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Abstract

Earlier research on product family desigRFD) often highlights isolated and successful empirical studies with a
limited attempt to explore the modeling and design support issues surrounding this economically important class of
engineering design problems. This paper proposes a graph rewriting system to organize product family data according
to the underpinning logic and to model product derivation mechanisms for PFD. It represents the structural and
behavioral aspects of product families as family graphs and related graph operations, respectively. The derivation of
product variants becomes a graph rewriting process, in which family graphs are transformed to variant graphs by
applying appropriate graph rewriting rules. The system is developed in the language of programmed graph rewriting
systems or PROGRES, which supports the specification of hierarchical graph schema and parametric rewriting rules.
A meta model is defined for family graphs to factor out those entities common to all product families. A generic model

is defined to describe all specific entities relevant to particular families. An instance model describes all product
variants for individual customer orders. A prototype of a graph-based PFD system for office chairs is also developed.
The system can provide an interactive environment for customers to make choices among product offerings. It also
facilitates design automation of product families and enhances interactions and negotiations among sales, design, and
manufacturing.

Keywords: Design Automation; Graph Grammar; Mass Customization Systems; Product Family; PROGRES

1. INTRODUCTION as important enabler, for shaping the future roadmap of

mass customizatiofEconomist, 2000; ThinkCustom, 2000
Facing the buyers’ market, many industries are now geared In terms of product realization, the major challenge of
toward mass customization, which is the mass productiomass customization lies in how to achieve an increasing
of individually customized goods and servi¢®sne, 1993.  variety for catering to customization while keeping low costs
Anumber of on-line mass customization systems have beeof variety fulfillment, which seems to be an oxymoron. In
launched recently that allow customers to express their needsyactice, developing product families has been recognized
configure their personalized products with desired featuresas an effective means to achieve the economy of scale in
and order and track the order status through the internejrder to satisfy diverse customer nedddeyer & Utter-
(e.g., Cannondale, 2000; Customatix, 2000; Dell, 2000; Eyeback, 1993. In addition to leveraging the cost of delivering
planet, 2000; Haworth, 2000; IDtown, 2000; Volvo, 2000 variety, product family desigtPFD) can reduce develop-
In fact, e-commerce becomes a major driving force, as welinent risks by reusing proven elements in a firm’s activities

