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ON THE HARDNESS OF APPROXIMATING SOME
NP-OPTIMIZATION PROBLEMS RELATED

TO MINIMUM LINEAR ORDERING PROBLEM
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Abstract. We study hardness of approximating several minimaximal
and maximinimal NP-optimization problems related to the minimum
linear ordering problem (MINLOP). MINLOP is to find a minimum
weight acyclic tournament in a given arc-weighted complete digraph.
MINLOP is APX-hard but its unweighted version is polynomial time
solvable. We prove that MIN-MAX-SUBDAG problem, which is a
generalization of MINLOP and requires to find a minimum cardinality
maximal acyclic subdigraph of a given digraph, is, however, APX-hard.
Using results of H̊astad concerning hardness of approximating inde-
pendence number of a graph we then prove similar results concerning
MAX-MIN-VC (respectively, MAX-MIN-FVS) which requires to find
a maximum cardinality minimal vertex cover in a given graph (respec-
tively, a maximum cardinality minimal feedback vertex set in a given
digraph). We also prove APX-hardness of these and several related
problems on various degree bounded graphs and digraphs.

Mathematics Subject Classification. 68Q17, 68R01, 68W25.

1. Introduction

In this paper we deal with hardness of approximating several minimum-maximal
(or simply, minimaximal) and maximum-minimal (or simply, maximinimal) NP-
complete optimization problems on graphs as well as related maximum/minimum
problems. In general, for any given instance x of such a problem, it is required
to find a minimum (respectively, maximum) weight (or, cardinality) maximal
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(respectively, minimal) feasible solution with respect to a partial order on the
set of feasible solutions of x. The terminology of minimaximal and maximinimal
is apparently first used by Peters et al. [29], though the concept has received at-
tention of many others, specially in connection with many graph problems. We
may cite for example, minimum chromatic number and its maximum version, the
achromatic number [9,12,20,21], maximum independent set and minimaximal in-
dependent set (minimum independent dominating set) [18, 22, 23, 25], minimum
vertex cover and maximinimal vertex cover [28,30], minimum dominating set and
maximinimal dominating set [10, 27], minimum vertex (edge) connectivity and
maximinimal vertex (edge) connectivity [20, 29] and a recent systematic study of
minimaximal and maximinimal optimization problems by Manlove [30].

We are led to investigation of several such graph problems while considering a
generalization of the minimum linear ordering problem (MINLOP). Given a com-
plete digraph Gn = (V,An) on a set V = {v1, v2, . . . vn} of n vertices with non-
negative integral arc weights, the MINLOP is to find an acyclic tournament [19]
on V with minimum total arc weight. This is a known NP-complete optimiza-
tion problem [7, 16, 17, 31]. In [31] it is shown that MINLOP is APX-hard, but
4t-MINLOP (i.e., MINLOP satisfying a parameterized triangle inequality with
parameter t ∈ (0, 2]) is 2+t

2t -approximable, 42-MINLOP is in PO, and, for any
t ∈ (0, 2), 4t-MINLOP does not admit a polynomial time approximation scheme,
unless P = NP. Two problems related to MINLOP are the maximum acyclic sub-
digraph (MAX-SUBDAG) and the minimum feedback arc set (MIN-FAS) prob-
lems. Given a digraph G = (V,A), the MAX-SUBDAG (respectively, MIN-FAS)
problem is to find a subset of B ⊆ A of maximum (respectively, minimum)
cardinality such that (V,B) (respectively, (V,A − B)) is an acyclic subdigraph
(SUBDAG) of G. While MAX-SUBDAG is APX-complete [28] and has a triv-
ial 2-approximate algorithm, MINFAS is not known to be in APX, though it is
APX-hard [24].

A generalization of MINLOP can be formulated as follows. Note that an acyclic
tournament on V is indeed a maximal SUBDAG of Gn (i.e., a SUBDAG of Gn
which is not contained in any SUBDAG of Gn). Thus we generalize MINLOP as
the minimum weight maximal SUBDAG (MIN-W-MAX-SUBDAG) problem which
requires to find a maximal SUBDAG of minimum total arc weight in any given arc
weighted digraph (which is not necessarily a complete digraph). MIN-W-MAX-
SUBDAG is thus APX-hard as its special case MINLOP is so. For MIN-W-MAX-
SUBDAG we can not talk about arc weights satisfying triangle (or parameterized
triangle) inequality, and so there is no immediate answer to the question whether it
is in APX with suitable restrictions on arc weights. But it appears to be unlikely
as we show that unweighted version (i.e., all arc weights 1) of MIN-W-MAX-
SUBDAG, called MIN-MAX-SUBDAG, is APX-hard even though MINLOP with
constant arc weight is solvable in polynomial time.

The complementary problem of MIN-MAX-SUBDAG is the maximum cardi-
nality minimal feedback arc set (MAX-MIN-FAS) in which it is required to find
a minimal feedback arc set of maximum cardinality in a given digraph. The
vertex version of this is the maximum cardinality minimal feedback vertex set
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(MAX-MIN-FVS). An NP-optimization problem related to MAX-MIN-FVS is
MAX-MIN-VC, in which it is required to find a minimal vertex cover of maxi-
mum cardinality in a given graph. The related problem of minimum cardinality
maximal independent set (MIN-MAX-IS) problem, where one is required to find
a maximal IS (or an independent dominating set) of minimum cardinality for any
given graph. MIN-MAX-IS and MAX-MIN-VC have the same complexity over
every graph class ([30], Th. 4.2.11) though they may not have similar approxima-
tion properties and are NP-complete even for bipartite graphs [22,23] and dually
chordal graphs [5] though polynomial time algorithms are known for many special
classes of graphs such as chordal graphs [13], interval and circular-arc graphs [8],
permutation graphs [6, 14] and many other graph classes (see [30]).

Since the decision versions of these optimization problems are NP-complete, it
is not possible to find optimal solutions in polynomial time, unless P = NP. So
a practical alternative is to find near optimal (or approximate) solutions in poly-
nomial time. However, it is not always possible to obtain such solutions having
desired approximation properties [2, 18, 26, 28]. Thus, it is of considerable theo-
retical and practical interest to provide some qualitative explanation for this by
establishing results about hardness of obtaining such approximate solutions.

In this paper, we shall establish several results about hardness of approximat-
ing such problems using the standard technique of reduction of one problem to
another. The paper is organized as follows. In Section 2, we recall the relevant
concepts about graphs, digraphs, NP-optimization problems and approximation
algorithms. In Section 3, we first prove APX-hardness of MIN-MAX-SUBDAG
for arbitrary digraph by reducing MAX-SUBDAG to it. Then, using the results
of H̊astad concerning hardness of approximating MAX-IS, we prove similar re-
sults about MAX-MIN-VC for arbitrary graphs and about MAX-MIN-FVS for
arbitrary graphs and digraphs. In Section 4, we show that, MIN-FVS is APX-
complete for 6-regular graphs and MAX-MIN-FVS is APX-hard for all graphs of
maximum degree 9. We also prove that MAX-MIN-VC is k-approximable for all
graphs without any isolated vertex and having maximum degree k, k ≥ 1, and
is APX-complete for all graphs of maximum degree 5. In Section 5, we prove
APX-hardness of MIN-FAS and MAX-SUBDAG for k-total-regular digraphs, for
all k ≥ 4. Then we show that MIN-MAX-SUBDAG is APX-hard for digraphs of
maximum total degree 12 and MAX-MIN-FVS is APX-hard for all digraphs of
maximum total degree 6. Finally, in Section 6, we make some concluding remarks.

