should
identify graph classes for which the g-extension problem can be solved in poly-
nomial time in their blocks. One may also study the complexity of the minimum
geodetic set problem in subclasses of chordal graphs in order to enlighten the
border between NP-hard and polynomially solvable cases.

We mentioned that the set of simplicial vertices forms the (unique) g-set in
ptolemaic graphs. One might be interested in the characterization of graphs for
which the set of simplicial vertices forms a geodetic set. It should be first noticed
that, unless we require this property to hold for every induced subgraph (i.e., to
be a hereditary property), we cannot end up with a nice characterization in terms
of classes of graphs defined by some hereditary property such as forbidden induced
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subgraphs. This fact can be easily observed on a graph obtained by adding a pend-
ing edge to each one of the vertices of an arbitrary graph G; indeed, the set of
simplicial vertices (formed by the set of degree one vertices) of such a graph is
its unique minimum geodetic set, however, this property does not necessarily hold
for its subgraph G which is an arbitrary graph. So, let’s consider the following
hereditary graph property: a graph G is called unigeodetic if G and all of its con-
nected (induced) subgraphs admit the set of their simplicial vertices as a minimum
geodetic set. Then we have:

Proposition 4.1. G is unigeodetic if and only if it is a ptolemaic graph.

Proof. We already know that ptolemaic graphs are unigeodetic (recall that induced
subgraphs of ptolemaic graphs are also ptolemaic) [14]. For the other direction, it
is enough to make two observations. Firstly, any chordless cycle has no simplicial
vertex and therefore unigeodetic graphs should be chordal. Secondly, any mini-
mum geodetic set of a gem (a cycle of length 5 with two non-intersecting chords)
contains a non-simplicial vertex; consequently, unigeodetic graphs should not con-
tain an induced gem. It remains to notice that gem-free chordal graphs are exactly
ptolemaic graphs [20]. �

Indeed, if we relax the property of being hereditary (in the definition of the uni-
geodetic graphs), the characterization of graphs such that the set of simplicial
vertices forms a geodetic set remains an open question.

We have pointed out that for a given graph, the geodetic sets are also hull sets
but the converse is not necessarily true. In this paper, we have shown that they
coincide for block-cacti. An interesting further study would be to find necessary
conditions for this property to hold or find other graph classes where this property
holds. Also, further study should be conducted to enlighten the comparison of the
computational difficulties of the hull number problem and the geodetic number
problem.
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bringing to our attention the issues on the unigeodetic graphs. Last but not least, we
are grateful to the two anonymous referees for their careful reading which allowed us to
improve the presentation of our paper.

References

[1] A.A. Bertossi, Dominating sets for split and bipartite graphs. Inf. Proc. Lett. 19 (1984)
37–40.
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[3] B. Brešar, S. Klavžar and A. Tepeh Horvat, On the geodetic number and related metric sets
in Cartesian product graphs. Discrete Math. 308 (2008) 5555–5561.

[4] F. Buckley and F. Harary, Geodetic games for graphs. Questiones Math. 8 (1986) 321–334.



Title Suppressed Due to Excessive Length 507

[5] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo and M.L. Puertas, On the geodetic and the
hull numbers in strong product graphs. Comput. Math. Appl. 60 (2010) 3020–3031.
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