and offeringgSawhney, 1998

Earlier research on PFD often highlights isolated and

_ o _ successful empirical studies, for example, Lutron lighting
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computergSchonfeld, 1998 and Sony Walkman&Sand-  proaches, and case-based reasoning approdSabsn &
erson & Uzumeri, 1995; Kota & Sethuraman, 199Bhere  Weigel, 1998. Most modeling work deals with design syn-
was a limited attempt to explore the modeling and desigrthesis, which means how a valid design is assembled from
supportissues surrounding this economically important classmstances of a fixed set of predefined component types
of engineering design problems. Meyer and Lehrié@97 (Mittal & Frayman, 1989. While configuration design fo-
and Robertson and Ulrictl998 emphasize the develop- cuses on individual products only, PFD involves a family
ment of product platforms by extracting those common prodof products where product to product and product to fam-
uct elements, features, afat subsystems that are stable ily relationships become important concerns, as well as
and well understood, so as to provide a basis for introducthe representation of variety and the architecture of prod-
ing value-added differentiating features for a range of product families(Du et al., 2001 Jiao and Tseng1999 dis-
ucts. PFD is tackled by exploiting the shared logic of acuss the information modeling of PFD. It is pointed out
product design so that the design can be “stretched/@nd that, in addition to the representation of variety, understand-
“scaled”(Rothwell and Gardiner, 1990r be “robust’(Chen  ing the underlying logic of PFD and modeling the product
et al.,, 1996; Simpson et al., 1996, 1998 response to variant derivation process are of primary importance. In
various requirements from the market. Fujita et(ab98 addition, existing modeling approaches usually define prod-
study how to optimize the system structure and the configuct families in terms of a single perspectitmostly the
uration of a product family. Assuming the rationale of mod- structural view, e.g., maintenancand for a specific pur-
ular product architectures and component sha¢lilgich, pose(e.g., operations planning; Van Houten et al., 1998
1995, most research focuses on the architecture of producfo deal with variety, which encompasses the entire prod-
families without explicitly addressing the underlying logic uct development process, it is necessary to represent prod-
of the PFD process. uct families for different business functions, including sales
Most mass customization systems allow customers to seand marketing(functiona) and engineeringstructural
lect product features aridr options, rather than providing views.
a limited number of products. The desired product is con- Toward this end, we propose a graph rewriting system
figured when a set of customer-selected options is receivethat organizes product family data according to the under-
(Baldwin & Chung, 1995 This may result in a problem: if pinning logic among them and models product configura-
options continue to be added, the number of variants growson mechanisms to support PFD. The system is formally
exponentially. Effective handling of variants is thus imper-defined in a high-level, multiparadigm specification lan-
ative for PFD and subsequent production planning and conrguage, PROGRES, which combines concepts from pro-
trol in order to reduce data redundar(®yortmann & Erens, grammed graph rewriting systems and supports the
1995. In addition, customers may be confused when facingspecification of hierarchical graph schema and parametric
miscellaneous choicgdHuffman & Kahn, 1998. This re-  rewriting rules (Schurr, 1994, Schurr et al., 1998The
quires an appropriate representation of the product familgeneral process of PFD and its key issues are introduced
data, as well as modeling of product configuration. in Section 2. Accordingly, the constructs of the graph re-
As a well-accepted simple product model, the bill of ma-writing system for PFD are discussed in Section 3, along
terials (BOM) encodes the relationships between finishedwith guidelines of graph grammar-based PFD modeling.
products and their constituent parts or assemblies. Som@ections 4 and 5 describe the graph schema and graph
research has generalized BOM to include product familiestransformations for PFD modeling. A case study of office
such as the generic BOMGBOM) concept{Hegge & Wort-  chairs is presented in Section 6 to illustrate the feasibility
mann, 1991 While a GBOM aims at exploring a generic and potential of the proposed approach. Discussion takes
product structure and excels in describing manufacturing oplace and conclusions are drawn in Section 7.
production-related product information, its standpoint mainly
rests on the assembly structure of a product family, which
seems to ignore the design process prior to productiomR. PFD DESCRIPTION
McKay et al.(1996 try to describe product families from
both salegcustomerand assembly views through combin- A product family refers to a group of individual products
ing the GBOM with specific product modeling approaches.that share common subsystems or components and yet pos-
Their work however focuses on the physical structures obess specific functional features to satisfy a variety of mar-
products only. Other methods include generic product modket nicheg Meyer & Lehnerd, 199¥. In practice, different
eling (Erens & Verhulst, 199) the generic variety struc- business departments tend to interpret and employ product
ture (Jiao et al., 2000 and the data model introduced by families in different ways. From the marketing and sales
Baldwin and Chund1995. perspective, product families exhibit the company’s prod-
There is vast literature devoted to configuration designuct line or product portfolio and thus are characterized by
(Brown & Birmingham, 1997; Darr et al., 1998Many  various sets of functional features for diverse customer
approaches have been reported such as logic-based agroups. The engineering view of product families embodies
proaches, resource-based approaches, constraint-based pmduct technologies and associated manufacturability and
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is thereby characterized by differences in product strucsecond type is composed of common modules, primitive
tures, design parameters, and components. The synchromirodules, angor other compound modules. This means that
zation of multiple views is an important issue of PFD a compound module may be used as a child module to
modeling(Jiao & Tseng, 1999; Du et al., 2001 compose another compound moddle., the parent mod-
The general process of PFD is illustrated in Figure 1.ule). In this sense, the end product itself is in fact a com-
From the viewpoint of sales, a product family can be specpound module. The variants of a compound module result
ified in terms of three elements: common features, distincfrom variations of its child modules. In addition, modules
tive features, and selection constraints. Common featuresre associated with variety parameters. Variety parameters
indicate the similarity of customers’ requirements related tooriginate from distinctive functional features and propagate
a particular market segment. A few optional values are sealong the hierarchy of a GPS. The value of a variety param-
lectable for each distinctive feature in order to satisfy spe-eter associated with a child module is determined by the
cific customer requirements. Selection constraints are definedariety parameters of its parent module. Furthermore, in-
for presenting customers with only feasible options. clusion conditions can be defined in terms of variety param-
From the engineering perspective, PFD is characterizedters to specify the circumstances under which a module is
by a generic product structut&PS; Du et al., 2001As a  a constituent of another module or a particular variant be-
generic data structure of product families, the GPS is a&omes the instance of a primitive module.
hierarchy comprising modules and their interrelationships With the above understanding, a custom product design
at different levels of abstraction. Two types of modules ara@nvolves two phases: customer selection in the sales view
distinguished: primitive modules and compound modulesand product variant derivation in the engineering view. Cus-
The first type refers to those modules that cannot be furthetomers make their selections among sets of options. The
decomposed. Each of them possesses several variants. Téedected functional features and their values represent
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Fig. 1. The general process of product family design.
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the customer requirements, thus becoming the content dfied using node classes. The graphical presentation of a
the product specification. The variety parameters of the endeneric model is called a family graph. The abstraction of
product are defined according to the product specificatiothose common graph entities in specific generic models for
and then propagate to its constituent modules. Each item idifferent product families are specified by defining node
the GPS(either a module or a structural relationship  classes and edge types, which compose a meta model. To
instantiated according to associated inclusion conditionsgeneralize those graph operations common to all product
Therefore, while a GPS characterizes a product family, eacfamilies, the related graph transformations are defined at
instance of GPS corresponds to a product variant of théhe meta level. For a particular product family, a generic
family. Propagation of variety parameters and inclusion conmodel can be defined by adapting the relevant entities of
ditions embody the configuration mechanisms of producthe meta model to specific characteristics of the product
variant derivation in PFD. family. Afamily graph can be instantiated to a variant graph,
thus called aninstance modelrepresenting the modules
and structure of a specific product variant. The instance
model is composed of theode instancéogether with the
Graph grammars are widely used as a tool to model comedges. Because PROGRES is a strongly typed language,
plex systems. D§2000 proposes a graph grammar basedthe attributes defined in the classes can be inherited to type-
approach to the formal representation of product familieslevel entities and the attributes defined in the types can be
PFD can be described in programmed attributed graph graninherited to instance-level entities.
mars, in which features and modules are represented asThe generic approach to PFD modeling based on graph
nodes, relationships among features and modules are repewriting systems involves the construction and application
resented as edges, and manipulations of modules are mophasesgfor a general understanding of the PROGRES spec-
eled as productions. The graph representing items thafication of graph rewriting systems, please refer to fig. 7 in
construct the starting point of the family design is used as deimann et al., 1995 Themeta modeand graph transfor-
starting graph. The graph of a product variant is trans-mations are defined by the classes and productions in the
formed from the starting graph by invoking proper produc-PROGRES language. To adapt the meta model to a family-
tions. A product family is thus defined by all graphs that specific generic model, we specify the node types of the
can be generated from the starting graph according to prgroduct family from two different views: sales and engi-
defined productions and the control diagram, which formneering. By merging these specific types with the classes
the graph language of the family. and productions, we obtain a complete graph grammar spec-

Graph grammar formalisms can be implemented as #ication of the particular product family. The starting graph
graph rewriting system. The development of a pro-for sales and marketing consists of features, options, prod-
grammed graph rewriting system involves two closely re-uct specifications, and selection constraints, as well as the
lated subtasks. One is to design a graph model for theelationships among them, and is thus called the sales view
corresponding complex object structure, namely, the grapfamily graph. The starting graph for engineering consists of
schema. It is a set of graph entities common to a certaiigeneric modules, primitive variants, and generic structural
class of graphs and can describe all necessary types of selective relationships associated with the modules and
nodes and edges, as well as their associated attributes awdriants; it is called the engineering view family graph.
static integrity constraints. The other is to program objectDuring the application stage, sales persons and customers
(graph operations for analysis and modification by com- input their options of features. The sales view family graph
posing and sequencing subgraph tests and graph rewritirig then rewritten according to the control structure pre-
rules, namely, graph transformations. defined in the construction stage. The result will be a vari-