2. Basic concepts

We will denote a graph (i.e. an undirected graph) by G = (V,E) and a digraph
(i.e. a directed graph) by G = (V,A), where V = {v1, v2, . . . vn}, E is the edge
set and A is the arc set. An edge between vertices vi and vj is an unordered pair
which will be denoted by {vi, vj}, whereas an arc from vi to vj will be denoted
by the ordered pair (vi, vj). If {vi, vj} is an edge in G then we say that it is
incident on vi and vj . If (vi, vj) is an arc in G then vi is the initial point and vj
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is the terminal point of (vi, vj). In an undirected graph G, degree of a vertex vi is
denoted as d(vi) which is the number of edges incident on vi in G, and G is called
k-regular if each vertex in G has degree k. In a digraph G, d+(vi) and d−(vi)
are the number of arcs in G having vi as the initial vertex and terminal vertex,
respectively, and d(vi), the total degree of vi is defined as d(vi) = d+(vi) + d−(vi).
A digraph G is k-total-regular if for each vertex vi, d(vi) = k. A path P (v1, vt) in
G = (V,E) (respectively, dipath in G = (V,A)) is a sequence of distinct vertices
(v1, v2, . . . , vt) such that {vi, vi+1} ∈ E (respectively, (vi, vi+1) ∈ A) for 1 ≤ i < t.
A path (respectively, dipath) P (v1, vt) is called a cycle (respectively, dicycle) if
v1 = vt.

A tournament on V [19] is a digraphG = (V, T ) such that, for every two vertices
u, v ∈ V , T contains exactly one arc with end vertices u and v. A tournament
on V is called an acyclic tournament on V if it does not contain any directed
cycle. An feedback arc set (FAS) in a digraph G = (V,A) is an arc set B ⊆ A such
that the subdigraph (V,A−B) is acyclic. Given a digraph G = (V,A), a minimal
FAS is an FAS B ⊆ A which does not contain another FAS. (V,B) is called a
directed acyclic subgraph (SUBDAG) of G = (V,A) if B ⊆ A and has no directed
cycle. A SUBDAG (V,B) of G is called a maximal SUBDAG if there exists no
SUBDAG (V,B′) of G such that B ⊂ B′. Given a graph G = (V,E), C ⊆ V is
called a vertex cover (VC) if for each edge {vi, vj} ∈ E, C contains either vi or
vj . A VC C is called a minimal VC of G if no proper subset of C is also a VC of
G. S ⊆ V is called an feedback vertex set (FVS) of G if the subgraph/subdigraph
G[V − S] induced by the vertex set V − S is acyclic. Similarly a minimal FVS of
G is defined.

For definitions and notations concerning basic concepts regarding approxima-
tion algorithms for NP-optimization problems we refer to the book [3].

The precise formulations of some of the problems we deal with are given below
where we have ommited the goal as it can be inferred from the name of the prob-
lem.

MINLOP
Instance - A pair x = (Gn, w), where Gn = (V,An) is a complete digraph on V
and w assigns a nonnegative integer to any e ∈ An.
Solution - An acyclic tournament y on V .
Cost - m(x, y) = max{1,

∑
e∈y w(e)}.

MIN-VC
Instance - A graph x = G = (V,E).
Solution - A VC C of G.
Cost - m(x,C) = max{1, |C|}.
MAX-W-SUBDAG
Instance - A pair x = (G,w), where G = (V,A) is a digraph and w assigns a
nonnegative integer to each e ∈ A.
Solution - A SUBDAG (V,B) of G.
Cost - m(x,B) = max{1,

∑
e∈B w(e)}.
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MIN-W-FAS
Instance - A pair x = (G,w), where G = (V,A) is a digraph and w assigns a
nonnegative integer to each e ∈ A.
Solution - An FAS B of G.
Cost - m(x,B) = max{1,

∑
e∈B w(e)}.

MIN-W-FVS
Instance - A pair x = (G,w) where G is a graph/digraph and w assigns a nonneg-
ative integer to each v ∈ V .
Solution - An FVS F of G.
Cost - m(x, F ) = max{1,

∑
v∈F w(v)}.

In an unweighted version of a weighted optimization problem, we assume that
weight function is a constant function and this constant is 1. We denote the un-
weighted problem without the letter “W” in the problem name. For a given graph
parameter P (for example, the parameter P is vertex cover), in the optimiza-
tion problem MIN-P , it is required to find a minimum weight solution over all
minimal solutions. In the corresponding MAX-MIN-P problem, it is required to
find a maximum weight minimal solution over all minimal solutions satisfying the
parameter P . For example, in MAX-MIN-VC, it is required to find a minimal ver-
tex cover of maximum weight in a given vertex weighted graph (G,w). Similarly,
we define MAX-MIN-FAS, MAX-MIN-FVS and MIN-MAX-SUBDAG. In a graph
optimization problem π, if the input graph (or, digraph) is k-regular (or, k-total-
regular) then we denote this restricted problem as π-k; and if the input graph (or,
digraph) is of degree (or, total-degree) atmost k then we denote this restricted
problem as π-≤ k. Other NP-optimization problems that we consider are MIN-
MAX-SUBDAG, MIN-MAX-SUBDAG-≤ k, MAX-MIN-VC, MAX-MIN-VC-≤ k,
MAX-MIN-FVS, MAX-MIN-FVS-≤ k, MIN-W-FAS-≤ k, MAX-W-SUBDAG-≤ k
and MIN-FVS-6.

We use the performance ratio [3] Rπ(x, y) as a measure of quality of an approxi-
mate solution y of an instance x of π. Various notations of approximate algorithms
and approximation classes such as APX, PTAS, FPTAS are formulated as in [3]
in terms of Rπ(x, y). Though the completeness concepts in approximation classes
are defined with respect to AP-reduction [11], we shall use L-reduction [28] which
suffices our purpose due to the following theorem.

Theorem 2.1. [3] For any two NPO problems π1 and π2, if π1 ≤L π2 and
π1 ∈ APX, then π1 ≤AP π2.

One purpose of a reduction from π1 to π2 is to use an approximation algorithm
for π2 to construct an equally good approximation algorithm for π1. The ap-
proximation preserving reductions, for example L-reduction, work very well when
reducing to the problems with bounded approximation, but this is not the case
when reducing to the problems that can not be approximated within a constant.
This is because, these reductions may transform an input instance of π1 to a much
larger input instance of π2. Because of the size amplification the constructed algo-
rithm for π1 via a reduction may not be as good as the original algorithm for π2.
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Kann [25] introduced a size dependent reduction (called S-reduction) between
problems that can not be approximated within a constant.
π1 is said to be S-reducible to π2, in symbol π1 ≤S π2, with size amplification

α(n) from π1 to π2 is a tuple (f, g, α, c) such that:
1. f and g are polynomial time computable functions, α is a monotone increas-

ing positive function and c is a positive constant;
2. f : Iπ1 → Iπ2 and ∀y ∈ solπ2(f(x)), g(x, y) ∈ solπ1(x);
3. ∀x ∈ Iπ1 and ∀y ∈ solπ2(f(x)), Rπ1(x, g(x, y)) ≤ c ·Rπ2(f(x), y);
4. ∀x ∈ Iπ1 , |f(x)| ≤ α(|x|).

The following theorem follows from the definition of S-reduction.

Theorem 2.2. [25] Given two NPO problems π1 and π2, if π1 ≤S π2 with size
amplification α(n) and π2 can be approximated within some monotone increasing
positive function u(n) of the size of the input instance, then π1 can be approximated
within c · u(α(n)), which is a monotone increasing positive function.

The following theorem says how to get lower bound about approximability of π2

from the known lower bound of π1 by using a S-reduction from π1 to π2.

Theorem 2.3. Let π1 ≤S π2 with size amplification α(n). Let n = |x| ∈ Iπ1 and
N = |f(x)| ≤ ank, for n ≥ n0, where a ≥ 1, k > 0 and n0 is a positive integer.
If there exists no polynomial time algorithm to approximate π1 within a factor of
1
pn

q−ε for any ε > 0, for some positive constants p and q, unless P = NP (unless
NP = ZPP); then there exists no polynomial time algorithm to approximate π2

within a factor of 1
pcaq/k

N
q
k−ε, for any ε > 0, unless P = NP (unless NP = ZPP).

