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Abstract

Earlier research on product family design~PFD! often highlights isolated and successful empirical studies with a
limited attempt to explore the modeling and design support issues surrounding this economically important class of
engineering design problems. This paper proposes a graph rewriting system to organize product family data according
to the underpinning logic and to model product derivation mechanisms for PFD. It represents the structural and
behavioral aspects of product families as family graphs and related graph operations, respectively. The derivation of
product variants becomes a graph rewriting process, in which family graphs are transformed to variant graphs by
applying appropriate graph rewriting rules. The system is developed in the language of programmed graph rewriting
systems or PROGRES, which supports the specification of hierarchical graph schema and parametric rewriting rules.
A meta model is defined for family graphs to factor out those entities common to all product families. A generic model
is defined to describe all specific entities relevant to particular families. An instance model describes all product
variants for individual customer orders. A prototype of a graph-based PFD system for office chairs is also developed.
The system can provide an interactive environment for customers to make choices among product offerings. It also
facilitates design automation of product families and enhances interactions and negotiations among sales, design, and
manufacturing.
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1. INTRODUCTION

Facing the buyers’ market, many industries are now geared
toward mass customization, which is the mass production
of individually customized goods and services~Pine, 1993!.
A number of on-line mass customization systems have been
launched recently that allow customers to express their needs,
configure their personalized products with desired features,
and order and track the order status through the internet
~e.g., Cannondale, 2000; Customatix, 2000; Dell, 2000; Eye-
planet, 2000; Haworth, 2000; IDtown, 2000; Volvo, 2000!.
In fact, e-commerce becomes a major driving force, as well

as important enabler, for shaping the future roadmap of
mass customization~Economist, 2000; ThinkCustom, 2000!.

In terms of product realization, the major challenge of
mass customization lies in how to achieve an increasing
variety for catering to customization while keeping low costs
of variety fulfillment, which seems to be an oxymoron. In
practice, developing product families has been recognized
as an effective means to achieve the economy of scale in
order to satisfy diverse customer needs~Meyer & Utter-
back, 1993!. In addition to leveraging the cost of delivering
variety, product family design~PFD! can reduce develop-
ment risks by reusing proven elements in a firm’s activities
and offerings~Sawhney, 1998!.

Earlier research on PFD often highlights isolated and
successful empirical studies, for example, Lutron lighting
systems~Spira, 1993!, Nippondenso bicycles~Whitney,
1993!, Swatch watches~Ulrich & Eppinger, 1995!, Dell
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computers~Schonfeld, 1998!, and Sony Walkmans~Sand-
erson & Uzumeri, 1995; Kota & Sethuraman, 1998!. There
was a limited attempt to explore the modeling and design
support issues surrounding this economically important class
of engineering design problems. Meyer and Lehnerd~1997!
and Robertson and Ulrich~1998! emphasize the develop-
ment of product platforms by extracting those common prod-
uct elements, features, and0or subsystems that are stable
and well understood, so as to provide a basis for introduc-
ing value-added differentiating features for a range of prod-
ucts. PFD is tackled by exploiting the shared logic of a
product design so that the design can be “stretched” and0or
“scaled”~Rothwell and Gardiner, 1990! or be “robust”~Chen
et al., 1996; Simpson et al., 1996, 1999! in response to
various requirements from the market. Fujita et al.~1998!
study how to optimize the system structure and the config-
uration of a product family. Assuming the rationale of mod-
ular product architectures and component sharing~Ulrich,
1995!, most research focuses on the architecture of product
families without explicitly addressing the underlying logic
of the PFD process.

Most mass customization systems allow customers to se-
lect product features and0or options, rather than providing
a limited number of products. The desired product is con-
figured when a set of customer-selected options is received
~Baldwin & Chung, 1995!. This may result in a problem: if
options continue to be added, the number of variants grows
exponentially. Effective handling of variants is thus imper-
ative for PFD and subsequent production planning and con-
trol in order to reduce data redundancy~Wortmann & Erens,
1995!. In addition, customers may be confused when facing
miscellaneous choices~Huffman & Kahn, 1998!. This re-
quires an appropriate representation of the product family
data, as well as modeling of product configuration.