Graph rewriting systems can be formalized by writing aant graph—graphical representation of a product specification.
PROGRES specification. PROGRES and its programmind his specification is then transferred to the engineering view
environment are based on the data model of directed ain the form of variety parameters of the end product. Taking
tributed graphs and offer a concept of programmed graplhese variety parameters as input, the engineering view fam-
rewriting systems to describe complex graph transforma#ly graph starts to transform according to the control struc-
tions. PROGRES specifications determine both the statiture defined in the meta model. The resulting variant graph
structure and the allowed dynamic behavior of a system. Ifi.e., the instance modelepresents the definition of an
excels in handling derived fa¢attribute dependengepro-  order-specific product.
viding parametric rewriting rule specification, and support-
ing data and system consster{@chgrr etal., 1995, 1998 4. META MODEL AND GRAPH

Because PROGRES is a stratified language, the graph

o . i TRANSFORMATION

rewriting system for PFD involves three layers: the meta,
generic, and instance models. A generic model represen8pecifying those entities common to all product families, a
the generic data structure of a product family, in whichmeta model consists of the class-level graph schemde
family-related items such as features and modules are speclasses and edge typesd graph transformations. Figure 2

3. GRAPH REWRITING SYSTEMS FOR PFD
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(b) Operations transaction SpecifyProduct [1:1] = ... end
transaction DefProduct [1:1] ( aProduct : PRODUCT)) = ... end Legend
production AssignValue (aFeature : FEATURE, anOption : OPTION) = ... end I:l node class
production ProcessPositiveConstraint (aFeature : FEATURE) = ... end .. .
) - . ( ) T —O intrinsic attribute
production ProcessNegaitiveConstraint (aFeature : FEATURE) = ...end . .
: ==0 derived attribute
production TransferSpec (aSpec : PRODUCT_SPEC, aProduct : PRODUCT) =... end .
production GetFeatureValue (aSpec : PRODUCT_SPEC, aProduct : PRODUCT, i: integer ) = =... end O metaatiribute
production RemoveNotincludedVariant (aPrimitive : PRIMITIVE) = ... end ——-» subclass
production RemoveNotincludedModule (aModule : MODULE) =... end —>» edge type
production CloseSpec (aProductSpec : PRODUCT_SPEC) =... end

production = BuildUpParentChildRelation =... end

test FindUnAssignedFeature (aProduct : PRODUCT_SPEC, out aFeature) [0:1] =... end
test ConfirmNoUnassignedPrecedant (aFeature : FEATURE [0:1] =... end

test ConfirmNoUnassignedRefinee (aFeature : FEATURE) [0:1] =... end

path toConsequentP : OPTION -> OPTION =... end

path toConsequentN : OPTION -> OPTION =... end

path toFeatureValue : PRODUCT -> FEATURE_VALUE (aFeature : FEATURE) =....end

Fig. 2. The graph grammar specification of PR@eta models and graph transformatipns

1oddns ubisap pue Bulspow Ajiwe) 10npoid

L0T



108 X. Du et al.

summarizes the graph grammar specification of the PFD alecomposed and can be realized by one or more
the meta level. PRIMITIVE_VARIANTs. A compound module consists of
some lower level modules that may be primitive or com-
pound onesPRODUCT comprises modules of different
kinds.

The class level of the PROGRES graph schema factors out Another class ofENG_OBJECT is STRUCTURAL_

all common entities of product families. All classes of nodesRELATIONSHIP. One of its subclassé$XED_STR, mod-

and all types of edges occurring in PFD systems are deels those fixed structural relationships between parent and
fined. PFD_OBJECT acts as the root of the class hierar- child modules. To indicate RIXED_STR, an attribute)n-

chy, as shown in Figure(3). Two subclasses can be cluded, isintroduced as a meta attribute whose value equals
distinguished,SALES_OBJECT and ENGINEERING_  true. Another subclass IWARIABLE_STR, which models
OBJECT, which are elaborated in the sales view meta modestructural variations, that is, a child module may or may not
and the engineering view meta model, respectively. Figbe included in the parent module. The derived attribnte
ure Aa) gives the graphical representation of node classesluded is determined by parameters of the parent module.
and edge types in both sales and engineering views, as wellnother node class ISELECTIVE_RELATIONSHIP. It

as the inheritance relations. models the relationship between a primitive module and its

As shown in Figure @), SALES_OBJECT is a super- variants. Thelncluded attribute of aSELECTIVE_
class that covers all entities occurring in the sales viewRELATIONSHIP node is instantiated according to the pa-
meta model. AnoptionOf edge between thEEATURE rameters of primitive module$ncluded = true means that
and OPTION nodes models the fact that one or more op-a primitive variant is included in the resulted product
tions can be selected to define a feature. structure.

To handle selection constraints, we connect the ante- Two types of edges are specified in the engineering
cedent of a selection constraint to its consequent viaiew as shown in Figure (3): toParent and toChild. A
SELECTION_CONSTRAINT nodes. The derived attribute, STRUCTURAL_RELATIONSHIP node is linked to the
AnteSelected, of SELECTION_CONSTRAINT nodes is  parent module by goParent edge and to the child module
determined by th&elected attribute of its antecedent. A by atoChild edge. ASELECTIVE_RELATIONSHIP node
SELECTION_CONSTRAINT can be aPOSITIVE_ s linked to aPRIMITIVE node by aoParent edge and to
CONSTRAINT or aNEGATIVE_CONSTRAINT. A pos- aPRIMITIVE_VARIANT node by atoChild edge.
itive constraintis defined as follows: if a specific optiok The primary concern of defining node classes is to de-
of feature A (the antecedeitis selected, then featufl®  note coercions of node types that possess common proper-
must take on a specific optidB' (the consequehtwhere ties. As a result, the concepts of classification and
the superscripk or |, denotes a particular optiofi.e., a  specialization are introduced. This eliminates duplicating
specific valug of the feature. Anegative constrainineans declarations by supportingultiple inheritanceslong the
that if an optionAX of featureA (the antecedeits selected, edges of the class hierarchy. In addition, node classes play
then a featur® must not take on optioB' (the consequent  the role of meta types. As types of node types, they sup-