Proof. Proof is quite trivial and depends on the inequality 1
pcn

q−ε ≥ 1
pcaq/k

N
q
k− εk ,

which follows from N ≤ ank and a ≥ 1.

To conclude this section, we state two results due to H̊astad which we shall use
in Section 3 for proving similar results for MAX-MIN-VC and MAX-MIN-FVS.

Theorem 2.4. [18] Unless NP = ZPP, for any ε > 0 there exists no polynomial
time algorithm to approximate MAX-IS within a factor of n1−ε, where n is the
number of vertices in an instance.

Theorem 2.5. [18] Unless P = NP, for any ε > 0 there exists no polynomial
time algorithm to approximate MAX-IS within a factor of n

1
2−ε, where n is the

number of vertices in an instance.

3. Hardness results for arbitrary graphs/digraphs

In this section, we prove hardness results for several minimaximal and maxi-
minimal problems for general graphs and digraphs. First we consider MIN-MAX-
SUBDAG problem. As already noted, MIN-W-MAX-SUBDAG is APX-hard as
it is a generalization of MINLOP which is APX-hard [31]. However, even though
MINLOP can be solved in polynomial time when the arc weights are constant, as
we show in Theorem 3.1, MIN-MAX-SUBDAG is APX-hard.
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Theorem 3.1. MIN-MAX-SUBDAG is APX-hard.

Proof. It is enough to show that MAX-SUBDAG≤LMIN-MAX-SUBDAG as MAX-
SUBDAG is APX-complete [28].

For each instance x = (G = (V,A)) of MAX-SUBDAG, we construct in poly-
nomial time an instance f(x) = (G′ = (V ′, A′)) of MIN-MAX-SUBDAG and with
each feasible solution S′ of f(x), we associate a feasible solution g(S′) = S = S′∩A
of x such that f and g satisfy the conditions of L-reduction with α = 5 and β = 1.

Let K = {(vi, vj)|(vi, vj) ∈ A and (vj , vi) /∈ A}. For each arc (vi, vj) ∈ K, we
introduce a new vertex vij for the construction of G′. Construct G′ = (V ′, A′) as
follows: V ′ = V ∪{vij |(vi, vj) ∈ K} andA′ = A∪{(vj , vi), (vj , vij), (vij , vi)|(vi, vj) ∈
K}. For an example, see Figure 1. Let k = |K| and p be the number of pairs of
vertices vi, vj ∈ V such that both (vi, vj), (vj , vi) ∈ A. Hence, p = |A−K|

2 .

G G’

v
v v v v v

v v

v

v

v
1

12 23

3

4
4

23 34

24

Figure 1. A digraph G and the corresponding digraph G′.

Next we establish a few claims.

Claim 3.2. Let (V ′, S′) be a maximal SUBDAG of G′ and S = S′ ∩ A. Then
(V, S) is a SUBDAG of G and |S′| = 3k + 2p− |S|.

Proof. Since (V, S) is just a subdigraph of (V ′, S′), it is acyclic and so (V, S) is a
SUBDAG of G.

Now note that an arc in S′−Amust come from the set {(vj , vi), (vj , vij), (vij , vi)}
for any arc (vi, vj) ∈ K. As (V ′, S′) is a maximal SUBDAG of G′, if (vi, vj) ∈
K ∩ S′, then S′ must contain exactly one of (vj , vij) and (vij , vi), and if (vi, vj) ∈
K − S′, then S′ must contain all the three arcs (vj , vi), (vj , vij) and (vij , vi). So,
|S′| = |S| + k + 2|K − S|. We now show that |K − S| = k + p − |S|. Note that
|K−S| = |K|− |K∩S| and |K∩S| = |S|− |S−K|. Also S−K = (A∩S′)−K =
(A−K)∩S′. Now S′ contains exactly one of the two (vi, vj) and (vj , vi) for every
pair of arcs (vi, vj) and (vj , vi) in A−K as (V ′, S′) is a maximal SUBDAG of G′.
It follows that |(A−K)∩S′| = 1

2 |A−K| = p and |S−K| = p so |K∩S| = |S|−p.
Thus |S′| = |S|+ k + 2(k + p− |S|) = 3k + 2p− |S|.

Claim 3.3. If (V ′, S′o) is a minimum maximal SUBDAG of G′, then (V, So =
S′o ∩A) is a maximum SUBDAG of G. Also |A| ≤ 2|So|.
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Proof. If (V, So) is not a maximum SUBDAG of G, then let (V, S̃) be a maximum
SUBDAG of G. Let S̃′ = S̃∪{(vij , vi)|(vi, vj) ∈ K∩S̃}∪{(vj, vi), (vj , vij), (vij , vi)|
(vi, vj) ∈ K − S̃}. Now clearly S̃ = S̃′ ∩A. Also (V, S̃′) is a maximal SUBDAG of
G′. This is because:

(a) as (V, S̃) is a maximum SUBDAG of G and S̃′ contains S̃, no arc from A− S̃
can be added to S̃′ without creating a dicycle, and

(b) no arc from A′ − (A∪ S̃′) can be added to S̃′ without creating a dicycle. To
see this, note that A′ − (A ∪ S̃′) = {(vj , vi), (vj , vij)|(vi, vj) ∈ K ∩ S̃}. As
both (vi, vj) and (vij , vi) ∈ S̃′, we can not add any arc from A′− (A∪ S̃′) to
S̃′ without creating a dicycle.

Also by Claim 3.2, |S̃′| = 3k + 2p − |S̃|. Since |S̃| > |So|, 3k + 2p − |So| =
|S′o| > 3k+ 2p−|S̃|, which contradicts the assumption that (V ′, S′o) is a minimum
cardinality maximal SUBDAG of G′.

To show that |A| ≤ 2|So|, it is enough to observe that as (V, So) is a maximum
SUBDAG of G, (V,A−So) is a SUBDAG of G. Hence, |So| ≥ |A−So| = |A|−|So|,
i.e., 2|So| ≥ |A|.

Now returning to the proof of Theorem 3.1, note that |S′o| = 3k + 2p− |So| ≤
3(k + p)− |So| ≤ 6|So| − |So| = 5|So|. Also for any maximal SUBDAG (V ′, S′) of
G′, |So| − |S| = |S′| − |S′o|.

Next we prove results about hardness of approximating MAX-MIN-VC and
MAX-MIN-FVS, using S-reducibility arguments and the results of H̊astad con-
cerning MAX-IS, Theorem 2.4 and Theorem 2.5.

Theorem 3.4. Unless NP = ZPP, for any ε > 0 there exists no polynomial time
algorithm to approximate MAX-MIN-VC within a factor of 1

2
√

2
n

1
2−ε, where n is

the number of vertices in an instance.

Proof. Given an instance G = (V,E) of MAX-IS, we construct an instance G′ =
(V ′, E′) of MAX-MIN-VC, where V ′ = V ∪ [∪v∈V {v1, v2, . . . vn+1}] and E′ =
E ∪ {{v, v1}, {v, v2}, . . . {v, vn+1}|v ∈ V }. In other words, G′ is obtained from G
by introducing for each vertex v ∈ V , n+1 additional vertices v1, v2, . . . , vn+1 and
(n+ 1) additional edges {v, v1}, {v, v2}, . . . {v, vn+1} to the graph G (for example
see Fig. 2).

We first establish a few claims.

Claim 3.5. A vertex cover S′ ⊆ V ′ of G′ is a minimal VC iff
(a) for v ∈ S′ ∩ V , vi /∈ S′, for any 1 ≤ i ≤ n+ 1, and
(b) for v ∈ V − S′, {v1, v2, . . . vn+1} ⊆ S′.

Proof. Let S′ be a minimal VC of G′. If v ∈ S′ ∩ V , then for 1 ≤ i ≤ n+ 1, no vi

is in S′ as S′ is a minimal VC and v covers the edge {v, vi}. If v ∈ V − S′, then
to cover the edges {v, vi}, 1 ≤ i ≤ n+ 1, S′ must include vi.