As a well-accepted simple product model, the bill of ma-
terials ~BOM! encodes the relationships between finished
products and their constituent parts or assemblies. Some
research has generalized BOM to include product families,
such as the generic BOM~GBOM! concept~Hegge & Wort-
mann, 1991!. While a GBOM aims at exploring a generic
product structure and excels in describing manufacturing or
production-related product information, its standpoint mainly
rests on the assembly structure of a product family, which
seems to ignore the design process prior to production.
McKay et al.~1996! try to describe product families from
both sales~customer! and assembly views through combin-
ing the GBOM with specific product modeling approaches.
Their work however focuses on the physical structures of
products only. Other methods include generic product mod-
eling ~Erens & Verhulst, 1997!, the generic variety struc-
ture ~Jiao et al., 2000!, and the data model introduced by
Baldwin and Chung~1995!.

There is vast literature devoted to configuration design
~Brown & Birmingham, 1997; Darr et al., 1998!. Many
approaches have been reported such as logic-based ap-
proaches, resource-based approaches, constraint-based ap-

proaches, and case-based reasoning approaches~Sabin &
Weigel, 1998!. Most modeling work deals with design syn-
thesis, which means how a valid design is assembled from
instances of a fixed set of predefined component types
~Mittal & Frayman, 1989!. While configuration design fo-
cuses on individual products only, PFD involves a family
of products where product to product and product to fam-
ily relationships become important concerns, as well as
the representation of variety and the architecture of prod-
uct families~Du et al., 2001!. Jiao and Tseng~1999! dis-
cuss the information modeling of PFD. It is pointed out
that, in addition to the representation of variety, understand-
ing the underlying logic of PFD and modeling the product
variant derivation process are of primary importance. In
addition, existing modeling approaches usually define prod-
uct families in terms of a single perspective~mostly the
structural view, e.g., maintenance! and for a specific pur-
pose~e.g., operations planning; Van Houten et al., 1998!.
To deal with variety, which encompasses the entire prod-
uct development process, it is necessary to represent prod-
uct families for different business functions, including sales
and marketing~functional! and engineering~structural!
views.

Toward this end, we propose a graph rewriting system
that organizes product family data according to the under-
pinning logic among them and models product configura-
tion mechanisms to support PFD. The system is formally
defined in a high-level, multiparadigm specification lan-
guage, PROGRES, which combines concepts from pro-
grammed graph rewriting systems and supports the
specification of hierarchical graph schema and parametric
rewriting rules ~Schürr, 1994, Schürr et al., 1998!. The
general process of PFD and its key issues are introduced
in Section 2. Accordingly, the constructs of the graph re-
writing system for PFD are discussed in Section 3, along
with guidelines of graph grammar-based PFD modeling.
Sections 4 and 5 describe the graph schema and graph
transformations for PFD modeling. A case study of office
chairs is presented in Section 6 to illustrate the feasibility
and potential of the proposed approach. Discussion takes
place and conclusions are drawn in Section 7.

2. PFD DESCRIPTION

A product family refers to a group of individual products
that share common subsystems or components and yet pos-
sess specific functional features to satisfy a variety of mar-
ket niches~Meyer & Lehnerd, 1997!. In practice, different
business departments tend to interpret and employ product
families in different ways. From the marketing and sales
perspective, product families exhibit the company’s prod-
uct line or product portfolio and thus are characterized by
various sets of functional features for diverse customer
groups. The engineering view of product families embodies
product technologies and associated manufacturability and
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is thereby characterized by differences in product struc-
tures, design parameters, and components. The synchroni-
zation of multiple views is an important issue of PFD
modeling~Jiao & Tseng, 1999; Du et al., 2001!.

The general process of PFD is illustrated in Figure 1.
From the viewpoint of sales, a product family can be spec-
ified in terms of three elements: common features, distinc-
tive features, and selection constraints. Common features
indicate the similarity of customers’ requirements related to
a particular market segment. A few optional values are se-
lectable for each distinctive feature in order to satisfy spe-
cific customer requirements. Selection constraints are defined
for presenting customers with only feasible options.

From the engineering perspective, PFD is characterized
by a generic product structure~GPS; Du et al., 2001!. As a
generic data structure of product families, the GPS is a
hierarchy comprising modules and their interrelationships
at different levels of abstraction. Two types of modules are
distinguished: primitive modules and compound modules.
The first type refers to those modules that cannot be further
decomposed. Each of them possesses several variants. The

second type is composed of common modules, primitive
modules, and0or other compound modules. This means that
a compound module may be used as a child module to
compose another compound module~i.e., the parent mod-
ule!. In this sense, the end product itself is in fact a com-
pound module. The variants of a compound module result
from variations of its child modules. In addition, modules
are associated with variety parameters. Variety parameters
originate from distinctive functional features and propagate
along the hierarchy of a GPS. The value of a variety param-
eter associated with a child module is determined by the
variety parameters of its parent module. Furthermore, in-
clusion conditions can be defined in terms of variety param-
eters to specify the circumstances under which a module is
a constituent of another module or a particular variant be-
comes the instance of a primitive module.