A precedes edge models the fact that a feature whoseport the controlled use of formghode type parameters
option is the antecedef® of the option(s) of another within generic subgraph tests and graph rewriting rules.
feature must be specified prior to the specification of theThis is demonstrated in the following section.
latter feature. An example of threfines relationship is that
feature StyleOfArmrests refines featureWithArmrests.
PRODUCT_SPEC is linked to each feature node thig-
scribes the feature from certain aspects. The remainingSection 4.1 dealt with the static portion of PFD systems;
elements used to declare node attributes will be introducethis section discusses the modeling of the operational be-
in Section 5Assigned is a derived attribute dFEATURE, havior. Complex operations are defined as transactions that
indicating whether the value of this feature has been asare composed of a set of productions to be executed follow-
signed(true) or not(false). Its default value isalse. When ing a controlled sequence. These basic operations are de-
an eligible feature value is selected, it becortreg. The  fined as productions in PROGRES. By nature they are at
value ofRemainingChoices is recalculated by transforma- the meta level and are independent of particular product
tions associated witFEATURE. On the other hand, an families.
edge-type specification defines what node types are admis- To support PFD, some operations are necessary at the
sible at the end points of the edge; for example,opr  meta level. First, there should be operations to let custom-
tionOf edge starts fronOPTION and ends aFEATURE.  ers choose among available options. Second, if an option

As shown in Figure @), ENG_OBJECT is a super- that is the antecedent of a selection constraint is selected,
class that covers all entities occurring in the engineeringhere should be operations to process the consequent ac-
view meta model. AMODULE can be aPRIMITIVE or a  cording to whether it is a negative or a positive constraint.
COMPOUND one. A primitive module cannot be further Third, there should be operations to transform the selected

4.1. Class-level graph schema

4.2. Graph operations
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options to variety parameters, that is the relevant attributepart is used to check whether the feature has been assigned
of the PRODUCT node in the engineering view family a value. The second and third conditions ensure that there is
graph(to be elaborated in Section.Fourth, there should no FEATURE to which the value should be assigned be-
be operations to delete modules and primitive variants thafore the value is assigned to this feature or that the values of
are not included in the graph of a desired product variantall features preceding or being refined by this feature have
Figure 2b) illustrates all the operations involved in the been assigned. If all condition statements hold true, the
system. elements of the lhs in the family graph are replaced by the
Figure 3a) depicts a productiorAssignValue, designed elements of the rhs. Those unselected options are thus re-
for customers to assign values to certain features, which imoved from the graph and all node attributes receive their
realized by making choices among selectable options. Theew values according to theansfer functions.
dashed rectangles above and below the sepatatarefine Once an option is selected for a feature, it is necessary to
the left-hand sidé€lhs) and right-hand sidéhs) of the pro-  check whether this selection affects the options of other
duction, respectively. The rule can be applied only if allfeatures. If the selected option is an antecedent of a nega-
conditions are fulfilled. The first statement in the condition tive selection constraint, the consequent of the constraint

production AssignValue (aFeature : FEATURE, anOption : OPTION) =

‘1:aFeature

optionOf

y | 3:0PTION |!
‘2: anOption Rttt

|

|

|

ﬂdiffcremOplion (anOption) :
|

|

|

|

|

|

condition (‘1.Assigned = 0)
& ((not with ‘1 <- precedes- ) or (‘1. <- precedes -.Assigned = 1))
& ((not with ‘1 - refines -> ) or (‘1. - refines ->. Assigned = 1));
transfer 1".Assigned :=1;
1".RemainingChoices := 1;

end;
(2)
production ProcessNegaitiveConstraint (aFeature : FEATURE) = production ProcessPositiveConstraint (aFeature : FEATURE) =

( oormion leptionof——— 4| | |
| | ‘2:0OPTION |gption <;: | : 1:aFeature !

|
i llloConscqucnlN valueAssigned | ! toConsequent toConsequentP :
| |
! optionOf [ LT . valueAssigned |
! ‘3: OPTION ‘4 ! 3: OPTION 5:0PTION |
| | [P a: FEATURE | | | | I ‘ | :
s | optionOf optionOf |
! I
! I
! I

‘4: FEATURE

optionOf [, .,
BT e K
. optionOf

(b) transfer 4’. RemainingChoices :=1;
end;

|

_________________________ |
transfer 4’. RemainingChoices :
:= self. NumberOfRemainingChoices - 1; :

end; |

©

Fig. 3. The basic productions for the sales view meta mo@lassigning values to a featufgelecting an option (b) processing a
negative constraint, an@) processing positive constraint.
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production TransferSpec (aSpec : PRODUCT_SPEC, aProduct : PRODUCT) =

condition ‘1.Specified = true;
foralli:=1toNdo
GetValue(aSpec, aProduct, i);
end

end;
end

(a)

GetFeatureValue (aSpec : PRODUCT_SPEC, aProduct : PRODUCT, i: integer ) =
r~-————~~~~~~“~ "~~~ ~“~"~"~"*""™""®>""~™"*~"*"“"*""*"“"*"*"*"*"*""*™"”™™"*“~""*“>"?®™>\?=™>-‘“~"“>“"®>™""®™"”™>""®>"®>"®>™"=>™"™"=>™"=>="®>"®>"™"™/"™>"™"™"™7 1
I

. fulfills [, describes[, optionOf :
:\mk—{ 1:aSpec [ | ‘SFEATURE 4:0PTION |!

g PR |
condition ‘2.Parameter(l).Name = ‘3.type;
transfer 2’.Parameter(i).Value := ‘4.type;

end;

(b)

production RemoveNotIncludedModule (aModule : MODULE) =

|

(oParent| ‘2: toChild
'[ 1:MoDULE |«222rent| "2:STRUCTURAL |oChIZF™ 1 odule
| _RELATIONSHIP