Conversely, suppose S′ satisfies (a) and (b) of Claim 3.5. We will show that we
can not drop any vertex from S′ to get a proper subset S′′ ⊂ S′ which is also a
VC of G′. If v ∈ S′ ∩ V then, as for 1 ≤ i ≤ n + 1, none of vi is in S′ and none
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Figure 2. An instance G of MAX-IS and the corresponding in-
stance G′ of MAX-MIN-VC.

of the edges {v, vi} can be covered by a vertex in S′ other than v, v can not be
dropped from S′. If v ∈ V − S′, then no vertex vi ∈ S′, 1 ≤ i ≤ n + 1, can be
dropped from S′, as no vertex in S′ − {vi} will cover the edge {v, vi}.

From the Claim 3.5 it follows that, for any minimal VC S′ ⊆ V ′ of G′, there
exists a set S ⊆ V such that S′ = (V − S) ∪ [∪v∈S{v1, v2, . . . , vn+1}].

Claim 3.6. Let S be a maximal IS ofG. Then S′=(V−S)∪[∪v∈S{v1, v2, . . . , vn+1}]
is a minimal VC of G′.

Claim 3.7. Let S′ be a minimal VC in G′. If V − S′ is not a maximal IS of G,
then there exists a minimal VC S′′ of G′ such that V − S′′ is a maximal IS of G
and, moreover,

(a) |S′′| > |S′|,
(b) |V − S′′| > |V − S′| and
(c) |S′′| = n(|V − S′′|+ 1).

Proof. Note that, for any VC S′ of G′, V ∩ S′ is a VC of G. Hence, V − S′ =
V − (V ∩ S′) is an independent set of G. Let S′ be a minimal VC of G′ for which
V −S′ is not a maximal independent set of G. Then we can always extend (V −S′)
to a unique maximal IS S of G (in polynomial time) by introducing vertices of G
one by one in the order v1, v2, . . . , vn while maintaining the independence property.
Hence, S ⊃ (V − S′). By Claim 3.6, S′′ = (V − S)∪ [∪v∈S{v1, v2, . . . , vn+1}] is a
minimal VC of G′ and |S′′| = n(|S|+ 1). Now we show that S = V −S′′. For this
first note that S ⊆ V as S is a maximal independent set of G. Next, let u ∈ S,
then from the definition of S′′ it follows that u /∈ S′′, so u ∈ V − S′′. Hence,
S ⊆ V − S′′. Also, if u ∈ V − S′′, then u /∈ S′′, i.e. u /∈ V − S, so u ∈ S. Hence,
S ⊇ V − S′′. Thus S = V − S′′. From this it follows that V − S′′ is a maximal
independent set of G.
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From Claim 3.5, we have |S′| = |V ∩ S′| + (n+ 1)|V − (V ∩ S′)| = n(n+ 1)−
n|V ∩ S′| = n+ n|V − S′| = n(|V − S′|+ 1). Since |S| > |V − S′′|, it follows that
|S′′| > |S′|. Also (b) and (c) follow from the fact that S = V − S′′.

Claim 3.8. S ⊆ V is a maximum IS ofG iff S′ = (V−S)∪[∪v∈S{v1, v2, . . . , vn+1}]
is a maximum cardinality minimal VC of G′.

Proof. Let S be a maximum IS of G. By Claim 3.6, S′ is a minimal VC of G′. If
S′ is not a maximum cardinality minimal VC of G′, then using Claim 3.7 there
exists a minimal VC S′′ of G′ such that |S′′| > |S′|, S = V −S′′ is a maximal IS of
G and |S′′| = n(|S|+ 1). As |S′| < |S′′|, |S′| = n(|S|+ 1) and |S′′| = n(|S̃|+ 1), it
follows that |S| < |S̃|, which is a contradiction. Hence S′ is a maximum cardinality
minimal VC in G.

Let S′ be a maximum cardinality minimal VC of G′. Then by Claim 3.7,
S = V − S′ is a maximal IS of G and |S′| = n(|S| + 1). We claim that S is a
maximum IS in G. Suppose there exists a maximal IS S∗ ⊆ V of G with |S∗| > |S|.
By Claim 3.6, Ŝ = (V − S∗) ∪ [∪v∈S∗{v1, v2, . . . , vn+1}] is a minimal VC in G′

and |Ŝ| = n(|S∗| + 1). Since |S∗| > |S|, it follows that |Ŝ| > |S′|, which is a
contradiction. Hence, S is a maximum IS of G.

We now complete the proof Theorem 3.4. Let α(G) denote the independence
number and β(G) denote the size of a maximum cardinality minimal VC in G.
Hence, from Claim 3.8, we have β(G′) = n(α(G) + 1). Now let S′ be any minimal
VC of G′. If V − S′ is a maximal IS of G, then to S′ we associate S = V − S′
as the feasible solution of MAX-IS for G. If V − S′ is not a maximal IS of G,
then let S′′ be the minimal VC of G′ corresponding to S′ as in Claim 3.7, so that
S = V − S′′ is a maximal IS of G and |S′| < |S′′| = n(|S| + 1). To this minimal
VC S′ of G′ we associate S as the feasible solution of MAX-IS for G. Hence for
any minimal VC S′ of G′ we have

α(G)
|S| =

nα(G)
n|S| =

β(G′)− n
|S′′| − n =

β(G′)
|S′′| − n −

n

|S′′| − n

=
β(G′)
|S′′| ·

|S′′|
|S′′| − n −

1
|S| =

β(G′)
|S′′| ·

n(|S|+ n)
n|S| − 1

|S|

=
β(G′)
|S′′| +

1
|S| (

β(G′)
|S′′| − 1)

≤ β(G′)
|S′′| +

β(G′)
|S′′| − 1

(
since

β(G′)
|S′′| ≥ 1 and |S| ≥ 1

)
< 2

β(G′)
|S′′| ≤ 2

β(G′)
|S′| ·

Let N be the number of vertices in G′. Since N = n2 + 2n and N ≤ 2n2, for

n ≥ 2. Now, for any ε > 0, n1−ε ≥ N
1
2 (1−ε)

2
1
2 (1−ε) ≥ N

1
2 (1−ε)
√

2
· 2 ε2 ≥ 1√

2
N

1
2 (1−ε). From

Theorem 2.4, it now follows that, unless NP = ZPP, for any ε > 0, there exists no
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polynomial time algorithm to approximate β(G′) within a factor of 1
2
√

2
N

1
2 (1−ε),

where N is the number of vertices in G′. Hence the theorem follows.

We also have:

Theorem 3.9. Unless P = NP, for any ε > 0, there is no polynomial time algo-
rithm to approximate MAX-MIN-VC within a factor of 1

2 4√2
n

1
4−ε, where n is the

number of vertices in an instance.

Proof. Same as that of Theorem 3.4, and the fact that 1
4√2
N

1
4 (1−2ε) ≤ n 1

2−ε.

Regarding MAX-MIN-FVS, we have similar results. First we shall consider this
problem for digraphs.

Theorem 3.10. Unless NP = ZPP, for any ε > 0, there exists no polynomial time
algorithm to approximate MAX-MIN-FVS, for general digraphs, within a factor of
1
4n

1
2−ε, where n is the number of vertices in an instance.

Proof. We prove this by an S-reduction from MAX-MIN-VC to MAX-MIN-FVS
as follows.

Let G = (V,E) be a graph (an instance of MAX-MIN-VC). Construct an in-
stance G′ = (V ′, A′) of MAX-MIN-FVS from G with V ′ = ∪vi∈V {v1

i , v
2
i } and

A′ = [∪vi∈V {(v1
i , v

2
i )}] ∪ [∪{vi,vj}∈E{(v2

i , v
1
j ), (v2

j , v
1
i )}]. In other words, for each

vi ∈ V , G′ has 2 vertices v1
i , v

2
i and an arc (v1

i , v
2
i ). Also for each {vi, vj} ∈ E G′

has (v2
i , v

1
j ) and (v2

j , v
1
i ). Hence, G′ has 2n vertices and n+ 2m arcs. See Figure 3

for an example.

u
u

v v

v

w

w

x x

x

u

w

1

1

1

1

2

2

2

2

G=(V, E) G’=(V’, E’)

Figure 3. An instance G of MAX-MIN-VC and the correspond-
ing instance G′ of MAX-MIN-FVS.