With the above understanding, a custom product design
involves two phases: customer selection in the sales view
and product variant derivation in the engineering view. Cus-
tomers make their selections among sets of options. The
selected functional features and their values represent

Fig. 1. The general process of product family design.
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the customer requirements, thus becoming the content of
the product specification. The variety parameters of the end
product are defined according to the product specification
and then propagate to its constituent modules. Each item in
the GPS~either a module or a structural relationship! is
instantiated according to associated inclusion conditions.
Therefore, while a GPS characterizes a product family, each
instance of GPS corresponds to a product variant of the
family. Propagation of variety parameters and inclusion con-
ditions embody the configuration mechanisms of product
variant derivation in PFD.

3. GRAPH REWRITING SYSTEMS FOR PFD

Graph grammars are widely used as a tool to model com-
plex systems. Du~2000! proposes a graph grammar based
approach to the formal representation of product families.
PFD can be described in programmed attributed graph gram-
mars, in which features and modules are represented as
nodes, relationships among features and modules are rep-
resented as edges, and manipulations of modules are mod-
eled as productions. The graph representing items that
construct the starting point of the family design is used as a
starting graph. The graph of a product variant is trans-
formed from the starting graph by invoking proper produc-
tions. A product family is thus defined by all graphs that
can be generated from the starting graph according to pre-
defined productions and the control diagram, which form
the graph language of the family.

Graph grammar formalisms can be implemented as a
graph rewriting system. The development of a pro-
grammed graph rewriting system involves two closely re-
lated subtasks. One is to design a graph model for the
corresponding complex object structure, namely, the graph
schema. It is a set of graph entities common to a certain
class of graphs and can describe all necessary types of
nodes and edges, as well as their associated attributes and
static integrity constraints. The other is to program object
~graph! operations for analysis and modification by com-
posing and sequencing subgraph tests and graph rewriting
rules, namely, graph transformations.

Graph rewriting systems can be formalized by writing a
PROGRES specification. PROGRES and its programming
environment are based on the data model of directed at-
tributed graphs and offer a concept of programmed graph
rewriting systems to describe complex graph transforma-
tions. PROGRES specifications determine both the static
structure and the allowed dynamic behavior of a system. It
excels in handling derived fact~attribute dependence!, pro-
viding parametric rewriting rule specification, and support-
ing data and system consistency~Schürr et al., 1995, 1998!.

Because PROGRES is a stratified language, the graph
rewriting system for PFD involves three layers: the meta,
generic, and instance models. A generic model represents
the generic data structure of a product family, in which
family-related items such as features and modules are spec-

ified using node classes. The graphical presentation of a
generic model is called a family graph. The abstraction of
those common graph entities in specific generic models for
different product families are specified by defining node
classes and edge types, which compose a meta model. To
generalize those graph operations common to all product
families, the related graph transformations are defined at
the meta level. For a particular product family, a generic
model can be defined by adapting the relevant entities of
the meta model to specific characteristics of the product
family. A family graph can be instantiated to a variant graph,
thus called aninstance model, representing the modules
and structure of a specific product variant. The instance
model is composed of thenode instancetogether with the
edges. Because PROGRES is a strongly typed language,
the attributes defined in the classes can be inherited to type-
level entities and the attributes defined in the types can be
inherited to instance-level entities.

The generic approach to PFD modeling based on graph
rewriting systems involves the construction and application
phases~for a general understanding of the PROGRES spec-
ification of graph rewriting systems, please refer to fig. 7 in
Heimann et al., 1995!. Themeta modeland graph transfor-
mations are defined by the classes and productions in the
PROGRES language. To adapt the meta model to a family-
specific generic model, we specify the node types of the
product family from two different views: sales and engi-
neering. By merging these specific types with the classes
and productions, we obtain a complete graph grammar spec-
ification of the particular product family. The starting graph
for sales and marketing consists of features, options, prod-
uct specifications, and selection constraints, as well as the
relationships among them, and is thus called the sales view
family graph. The starting graph for engineering consists of
generic modules, primitive variants, and generic structural
or selective relationships associated with the modules and
variants; it is called the engineering view family graph.
During the application stage, sales persons and customers
input their options of features. The sales view family graph
is then rewritten according to the control structure pre-
defined in the construction stage. The result will be a vari-
ant graph–graphical representation of a product specification.
This specification is then transferred to the engineering view
in the form of variety parameters of the end product. Taking
these variety parameters as input, the engineering view fam-
ily graph starts to transform according to the control struc-
ture defined in the meta model. The resulting variant graph
~i.e., the instance model! represents the definition of an
order-specific product.