Fig. 4. The basic productions for the engineer-
J ing view meta model(a) transferring product
specifications to variety paramete(b) transfer-
ring selected options to parameter values, @d
removing modules not included in the variant
(©) graph.

condition ‘2. Included = false;
end;

should be deleted from those selectable options of the abe reduced by one. If the selected option is an antecedent of
fected feature. Figure(B) is a production designed for this a positive selection constraint, t&elected attribute of its
purposé€’ For aFeature (an instance oFEATURE) whose  consequent should be assigned a new valueuefand all
value has been assignéihdicated by the hollow arrow, other options will be deleted, as shown in Figufe)3The
valueAssigned, attached to thaFeature node, if there is  hallow arrowtoConsequentP, with a cross between nodes
a path from its selected option to the consequent of a ned2 and’5 leads to those unselected options of the affected
ative constraintindicated by the hollow arrowtpConse- feature. Consequently, the constraint node and unselected
quentN, between twoOPTION nodes, the consequent options are both removed and tRemainingChoices is
together with the constraint node will be removed. As achanged to 1.
result, theRemainingChoices of the affected feature will Figure 4a) shows a productioransferSpec, which
defines a rewriting rule to derive the engineering descrip-
tion of a product variant according to the sales specifica-
tion. If a product is specifiedstated agondition), afulfill

lA_ hollow fat arrow between two nodes requires the existence of aedge is added between tRRRODUCT_SPEC node and
certain path(derived relationshipbetween these two nodes, whereas aéhePRODUCT node. TheN denotes the number of variety

hollow fat arrow attached to a single node requires that its target nod ) )
fulfills a certain restrictior(belongs to a derived node et parameters. Figure 4b depicts a product®etFeature-
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Value, which is used to trace th®PTION nodes con- In addition to these productions, other operations on fam-
nected to theaSpec node. The options are transferred to ily graphs can be defined in a similar way to facilitate PFD.
the attribute values of thERODUCT node, representing Some examples are given in Figure 5.
the values of variety parameters.

Once a product _specificgtion i; transferrgd to. vari(.ety4.3' Product variant derivation
parameters, all derived attributes in the engineering view
family graph start to be evaluated automatically. If a mod-The process of transforming a family graph to a variant
ule is not to be included by its parent modulies., the graph is rather complex and may not be able to be specified
Included attribute of the associate@ TRUCTURAL_  using a single production. Imperative control structures can
RELATIONSHIP node isfalse), the corresponding node enforce certain orders of production applicati®churr,
of this child module will be deleted. A productioRe- 1990 that are specified as transactions. Figure 6 depicts the
moveNotincludedModule is designed for this purpose, as control structures for product variant derivation. First of
shown in Figure ). Similarly, if a variant is not to be all, a graph test on the sales view family graph is per-
instantiated for its primitive module, tHecluded attribute  formed, as shown in Figurd#&. A feature whose values are
of the correspondinGELECTIVE_RELATIONSHIP node  not assigned is thus selected. If there is no value-unassigned
should take orfalse, and thus the associat®RIMITIVE_ feature preceding this selected feature or being refined by
VARIANT node is removed. it, the selected feature and its selectable options are pre-

production = BuildUpParentChildRelation

| . |
1| “1:MODULE toParent| ‘2-:STRUCTURAL tOChlldI
: or PRODUCT | _RELATIONSHIP 3:MODULE i
|

describes

i
I
‘2:FEATURE C:&ValueAssigned :
I

return aFeature := 2
end;

(b)

test ConfirmNoUnassignedPrecedant (aFeature : FEATURE) [0:1] =

(©)

1- OPTION |4tiecedent | 2:POSTIVE_ | consequenff .5, Aproy
CONTRAINT
changing the structural relationship node tac@m-

ﬁanteccdcntSelected poses edge, (b) a test of finding a value-unassigned
——————————————————————————————————————————————— ! feature,(c) a test of confirming no unassigned prec-
end; edent, andd) the path to the consequent of a positive
(d) selection constraint.

I
|
: Fig. 5. Definitions of supplementary production&)
I
I
I
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transaction SpecifyProduct [1:1]
use aFeature :FEATURE do

FindUnassignedFeature (out aFeature);
& ConfirmNoUnassignedPrecedent (aFeature);
& ConfirmNoUnassignedRefinee (aFeature);
& write (aFeature, selectableOption);
& read (anOption in selectableOption);
& AssignFeatureValue (aFeature, anOption);
& use aConstraint: NEGATIVE_CONSTRAINT do
loop
ProcessNegativeConstraint (aFeature, anOption);
end
end [0:n];
& use aConstraint: POSITIVE_CONSTRAINT do
loop
ProcessPositiveConstraint (aFeature, anOption);
end
end [0:n];

end;
& CloseSpec (aProductSpec);
end;

(a)

transaction DefProduct [1:1] ( aProduct : PRODUCT)
TransferSpec (aSpec, aProduct);
& use aModule: MODULE do

RemoveNotincludedModules (aModule);
end
end;
& use aPrimitiveVariant: PRIMITIVE_VARIANT do

RemoveNotincludedPrimitiveVariants (aPrimitiveVariant);
end
end;
end.
(b)

Fig. 6. A specification of control structurega) deriving product variant
specification(sales view and(b) deriving product variant definitiofen-
gineering vievy.

X. Du et al.
5. GENERIC MODEL AND FAMILY GRAPH

To support a specific PFD, meta models need to be adapted
to particular product families, that is, to be transformed to
generic models. To do so, all family-specific features, op-
tions, and generic items in the GPS are specified as node
types. A node-type declaration defines the label of a group
of nodes and the node class to which they belong. The
purpose is to define the behavior of the nodes of this type,
which indicates the functional dependencies of the attributes.
Three kinds of attributes are identified: intrinsic, meta, and
derived. Figure 7 gives an example of node-type definitions
of Chair, Underframe, andStand for an office chair prod-

uct family.