First we establish two claims.

Claim 3.11. For any C ⊆ V ,

(1) C is a VC of G iff F = {v1
i |vi ∈ C} is an FVS of G′.

(2) C is a minimal VC of G iff F is a minimal FVS of G′.
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Proof. (1) Let C be a VC of G. We will show that F is a FVS of G′. Every dicycle
in G′ contains the sequence of four vertices (v1

i , v
2
i , v

1
j , v

2
j ) for some {vi, vj} ∈ E.

Since C is a VC, it follows that at least one of v1
i and v1

j is in F . Hence, F is an
FVS of G′.

Conversely, let F be an FVS ofG. Suppose C is not a VC ofG. Then there exists
an edge {vi, vj} ∈ E none of vi and vj is in C. Hence, the dicycle (v1

i , v
2
i , v

1
j , v

2
j , v

1
i )

is in G′ − F , and hence, F is not an FVS of G′ which is a contradiction.

(2) Let C be a minimal VC of G. Thus, for any vi ∈ C, there exists a vj ∈ V −C
such that {vi, vj} ∈ E. Hence for any v1

i ∈ F , there is some vj ∈ V −C such that
the dicycle (v1

i , v
2
i , v

1
j , v

2
j , v

1
i ) contains one and only one vertex namely v1

i in F .
Hence F is a minimal FVS of G′.

Conversely, let F be a minimal FVS of G′ and suppose C is not a minimal VC
of G. Let C′ ⊂ C be a minimal VC of G. By (1), F ′ is an FVS of G′ and F ′ ⊂ F ,
which is a contradiction. So C must be a minimal VC of G.

Claim 3.12. Let F be any minimal FVS of G′. Then:

(1) for any vi ∈ V , F ∩ {v1
i , v

2
i } is either empty or singleton;

(2) for any vi ∈ V such that F ∩ {v1
i , v

2
i } 6= φ, F ′ = F − {v1

i , v
2
i }+ v1

i is also a
minimal FVS of G′;

(3) there is a minimal FVS F ′ of G′ such that |F ′| = |F | and F ′ = {v1
i |vi ∈ C}

for some minimal VC C of G such that |C| = |F ′|.

Proof. (1) This follows because F is a minimal FVS and every dicycle of G′ con-
tains either both v1

i and v2
i or none at all.

(2) If F contains v1
i then F = F ′. If F contains v2

i , then F ′ = F − v2
i + v1

i and,
as every cycle in G′ containing v2

i must contain v1
i and vice versa, F ′ must be a

minimal FVS of G′.

(3) By repeated application of (2), we get a minimal FVS F ′ of G′ such that
|F ′| = |F | and any vertex v ∈ F ′ is v1

i for some vi ∈ V . Let C = {vi|v1
i ∈ F ′}.

Then F ′ = {v1
i |vi ∈ C}. Now by Claim 3.11, as F ′ is a minimal FVS of G′, C is

a minimal VC of G.

Now coming back to the proof of Theorem 3.10, let Fo be a maximum minimal
FVS of G′ and F be any minimal FVS of G′. By Claim 3.12, without loss of
generality we can assume that every vertex in Fo (respectively, in F ) is of the
form v1

i for some vi ∈ V . Also by Claim 3.12, Co = {vi|v1
i ∈ Fo}, (respectively,

C = {vi|v1
i ∈ F}) is a maximum minimal VC (respectively, minimal VC) of G,

and |Co| = |Fo| (respectively, |C| = |F |). Hence |Co||C| = |Fo|
|F | .

Let N = |V ′|. Then N = 2n. Now for any ε > 0, 1
2
√

2
n

1
2−ε = 1

2
√

2

(2n)
1
2−ε

2
1
2−ε

=
1
4N

1
2−ε · 2ε ≥ 1

4N
1
2−ε. Hence, by Theorem 3.4, the result follows.
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We also have:

Theorem 3.13. Unless P = NP, for any ε > 0, there exists no polynomial time
algorithm to approximate MAX-MIN-FVS, for general digraphs, within a factor of

1
2
√

2
n

1
4−ε, where n is the number of vertices in an instance.

Towards MAX-MIN-FVS for general graphs we have:

Theorem 3.14. Unless NP = ZPP, for any ε > 0, there exists no polynomial time
algorithm to approximate MAX-MIN-FVS, for general graphs, within a factor of
1
4n

1
2−ε, where n is the number of vertices in an instance.

Proof. We shall prove this by establishing an S-reduction from MAX-MIN-VC.
For any given instance of MAX-MIN-VC, i.e. a graph G = (V,E), construct an
instance G′ = (V ′, E′) from G by introducing a new vertex t and connecting each
vertex ofG to t by an edge. Hence in G′, V ′ = V ∪{t} and E′ = E∪{(vi, t)|vi ∈ V }.
Clearly, |V ′| = n+ 1.

Obviously, if C ⊆ V is a minimal VC of G then C is also a minimal FVS of G′.
It can be easily observed that, for any graph G, G′ has a maximum cardinality
minimal FVS without containing the vertex t. Also, if F ⊆ V ′ is a minimal FVS
of G′ with t /∈ F , then F is a minimal VC of G. From this, it follows that,
if Co is a maximum cardinality minimal VC of G then Co is also a maximum
cardinality minimal FVS of G′. It is important to observe that if F is a minimal
FVS of G′ with t ∈ F then in polynomial time one can construct an FVS F ′ of
G′ with |F | ≤ |F ′| and t /∈ F ′. Since an optimal solution of MAX-MIN-FVS for
the instance G′ does not contain the special vertex t, without loss of generality,
we can assume that a minimal FVS of G′ does not contain the vertex t. Hence,
this is an S-reduction with the parameter c = 1.

Now, let N = |V ′|. Hence N = n + 1. As N ≥ 2, for any ε > 0, we have
(N − 1)

1
2−ε ≥ 1√

2
N

1
2−ε. Thus 1

2
√

2
n

1
2−ε ≥ 1

4N
1
2−ε. Hence, by Theorem 3.4, the

result follows.

Similarly we can prove:

Theorem 3.15. Unless P = NP, for any ε > 0, there exists no polynomial time
algorithm to approximate MAX-MIN-FVS, for general graphs, within a factor of

1
2
√

2
n

1
4−ε, where n is the number of vertices in an instance.

4. Hardness results for bounded degree graphs

In this section we establish APX-hardness of MIN-FVS and MAX-MIN-FVS
for certain restricted class of undirected graphs. Regarding MIN-FVS, it is known
that it can be solved in polynomial time for all graphs of maximum degree 3 [33],
but it is not known whether MIN-FVS is NP-complete for graphs of maximum
degree 4 or 5. However, as suggested by Fujito [15], it is easy to show that:

Proposition 4.1. MIN-W-FVS-≤4 is NP-complete and also APX-complete.
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Proof. From a 3-regular graph (an instance of MIN-VC-3) construct a vertex
weighted graph (G′ = (V ′, E′), w) of degree at most 4 as follows. V ′ = V ∪{vi|1 ≤
i ≤ n

2 }, E′ = E ∪ [∪1≤i≤n2 {{v2i−1, v
i}, {v2i, v

i}}] ∪ [{{vi, vi+1}|1 ≤ i < n
2 }], and

w(v) = 1 for v ∈ V and w(v) = M for v ∈ V ′ − V , where M > n is a positive
large integer.