4. META MODEL AND GRAPH
TRANSFORMATION

Specifying those entities common to all product families, a
meta model consists of the class-level graph schema~node
classes and edge types! and graph transformations. Figure 2
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Fig. 2. The graph grammar specification of PFD~meta models and graph transformations!.
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summarizes the graph grammar specification of the PFD at
the meta level.

4.1. Class-level graph schema

The class level of the PROGRES graph schema factors out
all common entities of product families. All classes of nodes
and all types of edges occurring in PFD systems are de-
fined. PFD_OBJECT acts as the root of the class hierar-
chy, as shown in Figure 2~a!. Two subclasses can be
distinguished,SALES_OBJECT and ENGINEERING_
OBJECT, which are elaborated in the sales view meta model
and the engineering view meta model, respectively. Fig-
ure 2~a! gives the graphical representation of node classes
and edge types in both sales and engineering views, as well
as the inheritance relations.

As shown in Figure 2~a!, SALES_OBJECT is a super-
class that covers all entities occurring in the sales view
meta model. AnoptionOf edge between theFEATURE
andOPTION nodes models the fact that one or more op-
tions can be selected to define a feature.

To handle selection constraints, we connect the ante-
cedent of a selection constraint to its consequent via
SELECTION_CONSTRAINT nodes. The derived attribute,
AnteSelected, of SELECTION_CONSTRAINT nodes is
determined by theSelected attribute of its antecedent. A
SELECTION_CONSTRAINT can be aPOSITIVE_
CONSTRAINT or a NEGATIVE_CONSTRAINT. A pos-
itive constraintis defined as follows: if a specific optionAk

of featureA ~the antecedent! is selected, then featureB
must take on a specific optionBl ~the consequent!, where
the superscriptk or l, denotes a particular option~i.e., a
specific value! of the feature. Anegative constraintmeans
that if an optionAk of featureA ~the antecedent! is selected,
then a featureB must not take on optionBl ~the consequent!.

A precedes edge models the fact that a feature whose
option is the antecedent~s! of the option~s! of another
feature must be specified prior to the specification of the
latter feature. An example of therefines relationship is that
feature StyleOfArmrests refines featureWithArmrests.
PRODUCT_SPEC is linked to each feature node thatde-
scribes the feature from certain aspects. The remaining
elements used to declare node attributes will be introduced
in Section 5.Assigned is a derived attribute ofFEATURE,
indicating whether the value of this feature has been as-
signed~true! or not~false!. Its default value isfalse. When
an eligible feature value is selected, it becomestrue. The
value ofRemainingChoices is recalculated by transforma-
tions associated withFEATURE. On the other hand, an
edge-type specification defines what node types are admis-
sible at the end points of the edge; for example, anop-
tionOf edge starts fromOPTION and ends atFEATURE.

As shown in Figure 2~a!, ENG_OBJECT is a super-
class that covers all entities occurring in the engineering
view meta model. AMODULE can be aPRIMITIVE or a
COMPOUND one. A primitive module cannot be further

decomposed and can be realized by one or more
PRIMITIVE_VARIANTs. A compound module consists of
some lower level modules that may be primitive or com-
pound ones.PRODUCT comprises modules of different
kinds.

Another class ofENG_OBJECT is STRUCTURAL_
RELATIONSHIP. One of its subclassesFIXED_STR, mod-
els those fixed structural relationships between parent and
child modules. To indicate aFIXED_STR, an attribute,In-
cluded, is introduced as a meta attribute whose value equals
true. Another subclass isVARIABLE_STR, which models
structural variations, that is, a child module may or may not
be included in the parent module. The derived attributeIn-
cluded is determined by parameters of the parent module.
Another node class isSELECTIVE_RELATIONSHIP. It
models the relationship between a primitive module and its
variants. TheIncluded attribute of a SELECTIVE_
RELATIONSHIP node is instantiated according to the pa-
rameters of primitive modules.Included = true means that
a primitive variant is included in the resulted product
structure.