Those attributes whose values need to be input by cus-
tomers can be assigned as intrinsic attributes that possess a
value independent of the values of other attributes. For
example, for an office chair product family such attributes
asColor, WithArmrests, StyleOfArmrests, Turnable, and
Drivable of the nodeChair are intrinsic attributes. An
intrinsic attribute has a type-dependéritial value, which
may be changed directly by performing an appropriate
graph transformation. If a parameter is modeled as an in-
trinsic attribute, its default value can be set to be the initial
value of the attribute.

Those attributes whose values are common among fam-
ily members can be assigned as meta attributes that possess
constant type-dependent values. This enables the handling
of those node properties having the same value for all in-
stances of a given node type. For example, for the office
chair product family a statement that the value of a meta
attribute,Durable, is Yes implies that all product variants
of this family areDurable.

Parameter propagation from a parent node to its child

sented to customers for them to choose. After obtaining th@odes can be modeled by derived attributes that have node

customers’ inputin the form of a selected optigna pro-

instance-specific values and change their values as a result

duction,AssignValue, is applied to the family graph. If the ©of performed graph transformations. All instance-specific
selected option is the antecedent of certain constraints, the¥@lues are determined by means of directed equations only.
constraints will be processed. Then we go back to processor example, for the office chair product family the derived
another value-unassigned feature till every feature obtains

a value. When all features are assigned, the product speci-

fication process terminates and the attrib8gecified of
the PRODUCT_SPEC node becomegue.

Figure 6b) shows the control structure for product defi-
nition. It seeks to transform the product specification de-

node_type Chair: PRODUCT
intrinsic Color:= [undefined];
intrinsic WithArmrests:= [undefined];
intrinsic StyleOfArmrests := [undefined];

scribed in sales terms to the product definition described in
engineering terms. This operation is automatic because the
parameter propagation from parent modules to child mod-
ules and inclusion conditions were modeled as derived
attributes. In the first step, a productiofransferspec, is
applied to transfer the product specification to variety pa-
rameters of thePRODUCT node. Derived attributes are
revaluated. Then all those unincluded modules and primi-
tive variants are removed. The desired variant graph is thus
derived.

intrinsic Turnable:= [undefined];
intrinsic Drivable := [undefined];
meta Durable := Yes;
end;
node_type UnderFrame: COMPOUND
meta Durable := Yes;
derived Turnable:= [self.-parent->.Turnable | false];
derived Drivable:= [self.-parent->.Drivable | false];
end;
node_type Stand: PRIMITIVE
derived Turnable:= [self.-parent->.Turnable | false];
end;

Fig. 7. Declarations of intrinsic, meta, and derived attributes.
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Selected?
[Option11 ][ Option,, ] [ Option,, ]

opti
Assigned AN

[ F
F,' _F,!
Constraint

consequent

antecedent

Selected

Assigned, := [((Slected,,) AND (NOT(Slected,,))
AND (NOT(Slected,3))) OR (NOT(Slected, ;) AND
(Slected,,) AND (NOT(Slected,5)))
(NOT(Slected,,) AND (NOT(Slected,,)) AND
(Selected,,)l0]
NumberOfRemainingChoices:=3

Assigned,:= [(Slected,;) AND (NOT(Slected,,))
OR (NOT(Slected,;) AND (Slected;,))0]
NumberOfRemainingChoices,:=2

Slected;:= 0

Slected,,:= 0

Slectedz:= 1

Slected,;:= 0

Slected,,:= 1

(a)

node_type ProductAlfa: PRODUCT_SPEC;
end;
node_type Fi: FEATURE;
derived Assigned := [((Selected,;) AND (NOT(Selected,,))
AND (NOT(Selected,;))) OR (NOT(Selected,,) AND
(Selected,,) AND (NOT(Selected,;))) (NOT(Selected,,)
AND (NOT(Selected,,)) AND (Selected,,)lfalse];
intrinsic RemainingChoices:=3;
end;
node_type F: FEATURE;
derived Assigned := [((Selected,;) AND (NOT(Selected,,))
OR (NOT(Selected,,) AND (Selected,,)) | false];
intrinsic RemainingChoices:=2;
end;
node_type F1'-F,'Constraint: POSITIVE_CONSTRAINT;
end;
node_type Option1, Optionsz, Optionys : OPTION;
Selected := false;
end;
node_type Optionis, Optionz : OPTION;
Selected :=true;
end;

(©

Included ,’ ﬁ

Included | Ingluded ,*
0=1[ SLR,’ ] [ SLR,' ][ SLR, ]="3” o
: : :

Included,:=f{self. —toParent->.A;)
Included,:=1

Included,":= 1

Included,':=f{self. —toParent->.A,,)
Included,?:=f{self. —toParent->.A,,)

A= A10
A= '/'\110
21= Az

A,,:= fiself.—parent->.A,)

Legend:
—O intrinsic attribute

[:] node type __,, Egléirﬁgt =0 derived attribute
=—(O meta attribute
(b)

node_type M: PRODUCT
meta A;:= A/’
intrinsic Az := [undefined];
intrinsic As := [undefined];
end;
node_type STR; : FIXED_STR
end;
node_type STR; : VARIABLE_STR
Included := [f{self.-toParent->.As) | false];
end;
node_type SLR11 : SELECTIVE_REALTIONSHIP
Included := true;
end;
node_type SLR:', SLR,' : SELECTIVE _REALTIONSHIP
Included := [f{self.-to parent->.Ax )| false];
end;
node_type M. PRIMITIVE
meta Aoi:= A210;
derived A := fiself.-toParent->.A>);
end;
node_type M:', Mz', M2? : PRIMITIVE_VARIANT
end;

(d)

Fig. 8. (a) Sales view andb) engineering view family graphs and node-type specificationgdpsales view andd) engineering

view generic models for a specific product family.
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Table 1. Features, options, and selection constraints for the office chair product family

Feature Option

Common feature Fo: Durable Yes
Optional feature F,: Color Red, Blue, Gray

F,: Turnable {Yes, No}

F5: Drivable {Yes, No}

F,: WithArmrests {Yes, No}

F5: StyleOfArmrests {Plain, Deluxe}
Selection constraint If Drivable = Yes, Turnable # No;

If Color = Gray, WithArmrests = Yes AND StyleOfArmrests = Deluxe.