It can be shown that, any FVS F of G′ with w(F ) < n is also a VC of G and any
VC C of G is also an FVS of G′. From this, NP-completeness of MIN-W-FVS-≤4
follows. Further, as MIN-W-FVS ∈ APX [4], MIN-W-FVS-≤4 ∈ APX. Now, if
Co is a minimum VC of G then Co is also a minimum FVS of G′ and they are
of same cost. To an FVS F of G′ with w(F ) =

∑
v∈F w(v) ≥ n we assign V as

a vertex cover of G. Hence, from any FVS F of G′ we can construct a VC C of
G such that |C| ≤ w(F ). So |C|

|Co| ≤
w(F )
w(Fo)

. From this it follows that, MIN-VC-3
≤AP MIN-W-FVS-≤4 with α = 1, and so, MIN-W-FVS-≤4 is APX-complete as
MIN-VC-3 is so [1].

Next we show that MIN-FVS-6 is APX-complete.

Theorem 4.2. MIN-FVS-6 is APX-complete.

Proof. As MIN-FVS is in class APX [4], it is enough to show that MIN-FVS-6 is
APX-hard. Towards this we will show that MIN-VC-3 ≤L MIN-FVS-6.

Let G = (V,E) be a 3-regular graph. From G construct a 6-regular graph G′ =
(V ′, E′) as follows: for every edge {vi, vj} ∈ E, let Vij = {v1

ij , v
2
ij , v

3
ij , v

4
ij , v

5
ij , v

6
ij , v

7
ij}

be the set of seven new vertices and Hij = (Vij , Eij) be the graph obtained
from the complete graph on Vij by removing the edge {v1

ij , v
7
ij}. Now V ′ = V ∪

[∪{vi,vj}∈EVij ] and E′ = E ∪ [∪{vi,vj}∈E[Eij ∪ {{vi, v1
ij}, {v7

ij , vj}}]], see
Figure 4. Clearly G′ is 6-regular.

v v1 7

4

3

2

v
i

vi jj v

v

v

v

v
ij

ij

ij

ij

ij

v
ij
5

v
ij
6

Figure 4. An edge {vi, vj} ∈ E and corresponding subgraph in G′.

Next we establish a few claims. But first note that if F is an FVS of G′, then
F contains at least 4 vertices from Vij .

Claim 4.3. Let F be any FVS of G′ containing exactly 4 vertices from Vij for
some {vi, vj} ∈ E. Then F must contain either vi or vj .

Proof. If v1
ij ∈ F , then then the three vertices vpij , v

q
ij , v

r
ij not in F form a cycle

in G′. Hence, F can not be an FVS of G′. So v1
ij /∈ F . By similar argument,

one can show that v7
ij /∈ F . Hence, F contains 4 vertices from v2

ij , v
3
ij , v

4
ij , v

5
ij , v

6
ij .
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Let vlij /∈ F for some 2 ≤ l ≤ 6. Since F is an FVS of G and the vertices
vi, v

1
ij , v

l
ij , v

7
ij , vj form a cycle in G′, F must contain either vi or vj .

To an FVS F of G′, we associate the set C of vertices in G defined as C =
(F ∩ V ) ∪ {vi | |F ∩ Vij | ≥ 5 and i < j}.

Claim 4.4. C is a VC of G and |F | ≥ |C|+ 4|E| = |C|+ 6n.

Proof. If C is not a VC of G, then there exists {vi, vj} ∈ E such that C∩{vi, vj} =
φ. By the definition of C, it follows that |F ∩ Vij | ≤ 4 and F ∩ {vi, vj} = φ. If
|F ∩ Vij | < 4, then F is not an FVS of G′, so |F ∩Vij | = 4. By Claim 4.3, F must
contain either vi or vj . Otherwise F can not be an FVS of G′. This contradicts
that F ∩ {vi, vj} = φ. Hence, C is a VC of G.

Now |F | = 4|E|+ |F ∩ V |+ |{vi | |F ∩ Vij | ≥ 5, i < j}|, as F contains at least
4 vertices from Vij for each {vi, vj} ∈ E, and for the edges {vi, vj} ∈ E such that
|F ∩Vij | ≥ 5, F contains at least one more vertex from Vij in addition to 4 vertices
already considered. Hence, |F | ≥ |C| + 4|E| = |C| + 6n as G is a 3-regular and
|E| = 3

2n.

Claim 4.5. For any VC C in G, the set F = C ∪ {v2
ij , v

3
ij , v

4
ij , v

5
ij |{vi, vj} ∈ E} is

an FVS of G′ such that C = F ∩ V and |F | = |C|+ 6n.

Proof. Take any cycle K in G′. If K is a cycle in G, then K has a vertex in
C ⊂ F . Hence, F breaks all cycles in G. If K contains a vertex in G′ and if K
contains none of v2

ij , v
3
ij , v

4
ij , v

5
ij for any {vi, vj} ∈ E, then it must contain both vi

and vj , and so K has a common vertex with C ⊂ F . Thus every cycle K in G′

intersects F . So F is an FVS of G′.
Clearly, C = F ∩ V and so |F | = |C|+ 6n.

Claim 4.6. If Fo is a minimum FVS of G′, then the associated set Co is a mini-
mum VC of G and |Fo| = |Co|+ n.

Proof. Let Co be the VC of G associated with Fo, and F be the FVS of G′

associated with Co as constructed in proof of Claim 4.5. Then |Fo| ≥ |Co|+ 6n =
|F |. But as Fo is a minimum FVS of G′, equality holds, i.e., |Fo| = |Co|+n. From
this it follows that Co is a minimum VC of G.

Now to complete the proof of Theorem 4.2, first note that, any VC C in a
3-regular graph G contains at least n

2 vertices. To see this, if possible let |C| < n
2 .

Then note that V −C is an IS of G and the number of edges between V −C and
C is 3|V −C| = 3n− 3|C| > 3

2n, the number of edges in G, which is not possible.
Now note that |Fo| = |Co| + 6n ≤ |Co| + 12|Co| = 13|Co|. Hence, the first

inequality of L-reduction holds with α = 13. Next, for any FVS F of G′, |F | −
|Fo| ≥ |C|+ 6n− |Co| − 6n = |C| − |Co|. So the second inequality of L-reduction
holds with β = 1.



302 S. MISHRA AND S. SIKDAR

Next we shall consider MAX-MIN-FVS. Before that we note the following:

Lemma 4.7. For any FVS F of a 6-regular graph G = (V,E), |F | > 2
5n.

Proof. Observe that, G has 3n edges and the subgraph G[V −F ] induced by V −F ,
is a forest. Since G[V −F ] has at most n−|F | − 1 edges and the number of edges
removed by removing F is at most 6|F |, we have 3n − 6|F | ≤ n − |F | − 1, i.e.
|F | > 2

5n.

Theorem 4.8. MAX-MIN-FVS-≤9 is APX-hard.

Proof. Let G = (V,E) be a 6-regular graph. Construct a graph G′ = (V ′, E′)
of degree at most 9 as follows: V ′ = V ∪ {v1, v2, v3|v ∈ V } and E′ = E ∪
{(v, v1), (v, v2), (v, v3), (v1, v2), (v1, v3) |v ∈ V } (see Fig. 5).

v

v v

vv

1

23

Figure 5. A vertex v in G and its corresponding neighbors in G′.

Let F be any minimal FVS of G′. Note that, for any v ∈ V − F , F contains
either v1 or both v2 and v3. Further, if v ∈ F ∩ V , then F ∩ {v1, v2, v3} = φ.
To F we associate C = F ∩ V , which is clearly an FVS of G. Note that |F | ≤
|C|+ 2|V − F | = |C|+ 2|V − C| = 2n− |C|.

If C is an FVS of G, then we show that F = C∪{v2, v3|v ∈ V −C} is a minimal
FVS of G′ and |F | = 2n− |C|. Clearly F is an FVS of G′. F is a minimal FVS
of G′ as (a) any v ∈ C can not be dropped from F as {v1, v2, v3} ∩ F = φ and
G′[{v, v1, v2, v3}] contains cycles; and (b) for any v ∈ V −C, none of v2 and v3 can
be dropped from F as G′[{v, v1, v2}] and G′[{v, v1, v3}] contain cycles. Obviously
|F | = 2n− |C|.