Two types of edges are specified in the engineering
view as shown in Figure 2~a!: toParent and toChild. A
STRUCTURAL_RELATIONSHIP node is linked to the
parent module by atoParent edge and to the child module
by a toChild edge. ASELECTIVE_RELATIONSHIP node
is linked to aPRIMITIVE node by atoParent edge and to
a PRIMITIVE_VARIANT node by atoChild edge.

The primary concern of defining node classes is to de-
note coercions of node types that possess common proper-
ties. As a result, the concepts of classification and
specialization are introduced. This eliminates duplicating
declarations by supportingmultiple inheritancesalong the
edges of the class hierarchy. In addition, node classes play
the role of meta types. As types of node types, they sup-
port the controlled use of formal~node! type parameters
within generic subgraph tests and graph rewriting rules.
This is demonstrated in the following section.

4.2. Graph operations

Section 4.1 dealt with the static portion of PFD systems;
this section discusses the modeling of the operational be-
havior. Complex operations are defined as transactions that
are composed of a set of productions to be executed follow-
ing a controlled sequence. These basic operations are de-
fined as productions in PROGRES. By nature they are at
the meta level and are independent of particular product
families.

To support PFD, some operations are necessary at the
meta level. First, there should be operations to let custom-
ers choose among available options. Second, if an option
that is the antecedent of a selection constraint is selected,
there should be operations to process the consequent ac-
cording to whether it is a negative or a positive constraint.
Third, there should be operations to transform the selected
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options to variety parameters, that is the relevant attributes
of the PRODUCT node in the engineering view family
graph~to be elaborated in Section 5!. Fourth, there should
be operations to delete modules and primitive variants that
are not included in the graph of a desired product variant.
Figure 2~b! illustrates all the operations involved in the
system.

Figure 3~a! depicts a production,AssignValue, designed
for customers to assign values to certain features, which is
realized by making choices among selectable options. The
dashed rectangles above and below the separator::5 define
the left-hand side~lhs! and right-hand side~rhs! of the pro-
duction, respectively. The rule can be applied only if all
conditions are fulfilled. The first statement in the condition

part is used to check whether the feature has been assigned
a value. The second and third conditions ensure that there is
no FEATURE to which the value should be assigned be-
fore the value is assigned to this feature or that the values of
all features preceding or being refined by this feature have
been assigned. If all condition statements hold true, the
elements of the lhs in the family graph are replaced by the
elements of the rhs. Those unselected options are thus re-
moved from the graph and all node attributes receive their
new values according to thetransfer functions.

Once an option is selected for a feature, it is necessary to
check whether this selection affects the options of other
features. If the selected option is an antecedent of a nega-
tive selection constraint, the consequent of the constraint

Fig. 3. The basic productions for the sales view meta model:~a! assigning values to a feature~selecting an option!, ~b! processing a
negative constraint, and~c! processing positive constraint.

Product family modeling and design support 109



should be deleted from those selectable options of the af-
fected feature. Figure 3~b! is a production designed for this
purpose.1 For aFeature ~an instance ofFEATURE! whose
value has been assigned~indicated by the hollow arrow,
valueAssigned, attached to theaFeature node!, if there is
a path from its selected option to the consequent of a neg-
ative constraint~indicated by the hollow arrow,toConse-
quentN, between twoOPTION nodes!, the consequent
together with the constraint node will be removed. As a
result, theRemainingChoices of the affected feature will

be reduced by one. If the selected option is an antecedent of
a positive selection constraint, theSelected attribute of its
consequent should be assigned a new value oftrue and all
other options will be deleted, as shown in Figure 3~c!. The
hallow arrow,toConsequentP, with a cross between nodes
’2 and ’5 leads to those unselected options of the affected
feature. Consequently, the constraint node and unselected
options are both removed and theRemainingChoices is
changed to 1.

Figure 4~a! shows a productionTransferSpec, which
defines a rewriting rule to derive the engineering descrip-
tion of a product variant according to the sales specifica-
tion. If a product is specified~stated ascondition!, a fulfill
edge is added between thePRODUCT_SPEC node and
thePRODUCT node. TheN denotes the number of variety
parameters. Figure 4b depicts a productionGetFeature-

1A hollow fat arrow between two nodes requires the existence of a
certain path~derived relationship! between these two nodes, whereas a
hollow fat arrow attached to a single node requires that its target node
fulfills a certain restriction~belongs to a derived node set!.

Fig. 4. The basic productions for the engineer-
ing view meta model:~a! transferring product
specifications to variety parameters,~b! transfer-
ring selected options to parameter values, and~c!
removing modules not included in the variant
graph.
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Value, which is used to trace theOPTION nodes con-
nected to theaSpec node. The options are transferred to
the attribute values of thePRODUCT node, representing
the values of variety parameters.