node_type OfficeChair : PRODUCT_SPEC
end;
node_type Color : FEATURE
derived Assigned := [f{self.<-optionOf- OPTION.Selected) |fa|se];
intrinsic RemainingChoices := 3;
end;
node_type Durable : FEATURE
meta Assigned := true;
meta RemainingChoices = 1;
end;

;l.t.)de_type C_Sconstraint : POSITIVE_CONSTRAINT
end;
node_type D_Tconstraint : NEGATIVE_CONSTRAINT
end;

(a)

node_type OfficeChair : PRODUCT
Parameter.Color := [undefined];
Parameter.WithArmrests := [undefined];
Parameter.StyleOfArmrests := [undefined];
Parameter.Turable := [undefined];
Parameter.Drivable := [undefined];
meta Durable := Yes;
end;
node_type UnderFrame : COMPOUND
meta Durable := Yes;
Parameter.Turnable := [self.-composes->.Turnable | false];
Parameter.Drivable := [self.-composes->.Drivable | false];
end;

node_type Stand : PRIMITIVE

meta Durable := Yes;

Parameter.Turnable := [self.-composes->.Turnable | false];
end;

node_type AR_a : PRIMITIVE_VARIANT
Included := [(self.- toParent ->. WithArmrests = Yes) & (self. — toParent ->.
StyleOfArmrest = Plain) | false];
end;

node_type ChairArmrests : VARIABLE_STR
Included := [self.-toParent->.WithArmrests | false];
end;
node_type ChairUnderframe, ChairBack, ChairSeat, UnderframeStand,
UnderframeSupport, BackBackframe, BackBackupholstery, SeatSeatframe,

SeatSeatupholstery : FIXED_STR Fig. 9. Node-type specifications fam) sales view

and(b) engineering view generic models for the of-
(b) fice chair product family.

end;
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optipnOf optipnOf
antecedent Durable antecedent
Color describes ]
\ desdribes
A
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Constraint

C.S
Constraint

precedes OfficeChair

precedes

describes

desgribes describes

Yy
Turnable

A

consequent

WithArmrests

optionOf

Pain | [ Delue | (Fase | [ Tre |

consequent [

St- ER_a ER_b
)& @

upholstery
ERM STR42
\ [SLR21‘] [SLR212] [SLR22‘] SLRZZ SLR,

i v
Back- frame v * * Stand Support
(sF.a) [SF b] [su a] (sub] (su_c]

Back-
upholstery

(stR,'](SLR,2)(SLR,?](SLRy,' ) ( SLRy' ) (SLR,2)(SLR, [ SLR,? )
v v v v vy v v
(Bu_a] (BU_b] (BU_c] [BF.a) (st.a) (sT.b) (PD_a] (WL a)
Legend: D :node type —» :toParent = ------ » : toChild

(b)

Fig. 10. (a) Sales view andb) engineering view family graphs for the office chair product family.

attributesTurnable andDrivable of the node typéJnder- constraints, and product specification. The engineering view
Frame are determined by the attributes of its parent nodefamily graph consists of family-specific node types for mod-
Chair. Similarly, a derived attribut@urnable of the node ules, primitive variants, structural and selective relation-
type Stand is determined by the attribute of its parent ships, and the end product. Figure 8 gives an example of a
nodeUNDERFRAME. product family specification in the textual form, as well as
Node types and their associated edges comprise the gtie family graphs of this product family. In the illustration

neric model of a product family, which can be representedhe initial values of attribute®ption,5 and Option,, are
as family graphs. The sales view family graph consists oket toSelected, which implies thaDption, 5 andOption,,,
family-specific node types for features, options, selectiorare the default values &f; andF,, respectively.
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Table 2. Modules and variety parameters in the office chair product family

Module Variety Parameter

Compound module Chair Color, Turnable, Drivable, Durable, WithArmrests, StyleOfArmrests

Back Color = Chair.Color

Seat Color = Chair.Color, SupportArmrests = Chair.WithArmrests

Under-frame Durable = Yes, Turnable = Chair.Turnable, Drivable = Chair.Drivable
Primitive modules Armrests StyleOfArmrests = Chair.StyleOfArmrests

Back frame Nil

Back-upholstery Color = Back.Color

Seat-frame Nil

Seat-upholstery
Stand

Color = Seat.Color
Turnable = Underframe.Turnable

Support Drivable = Underframe.Drivable

6. CASE STUDY 6.2. Product variants

Using office chairs to illustrate product families was first After family graphs are constructed, they can serve as the
introduced by McKay et al(1996. This study employs starting graphs of graph grammars defined for a specific
office chairs as running examples, because they are illugProduct family. While family graphs indicate all node and

tratively simple, yet representative. The original case is modedge labels and node attributes, other elements of graph
ified somewhat to highlight the characteristics of thisgrammars such as productions and control diagrams are
research. Because the meta models discussed in Sectiorfi&fined in the meta model and thus can be adapted to the
are universal and independent of any specific product famgeneric model. Therefore, product variant derivation be-

ily, this section only focuses on the generic models of officecomes a series of graph transformations. All variants that
chair product families and how variant products are derivedan be derived through graph rewriting embody the product

based on generic models and defined graph operations. family.
Suppose a customer presents his choid€lor

Red, Turnable = Yes, Drivable = Yes, WithArmrests
Yes, StyleOfArmrests =Plain}. According to this input, the
PFD system can generate a particular design for this cus-
Suppose six feature$,, Fy, F,, F5, F,4, andFg) can be  tomer. Figure 1(a) shows the sales view variant graph re-
used for customers to specify an office chair, including colorsulting from the sales view family graph in Figure(@0with
whether a chair is drivable or turnable, if it has armrestsall unselected options and features removed. The transfor-
and the style of armrests. Two selection constraints are in-
troduced, which are listed in Table 1 together with features
and their selectable options. Figur@pgives the sales view
Specification of node types in the generic model. Fig_Tab|e 3. Primitive variants and inclusion conditions associated
ure 10a) shows the corresponding family graph. with the office chair product family

From an engineering viewpoint, an office chair is an as-
sembly of a back frame, back upholstéiy different col-