Let Fo be a maximum minimal FVS of G′ and Co = Fo ∩ V . We claim that
|Fo| = 2n − |Co|. For, if |Fo| < 2n − |Co|, then F = Co ∪ {v2, v3|v ∈ V − Co} is
a minimal FVS of G′ with |F | = 2n − |Co| > |Fo| contradicting the assumption
that Fo is a maximum minimal FVS of G′. Next we claim that Co is a minimum
FVS of G. If possible, let C be an FVS of G with |C| < |Co|. Then F =
C ∪ {v2, v3|v ∈ V − C} is a minimal FVS of G′ with |F | = 2n − |C|. But as
|C| < |Co|, |F | = 2n − |C| > 2n − |Co| = |Fo|, which is a contradiction to our
assumption that Fo is a maximum minimal FVS of G′.

Now, |Fo| = 2n − |Co| < 5|Co| − |Co| = 4|Co|, (by Lem. 4.7). So, the first
inequality of L-reduction holds with α = 4. Next, for any minimal FVS F of
G′, |Fo| − |F | ≥ 2n − |Co| − 2n + |C| = |C| − |Co|. So the second inequality of
L-reduction holds with β = 1.
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Next we shall consider MAX-MIN-VC. First we have the following two simple
lemmas:

Lemma 4.9. For any 3-regular graph G = (V,E) and any maximal IS I in G,
|I| ≥ 1

4 |V |.
Proof. Let I be any maximal IS of G. Then the subgraph G[V −I] of G induced by
V −I is of degree at most 2. Thus G[V −I] contains at most |V −I| edges. Thus the
number of edges in G is bounded above by 3|I|+ |V − I|. Hence 3

2 |V | ≤ |V |+ 2|I|,
i.e., |V |4 ≤ |I|.
Lemma 4.10. MAX-MIN-VC is k-approximable for graphs of maximum degree
k, k ≥ 1, and having no isolated vertex.

Proof. Let G = (V,E) be any graph of maximum degree k, k ≥ 1, and having
no isolated vertex. We show that any minimal VC C of G is a k-approximable
solution for MAX-MIN-VC. A minimal VC of G can be obtained by the simple
algorithm:

begin
C = V ;
while there exists vi ∈ C such that N(vi) ∩ (V − C) = φ do

C = C − vi;
od

end

where N(vi) = {vj|{vi, vj} ∈ E}.
Claim 4.11. For any minimal VC C of G, |C| ≤ kn

k+1 , where n = |V |.
Proof. As C is a minimal VC of G, V − C is a maximal IS of G. Also as V − C
is a maximal IS of G and G has no isolated vertices, for any vi ∈ V −C, vi is not
adjacent to any w ∈ V − C, but is adjacent to some vj ∈ C. Let Svi = {vj ∈
C|{vi, vj} ∈ E}, for vi ∈ V−C. ThenC = ∪vi∈V−CSvi . Clearly, ∪vi∈V−CSvi ⊆ C.
Conversely, let vj ∈ C, then there exists vi ∈ V −C such that {vi, vj} ∈ E and so
vj ∈ Svi . Hence C ⊆ ∪vi∈V−CSvi . Therefore, |C| ≤

∑
vi∈V−C |Svj | ≤ k|V − C| ≤

nk − k|C|. So |C| ≤ kn
k+1 .

Claim 4.12. For any VC C of G, |C| ≥ n
k+1 .

Proof. As V −C is an IS of G and G has no isolated vertices, for any vi ∈ V −C,
vi is not adjacent to any vk ∈ V − C but must be adjacent to some vj ∈ C. Let
Svj = {vi ∈ V − C|{vi, vj} ∈ E}, for vj ∈ C. Then V − C = ∪vj∈CSvj . Hence,
k|C| ≥ |V − C|, i.e. |C| ≥ n

k+1 .

Let Co be a maximum cardinality minimal VC of G. By Claim 4.11, |Co| ≤ kn
k+1 ,

and so by Claim 4.12, |Co||C| ≤ k.

Now we have:

Theorem 4.13. MAX-MIN-VC-≤5 is APX-complete.
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Proof. Since MAX-MIN-VC is in class APX for bounded degree graphs (Lem. 4.10)
and MAX-IS-3 is APX-complete [1], it is enough to show that MAX-IS-3≤L MAX-
MIN-VC-≤5.

Let G = (V,E) be a 3-regular graph. From G construct G′ = (V ′, E′) of degree
at most 5 as follows: V ′ = V ∪[∪v∈V {v1, v2}] and E′ = E∪[∪v∈V {{v, v1}, {v, v2}}]
(see Fig. 6 for an example).

u

u

u u
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w w
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Figure 6

As in the proof of Theorem 3.4, we can prove the following:
(1) Any VC C of G′ is a minimal VC of G′ iff

(a) v ∈ C ∩ V ⇒ v1v2 /∈ C and
(b) v ∈ (V − C)⇒ {v1, v2} ⊆ C.
Moreover, any minimal VC C of G′ is of the form C = (V −I)∪[∪v∈I{v1, v2}],
for some IS I of G where I = V − (C ∩ V ). The IS I of G defined above is
the IS of G associated with the minimal VC C of G′.

(2) C is a minimal VC of G′ iff the associated I is a maximal IS of G, with
|C| = |I|+ n.

(3) Co is a maximum cardinality minimal VC of G′ iff the associated Io is a
maximum IS of G, with |Co| = |Io|+ n.

Now, |Co| = |Io| + n ≤ |Io| + 4|Io| = 5|Io| (by Lem. 4.9), so that, the first
inequality of L-reduction holds with α = 5. Next, for any minimal VC C of G′,
|Co| − |C| = |Io| + n − |I| − n = |Io| − |I|, so that, the second inequality of
L-reduction holds with β = 1.

5. Hardness results for bounded degree digraphs

We know that MIN-FAS is APX-hard [24] and MAX-SUBDAG is APX-complete
[28] for general digraphs. In this section, we show that these problems remain
APX-hard even for k-total-regular digraphs for all k ≥ 4. We also show that
MIN-MAX-SUBDAG is APX-hard for digraphs of maximum total degree 12 and
MAX-MIN-VC is APX-hard for graphs of maximum degree 5. Regarding MIN-
FAS, we first prove the following:
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Lemma 5.1. MIN-FAS-k ≤L MIN-FAS-(k + 1), for all k ≥ 1.

Proof. We construct in polynomial time, from a k-total-regular digraph G =
(V,A), a (k + 1)-total-regular digraph G′ = (V ′, A′) where V ′ = {v1, v2|v ∈ V }
and A′ = {(u1, v1), (u2, v2)|(u, v) ∈ A} ∪ {(v1, v2)|v ∈ V }. We shall denote
V i = {vi|v ∈ V } and Ai = {(ui, vi)|(u, v) ∈ A}, for i = 1, 2. From a minimal FAS
S′ of G′ construct a minimal FAS S of G as follows: S = {(u, v)|(u1, v1) ∈ S1}
where without loss of generality we assume that S′ = S1 ∪ S2 with S1 and S2 are
minimal FASs of G1 = (V 1, A1) and G2 = (V 2, A2) respectively, and |S1| ≤ |S2|.
It is easy to see that, if S′o is a minimum FAS of G′, then the corresponding So is a
minimum FAS of G and |S′o| = 2|So|. Further, for any minimal FAS S′ = S1 ∪ S2

of G′, with |S1| ≤ |S2|, |S′| − |S′o| = |S′| + |So| − 2|So| ≥ 2(|S′| − |So|) so that
|S| − |So| ≤ 1

2 (|S′| − |S′o|). Thus, the two inequalities of L-reduction hold with
α = 1 and β = 1

2 .