Once a product specification is transferred to variety
parameters, all derived attributes in the engineering view
family graph start to be evaluated automatically. If a mod-
ule is not to be included by its parent module~i.e., the
Included attribute of the associatedSTRUCTURAL_
RELATIONSHIP node isfalse!, the corresponding node
of this child module will be deleted. A productionRe-
moveNotIncludedModule is designed for this purpose, as
shown in Figure 5~c!. Similarly, if a variant is not to be
instantiated for its primitive module, theIncluded attribute
of the correspondingSELECTIVE_RELATIONSHIP node
should take onfalse, and thus the associatedPRIMITIVE_
VARIANT node is removed.

In addition to these productions, other operations on fam-
ily graphs can be defined in a similar way to facilitate PFD.
Some examples are given in Figure 5.

4.3. Product variant derivation

The process of transforming a family graph to a variant
graph is rather complex and may not be able to be specified
using a single production. Imperative control structures can
enforce certain orders of production application~Schürr,
1990! that are specified as transactions. Figure 6 depicts the
control structures for product variant derivation. First of
all, a graph test on the sales view family graph is per-
formed, as shown in Figure 6~a!. A feature whose values are
not assigned is thus selected. If there is no value-unassigned
feature preceding this selected feature or being refined by
it, the selected feature and its selectable options are pre-

Fig. 5. Definitions of supplementary productions:~a!
changing the structural relationship node to acom-
poses edge,~b! a test of finding a value-unassigned
feature,~c! a test of confirming no unassigned prec-
edent, and~d! the path to the consequent of a positive
selection constraint.
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sented to customers for them to choose. After obtaining the
customers’ input~in the form of a selected option!, a pro-
duction,AssignValue, is applied to the family graph. If the
selected option is the antecedent of certain constraints, these
constraints will be processed. Then we go back to process
another value-unassigned feature till every feature obtains
a value. When all features are assigned, the product speci-
fication process terminates and the attributeSpecified of
the PRODUCT_SPEC node becomestrue.

Figure 6~b! shows the control structure for product defi-
nition. It seeks to transform the product specification de-
scribed in sales terms to the product definition described in
engineering terms. This operation is automatic because the
parameter propagation from parent modules to child mod-
ules and inclusion conditions were modeled as derived
attributes. In the first step, a production,Transferspec, is
applied to transfer the product specification to variety pa-
rameters of thePRODUCT node. Derived attributes are
revaluated. Then all those unincluded modules and primi-
tive variants are removed. The desired variant graph is thus
derived.

5. GENERIC MODEL AND FAMILY GRAPH

To support a specific PFD, meta models need to be adapted
to particular product families, that is, to be transformed to
generic models. To do so, all family-specific features, op-
tions, and generic items in the GPS are specified as node
types. A node-type declaration defines the label of a group
of nodes and the node class to which they belong. The
purpose is to define the behavior of the nodes of this type,
which indicates the functional dependencies of the attributes.
Three kinds of attributes are identified: intrinsic, meta, and
derived. Figure 7 gives an example of node-type definitions
of Chair, Underframe, andStand for an office chair prod-
uct family.

Those attributes whose values need to be input by cus-
tomers can be assigned as intrinsic attributes that possess a
value independent of the values of other attributes. For
example, for an office chair product family such attributes
asColor, WithArmrests, StyleOfArmrests, Turnable, and
Drivable of the nodeChair are intrinsic attributes. An
intrinsic attribute has a type-dependentinitial value, which
may be changed directly by performing an appropriate
graph transformation. If a parameter is modeled as an in-
trinsic attribute, its default value can be set to be the initial
value of the attribute.

Those attributes whose values are common among fam-
ily members can be assigned as meta attributes that possess
constant type-dependent values. This enables the handling
of those node properties having the same value for all in-
stances of a given node type. For example, for the office
chair product family a statement that the value of a meta
attribute,Durable, is Yes implies that all product variants
of this family areDurable.

Parameter propagation from a parent node to its child
nodes can be modeled by derived attributes that have node
instance-specific values and change their values as a result
of performed graph transformations. All instance-specific
values are determined by means of directed equations only.
For example, for the office chair product family the derived

Fig. 6. A specification of control structures:~a! deriving product variant
specification~sales view! and~b! deriving product variant definition~en-
gineering view!.