6.1. Family graphs

Primitive Variant Inclusion Condition

ors), a seat frame(supporting armrests or nptseat BU_a BackUphostery.Color = Red
upholstery(in different colors, armrestgin different styles, BU_b BackUphostery.Color = Blue
a stand(turnable or not, and wheels or pad@rivable or BU_C BackUphostery.Color = Grey -

. . SF_a SeatFrame.SupportArmrests = No
not). T_he variety param.eters ar)d.qssoua}ted modules are SF b SeatFrame. SupportArmrests = Yes
listed in Table 2. All available primitive variants and asso- WL_a Support.Drivable = No
ciated inclusion conditions are listed in Table 3. PD_a Support.Drivable = Yes

Figure 9b) gives the textual specification of node types SU_a SeatUphostery.Color = Red
for the engineering view generic model. In the illustration, SUb SeatUphostery.Color = Blue
. - . . SU ¢ SeatUphostery.Color = Grey
composes is a derived path from a chlld node to its parent ER a Armrests. StyleOfArmrests = Plain
node via a structure relationship. Figure(R0shows the ER_b Armrests. StyleOfArmrests = Deluxe
corresponding engineering view family graph. In the illus- ST a Stand.Turnable = No
ST b Stand.Turnable = Yes

tration we use subscripts to differentiate various structural
and selective relationships.
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optionOf

Drivable

% desdribes
e

escribes

precedes OfficeChair

precedes

Input: {Color = Red; Turnable = Yes; Drivable =Yes; WithArmrests = Yes; StyleOfArmrests = Plain}

(a)

(STRa)  [STR.)

v \ 4
[ Stand ] [Support]

Legend: D :node type —® :toParent  ------ » : toChild

Specification: {Color=Red; Turnable = Yes; Drivable =Yes; WithArmrests = Yes; StyleOfArmrests = Plain}

(b)

Fig. 11. (a) Sales view andb) engineering view variant graphs for a custom office chair.

mation of Figure 1(a) to Figure 11a) demonstrates the graph tional BOM structure. For this purpose, we introduce two
rewriting process from a starting graph to a variant graph. additional productions to change ttf®TRUCTURAL
The engineering view variant graph is derived by trans-RELATIONSHIP and SELECTIVE_RELATIONSHIP
forming the engineering view family graph in Figure(bp  nodes along with the relevant edges in a variant graph to
according to the control structure defined in Figuf®)6 the edges in a BOM structure representing the goes-into
The resulting graph is shown in Figure(bl relationships among modules. As illustrated in Fig-
Each specific design represented as a variant graptre 12a), a production,BuildUpParentChildRelation,
like the one in Figure 1(b) can be transformed to a tradi- is defined to change a subgraph consisting of the
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production = BuildUpParentChildRelation

| . |
I| ‘1:MODULE | toParent| ‘2:STRUCTURAL [toChild [~ |
{| or PRODUCT _RELATIONSHIP 3:MODULE |1
I |

(a)

|

' toParent| ‘2:SELECTIVE_ | toChil i
Il “1:PRIMITIVE — _1| . !
:-— RELATIONSHIP 3:PRIMITIVE_VARIANT | |

Fig. 12. Productions for transforming variant graphs
to BOM structures(a) changing STRUCTURAL _
RELATIONSHIP node to acomposes edge andb)
changing &STRUCTURAL_RELATIONSHIP node

to arealizes edge.

STRUCTURAL_RELATIONSHIP node and its relevant constraints, together with a set of edges indicating their
edges to @omposes edge. As shown in Figure 18), the interrelationships. In the engineering view PFD is modeled
BuildUpPrimitiveVariantRelation production is used to as an instantiation process of a GPS, which is represented
change a subgraph consisting of tIBELECTIVE_  as an engineering view family graph. This graph consists of
RELATIONSHIP node and its relevant edges toemlize  a set of nodes representing the end product, modules, prim-
edge. Applying these productions to the variant graph irtive variants, structural relationships, and selective rela-
Figure 11b), a BOM-like graph can be generated as showrtionships, combined with a set of edges denoting the
in Figure 13. interrelationships among them. These family graphs act as
the starting graphs for a series of graph operations through
which variant graphs can be derived by executing pre-
7. SUMMARY defined rewriting rules according to appropriate control struc-
, . . tures. Each variant graph corresponds to a customer-
Based on the understanding of product family archltectur%peciﬁc product variant.
(Duetal., 2091and the rationale of graph-ba}ged modeling The PFD system is specified using PROGRES. As a strat-
(Du, 2000, this paper develops a graph rewriting system tOjjeq tyned language, PROGRES distinguishes between node
support PFD. The modeling of PFD is approached fromclasses, node types, and node instar{¢ésimann et al.,
multiple per;pectivgs. In the sale;s view, PFD i.s representegg%)_ This allows us to define a meta model for family
as a sales view family graph. This graph consists of & set of 5 ks which factors out those entities common to all prod-
nodes representing features, options, and selectiofj tamilies: define a generic model describing all specific
entities relevant to particular families; and obtain a data
structure of product families describing every product vari-
ant for individual customer orders. PROGRES excels in
modeling major aspects of PFD systems. Attribute depen-
dency is used to model parameter propagation in the GPS.
[ﬂ']ﬂ] The hierarchical graph schema supports multiple inheri-
o y tances of graph entities. Parametric rewriting rules support
controlled use of formalnode type parameters within ge-
: : : : i i neric subgraph tests and graph rewriting rules.
(Bua] (BFa)]  [sFb]  (sua](Era)(sTb] (wia] The development of the prototype system for office chairs
demonstrates that the graph-based PFD system can provide
an interactive environment for customers to make choices
Fig. 13. The BOM structure derived by graph rewriting. among product offerings. It also facilitates design automa-

» Chair |«

[ Back-frame ] [Seat—frame]
[ A

1

Legend: D :node type ——p: composes ~ ------ » : realizes
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tion of product families and enhances interactions and neMeyer, M.H., & Utterback, J.M(1993. The product family and the dy-

gotiations among sales, design, and manufacturing.
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