We now have the following:

Theorem 5.2. MIN-FAS-k is APX-hard for all k ≥ 4.

Proof. By Lemma 5.1, it is enough to show that MIN-FAS-4 is APX-hard. For
this we show that MIN-VC-3 ≤L MIN-FAS-4.

We construct in polynomial time, from any 3-regular graphG = (V,E) a 4-total-
regular digraph G′ = (V ′, A′) where V ′ = {v1, v2|v ∈ V } and A′ = {(v1, v2)|v ∈
V } ∪ {(u2, v1), (v2, u1)|{u, v} ∈ E}. Clearly, G′ is a 4-total-regular digraph. For
an example see Figure 3. For each FAS F of G′ we associate a VC C of G defined
as C = {v| either (u2, v1) ∈ F or (v1, v2) ∈ F}. Further, C is a VC of G with
|C| ≤ |F |. For every edge {u, v} ∈ E, as (u1, u2, v1, v2, u1) is a dicycle in G′, F
must contain at least one arc from this dicycle, and so, C must contain either u
or v. Hence, C is a VC of G, and by the construction of C from F , |C| ≤ |F |.

Next we show that if Fo is a minimum FAS of G′, then the associated VC Co of
G is a minimum VC of G and |Fo| = |Co|. As Fo is a minimum FAS of G, without
loss of generality we may assume that Fo contains arcs only of the form (v1, v2)
for some v ∈ V . For, if Fo contains arcs of the form (u2, v1), then F ′o obtained
from F by replacing any such arc (u2, v1) by (v1, v2), we have F ′o an FAS of G′

with |F ′o| ≤ |Fo|. Hence, Co = {v|(v1, v2) ∈ Fo}. If Co is not a minimum VC of G,
let C be a minimum VC of G. Now F = {(v1, v2)|v ∈ C} is an FAS of G′. If not,
let K be a cycle in G′ without containing any arc of F . Let (u2, v1) be an arc in
K. Then both (v1, v2) and (u1, u2) are in K. Hence, u, v /∈ C, but {u, v} ∈ E as
(u2, v1) ∈ K ⊆ A′. This implies that C is not a VC of G, which contradicts our
assumption. Hence F must be an FAS of G′. But then |F | = |C| < |Co| = |Fo|,
which contradicts that Fo is a minimum FAS of G′. Hence, Co is a minimum VC
of G.

Also, |Fo| = |Co| and for any FAS F of G′, |C| − |Co| ≤ |F | − |Fo|. So the
transformation from G to G′ is an L-reduction with α = 1 and β = 1.

Similarly, for MAX-SUBDAG, we first prove the following:

Lemma 5.3. MAX-SUBDAG-k ≤L MAX-SUBDAG-(k+1).
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Proof. From a k-total-regular digraph G = (V,A) construct a (k+1)-total-regular
digraph G′ = (V ′, A′) as constructed in the proof of Lemma 5.1. We shall use
the notations used in the proof of Lemma 5.1 and let B = {(v1, v2)|v ∈ V }. Let
S = {(u, v)|(u1, v1) ∈ S1} where without loss of generality we assume that S′ =
S1∪S2∪B and |S1| ≥ |S2| and (V i, Si) is a maximal SUBDAG of Gi, for i = 1, 2.
Clearly, (V, S) is a maximal SUBDAG of G. Now, if S′o is a maximum SUBDAG of
G′, S′o = S1

o∪S2
o∪B, then note that |S1

o | = |S2
o | and So = {(u, v)|(u1, v1) ∈ S1

o} is a
maximum SUBDAG of G. Also, |S′o| = 2|So|+|B| = 2|So|+n ≤ 2|So|+|A| ≤ 4|So|,
since |A| ≤ 2|So|. So, the first inequality of L-reduction holds with α = 4. Next
for any maximal SUBDAG (V ′, S′) of G′, |S′o| − |S′| = |S1

o |+ |S2
o | + |B| − |S1| −

|S2| − |B| = |S1
o | + |S2

o | − |S1| − |S2| ≥ |So| − |S|. So, the second inequality of
L-reduction holds with β = 1.

We now prove the following:

Theorem 5.4. MAX-SUBDAG-k is APX-complete for any k ≥ 4.

Proof. By Lemma 5.3, it is enough to show that MAX-SUBDAG-4 is APX-hard.
For this we show that MIN-VC-3 ≤L MAX-SUBDAG-4.

Let G = (V,E) be any 3-regular graph. From G we construct a 4-total-regular
digraph G′ = (V ′, A′) as constructed in Theorem 5.2. To each SUBDAG (V ′, S′)
of G′, we associate a VC of G, C defined as C = {v| either (u2, v1) ∈ A′ − S′ or
(v1, v2) ∈ A′−S′}. C is indeed a VC of G. If C is not then there exists {u, v} ∈ E
for which both u and v are not in C. For this edge {u, v}, G′ contains the cycle
{(u2, v1), (v1, v2), (v2, u1), (u1, u2)}. As none of u and v is in C, A′ − S′ does not
contain any of the arcs in this cycle. So, A′ − S′ is not an FAS of G′, which is a
contradiction. Further, note that |A′| = 2|E|+n, |C| < |A′−S′| = 2|E|+n− |S′|
which implies that |S′| ≤ 2|E|+ n− |C|.

Now, if (V ′, S′o) is a maximum SUBDAG of G′, then the VC Co of G associated
with it is a minimum VC of G and |S′o| = 2|E|+ n− |Co|. To see this, note that
A′−S′o is a minimum FAS of G′. So by the proof of Theorem 5.2, Co is a minimum
VC of G and |Co| = |A− S′o| = 2|E|+ n− |S′o|.

Next note that, any VC C in a 3-regular graph G contains at least n
2 vertices

(see proof of Th. 4.2). Now, |S′o| = 2|E|+ n− |Co| = 3n+ n− |Co| = 4n− |Co| ≤
8|Co| − |Co| = 7|Co|. So the first inequality of L-reduction from G to G′ holds
with α = 7.

Next, for any SUBDAG (V ′, S′) of G′, |S′o| − |S′| = |A′| − |S′| − |A′| + |S′o| =
|A′−S′|− |A′−S′o| ≥ |C|− |Co|. Hence the second inequality of L-reduction holds
with β = 1.

Regarding MIN-MAX-SUBDAG, we have the following easy theorem:

Theorem 5.5. MIN-MAX-SUBDAG-≤12 is APX-hard.

Proof. In the proof of Theorem 3.1, we constructed an instance G′ of MIN-MAX-
SUBDAG from an instance G of MAX-SUBDAG in such a way that if G is 4-
total-regular then, every vertex in G′ is of total degree at most 12. Since MAX-
SUBDAG-4 is APX-complete, the result follows.
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Finally, we have:

Theorem 5.6. MAX-MIN-FVS-≤6, for digraphs, is APX-hard.

Proof. In the proof of Theorem 3.10, we constructed an instance G′ of MAX-MIN-
FVS, for digraphs, from an instance of G of MAX-MIN-VC in such a way that
if G is of degree at most 5, then G′ is of total-degree at most 6. Since MAX-MIN-
VC-≤5 is APX-complete it follows that MAX-MIN-FVS-≤6 is APX-hard.

6. Concluding remarks

In this paper we have established hardness results for several NP-optimization
problems related to MINLOP. These problems are variations or generalizations of
well-known NP-optimization problems on graphs/digraphs. While for MAX-MIN-
VC and MAX-MIN-FVS we have established strong results like those of H̊astad [18]
concerning MAX-IS and MAX-CLIQUE, for others we have just shown them to be
APX-hard. Whether strong results about hardness of approximating such prob-
lems can be obtained is worth investigating. Despite such negative results, efforts
may be made to obtain useful positive results giving efficient algorithms which
may be f(n)-approximate for suitable function f(n). Also, we do not have any re-
sults about MAX-MIN-FAS problem similar to MAX-MIN-FVS. These and other
relevant issues concerning these problems are being pursued.
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