Fig. 7. Declarations of intrinsic, meta, and derived attributes.
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Fig. 8. ~a! Sales view and~b! engineering view family graphs and node-type specifications for~c! sales view and~d! engineering
view generic models for a specific product family.
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Table 1. Features, options, and selection constraints for the office chair product family

Feature Option

Common feature F0 : Durable Yes
Optional feature F1 : Color Red, Blue, Gray

F2 : Turnable {Yes, No}
F3 : Drivable {Yes, No}
F4 : WithArmrests {Yes, No}
F5 : StyleOfArmrests {Plain, Deluxe}

Selection constraint If Drivable = Yes, Turnable Þ No;
If Color = Gray, WithArmrests = Yes AND StyleOfArmrests = Deluxe.

Fig. 9. Node-type specifications for~a! sales view
and~b! engineering view generic models for the of-
fice chair product family.
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attributesTurnable andDrivable of the node typeUnder-
Frame are determined by the attributes of its parent node
Chair. Similarly, a derived attributeTurnable of the node
type Stand is determined by the attribute of its parent
nodeUNDERFRAME.

Node types and their associated edges comprise the ge-
neric model of a product family, which can be represented
as family graphs. The sales view family graph consists of
family-specific node types for features, options, selection

constraints, and product specification. The engineering view
family graph consists of family-specific node types for mod-
ules, primitive variants, structural and selective relation-
ships, and the end product. Figure 8 gives an example of a
product family specification in the textual form, as well as
the family graphs of this product family. In the illustration
the initial values of attributesOption13 and Option22 are
set toSelected, which implies thatOption13 andOption22

are the default values ofF1 andF2, respectively.

Fig. 10. ~a! Sales view and~b! engineering view family graphs for the office chair product family.

Product family modeling and design support 115



6. CASE STUDY

Using office chairs to illustrate product families was first
introduced by McKay et al.~1996!. This study employs
office chairs as running examples, because they are illus-
tratively simple, yet representative. The original case is mod-
ified somewhat to highlight the characteristics of this
research. Because the meta models discussed in Section 4
are universal and independent of any specific product fam-
ily, this section only focuses on the generic models of office
chair product families and how variant products are derived
based on generic models and defined graph operations.

6.1. Family graphs

Suppose six features~F0, F1, F2, F3, F4, andF5! can be
used for customers to specify an office chair, including color,
whether a chair is drivable or turnable, if it has armrests,
and the style of armrests. Two selection constraints are in-
troduced, which are listed in Table 1 together with features
and their selectable options. Figure 9~a! gives the sales view
specification of node types in the generic model. Fig-
ure 10~a! shows the corresponding family graph.

From an engineering viewpoint, an office chair is an as-
sembly of a back frame, back upholstery~in different col-
ors!, a seat frame~supporting armrests or not!, seat
upholstery~in different colors!, armrests~in different styles!,
a stand~turnable or not!, and wheels or pads~drivable or
not!. The variety parameters and associated modules are
listed in Table 2. All available primitive variants and asso-
ciated inclusion conditions are listed in Table 3.

Figure 9~b! gives the textual specification of node types
for the engineering view generic model. In the illustration,
composes is a derived path from a child node to its parent
node via a structure relationship. Figure 10~b! shows the
corresponding engineering view family graph. In the illus-
tration we use subscripts to differentiate various structural
and selective relationships.

6.2. Product variants

After family graphs are constructed, they can serve as the
starting graphs of graph grammars defined for a specific
product family. While family graphs indicate all node and
edge labels and node attributes, other elements of graph
grammars such as productions and control diagrams are
defined in the meta model and thus can be adapted to the
generic model. Therefore, product variant derivation be-
comes a series of graph transformations. All variants that
can be derived through graph rewriting embody the product
family.

Suppose a customer presents his choices:{Color =
Red, Turnable = Yes, Drivable = Yes, WithArmrests =
Yes, StyleOfArmrests=Plain%.According to this input, the
PFD system can generate a particular design for this cus-
tomer. Figure 11~a! shows the sales view variant graph re-
sulting from the sales view family graph in Figure 10~a! with
all unselected options and features removed. The transfor-

Table 2. Modules and variety parameters in the office chair product family

Module Variety Parameter

Compound module Chair Color, Turnable, Drivable, Durable, WithArmrests, StyleOfArmrests
Back Color = Chair.Color
Seat Color = Chair.Color, SupportArmrests = Chair.WithArmrests
Under-frame Durable = Yes, Turnable = Chair.Turnable, Drivable = Chair.Drivable

Primitive modules Armrests StyleOfArmrests = Chair.StyleOfArmrests
Back frame Nil
Back-upholstery Color = Back.Color
Seat-frame Nil
Seat-upholstery Color = Seat.Color
Stand Turnable = Underframe.Turnable
Support Drivable = Underframe.Drivable

Table 3. Primitive variants and inclusion conditions associated
with the office chair product family

Primitive Variant Inclusion Condition

BU_a BackUphostery.Color = Red
BU_b BackUphostery.Color = Blue
BU_C BackUphostery.Color = Grey
SF_a SeatFrame.SupportArmrests = No
SF_b SeatFrame.SupportArmrests = Yes
WL_a Support.Drivable = No
PD_a Support.Drivable = Yes
SU_a SeatUphostery.Color = Red
SU_b SeatUphostery.Color = Blue
SU_c SeatUphostery.Color = Grey
ER_a Armrests.StyleOfArmrests = Plain
ER_b Armrests.StyleOfArmrests = Deluxe
ST_a Stand.Turnable = No
ST_b Stand.Turnable = Yes
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mation of Figure 10~a! to Figure 11~a! demonstrates the graph
rewriting process from a starting graph to a variant graph.

The engineering view variant graph is derived by trans-
forming the engineering view family graph in Figure 10~b!
according to the control structure defined in Figure 6~b!.
The resulting graph is shown in Figure 11~b!.

Each specific design represented as a variant graph
like the one in Figure 11~b! can be transformed to a tradi-

tional BOM structure. For this purpose, we introduce two
additional productions to change theSTRUCTURAL_
RELATIONSHIP and SELECTIVE_RELATIONSHIP
nodes along with the relevant edges in a variant graph to
the edges in a BOM structure representing the goes-into
relationships among modules. As illustrated in Fig-
ure 12~a!, a production,BuildUpParentChildRelation,
is defined to change a subgraph consisting of the

Fig. 11. ~a! Sales view and~b! engineering view variant graphs for a custom office chair.
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STRUCTURAL_RELATIONSHIP node and its relevant
edges to acomposes edge. As shown in Figure 12~b!, the
BuildUpPrimitiveVariantRelation production is used to
change a subgraph consisting of theSELECTIVE_
RELATIONSHIP node and its relevant edges to arealize
edge. Applying these productions to the variant graph in
Figure 11~b!, a BOM-like graph can be generated as shown
in Figure 13.

7. SUMMARY

Based on the understanding of product family architecture
~Du et al., 2001! and the rationale of graph-based modeling
~Du, 2000!, this paper develops a graph rewriting system to
support PFD. The modeling of PFD is approached from
multiple perspectives. In the sales view, PFD is represented
as a sales view family graph. This graph consists of a set of
nodes representing features, options, and selection

constraints, together with a set of edges indicating their
interrelationships. In the engineering view PFD is modeled
as an instantiation process of a GPS, which is represented
as an engineering view family graph. This graph consists of
a set of nodes representing the end product, modules, prim-
itive variants, structural relationships, and selective rela-
tionships, combined with a set of edges denoting the
interrelationships among them. These family graphs act as
the starting graphs for a series of graph operations through
which variant graphs can be derived by executing pre-
defined rewriting rules according to appropriate control struc-
tures. Each variant graph corresponds to a customer-
specific product variant.

The PFD system is specified using PROGRES. As a strat-
ified typed language, PROGRES distinguishes between node
classes, node types, and node instances~Heimann et al.,
1995!. This allows us to define a meta model for family
graphs, which factors out those entities common to all prod-
uct families; define a generic model describing all specific
entities relevant to particular families; and obtain a data
structure of product families describing every product vari-
ant for individual customer orders. PROGRES excels in
modeling major aspects of PFD systems. Attribute depen-
dency is used to model parameter propagation in the GPS.
The hierarchical graph schema supports multiple inheri-
tances of graph entities. Parametric rewriting rules support
controlled use of formal~node! type parameters within ge-
neric subgraph tests and graph rewriting rules.

The development of the prototype system for office chairs
demonstrates that the graph-based PFD system can provide
an interactive environment for customers to make choices
among product offerings. It also facilitates design automa-

Fig. 12. Productions for transforming variant graphs
to BOM structures:~a! changing aSTRUCTURAL_
RELATIONSHIP node to acomposes edge and~b!
changing aSTRUCTURAL_RELATIONSHIP node
to a realizes edge.

Fig. 13. The BOM structure derived by graph rewriting.
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tion of product families and enhances interactions and ne-
gotiations among sales, design, and manufacturing.
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