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Abstract

In contrast to previous belief, we provide examples of stationary ergodic random
measures that are both hyperfluctuating and strongly rigid. Therefore, we study
hyperplane intersection processes (HIPs) that are formed by the vertices of Poisson
hyperplane tessellations. These HIPs are known to be hyperfluctuating, that is, the
variance of the number of points in a bounded observation window grows faster than
the size of the window. Here we show that the HIPs exhibit a particularly strong
rigidity property. For any bounded Borel set B, an exponentially small (bounded)
stopping set suffices to reconstruct the position of all points in B and, in fact, all
hyperplanes intersecting B. Therefore, also the random measures supported by the
hyperplane intersections of arbitrary (but fixed) dimension, are hyperfluctuating.
Our examples aid the search for relations between correlations, density fluctuations,
and rigidity properties.

Keywords: Strong rigidity, hyperfluctuation, hyperuniformity, Poisson hyperplane
tessellations, hyperplane intersection processes
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1 Introduction

Let Φ be a random measure on the d-dimensional Euclidean space Rd; see [10, 14]. In this
note all random objects are defined over a fixed probability space (Ω,F ,P) with associated
expectation operator E. Assume that Φ is stationary, that is distributionally invariant
under translations. Assume also that Φ is locally square integrable, that is E[Φ(B)2] <∞
for all compact B ⊂ Rd. Take a convex body W , that is a compact and convex subset of
Rd and assume that W has positive volume Vd(W ). In many cases of interest one can
define an asymptotic variance by the limit

σ2 := lim
r→∞

Var[Φ(rW )]

Vd(rW )
, (1.1)

where the cases σ2 = 0 and σ2 = ∞ are allowed. This limit may depend on W ; but we
do not include this dependence into our notation. Quite often the asymptotic variance

∗mklatt@princeton.edu, Department of Physics, Princeton University, Princeton, NJ 08544, USA
†guenter.last@kit.edu, Karlsruhe Institute of Technology, Institute for Stochastics, 76131 Karlsruhe,

Germany.

1

ar
X

iv
:2

00
8.

10
90

7v
1 

 [
m

at
h.

PR
] 

 2
5 

A
ug

 2
02

0



σ2 is positive and finite. If, however, σ2 = 0, then Φ is said to be hyperuniform [19, 20].
If σ2 = ∞, then Φ is said to be hyperfluctuating [20]. In recent years hyperuniform
random measures (in particular point processes) have attracted a great deal of attention.
The local behavior of such processes can very much resemble that of a weakly correlated
point process. Only on a global scale a regular geometric pattern might become visible.
Large-scale density fluctuations remain anomalously suppressed similar to a lattice; see
[19, 20, 5]. The concept of hyperuniformity connects a broad range of areas of research (in
physics) [20], including unique effective properties of heterogeneous materials, Coulomb
systems, avian photoreceptor cells, self-organization, and isotropic photonic band gaps.

A point process Φ on Rd is said to be number rigid if the number of points inside
a given compact set is almost surely determined by the configuration of points outside
[16, 2]. Examples of number rigid point processes include lattices independently perturbed
by bounded random variables, Gibbs processes with certain long-range interactions [3],
zeros of Gaussian entire functions [8], stable matchings from [11], and some determinantal
processes with a projection kernel [4].

It was proved in [6] that in one and two dimensions a hyperuniform point process is
number rigid, provided that the truncated pair-correlation function is decaying sufficiently
fast. Quite remarkably, it was shown in [16] that in three and higher dimensions a
Gaussian independent perturbation of a lattice (which is hyperuniform) is number rigid
below a critical value of the variance but not number rigid above. It is believed [5] that
a stationary number rigid point process is hyperuniform. In this note we show that this
is not true. In fact we give examples of stationary and ergodic (in fact mixing) random
measures that are both hyperfluctuating and rigid in a very strong sense. The authors are
not aware of any previously known rigid and ergodic process that is non-hyperuniform
in dimensions d ≥ 2 (if W is the unit ball). An example for d = 1 has very recently
been given in [12]. In this paper we will prove that the point process resulting from
intersecting Poisson hyperplanes has very strong rigidity properties. This point process is
hyperfluctuating [9] and, under an additional assumption on the directional distribution,
mixing; see [18, Theorem 10.5.3] and Remark 2.1.

2 Poisson hyperplane processes

In this section we collect a few basic properties of Poisson hyperplane processes and the
associated intersection processes. Let Hd−1 denote the space of all hyperplanes in Rd.
Any such hyperplane H is of the form

Hu,s := {y ∈ Rd : 〈y, u〉 = s}, (2.1)

where u is an element of the unit sphere Sd−1, s ∈ R and 〈·, ·〉 denotes the Euclidean
scalar product. (Any hyperplane has two representations of this type.) We can make
Hd−1 a measurable space by introducing the smallest σ-field containing for each compact
K ⊂ Rd the set

[K] := {H ∈ Hd−1 : H ∩K 6= ∅}. (2.2)

In fact, Hd−1 ∪ {∅} can be shown to be a closed subset of the space of all closed subsets
of Rd, equipped with the Fell topology. We refer to [18] for more details on this topology
and related measurability issues; see also [14, Appendix A3].
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We consider a (stationary) Poisson hyperplane process, that is a Poisson process η on
Hd−1 whose intensity measure is given by

λ = γ

∫
Sd−1

∫
R

1{Hu,s ∈ ·} dsQ(du), (2.3)

where γ > 0 is an intensity parameter and Q (the directional distribution of η) is an even
probability measure on Sd−1. We assume that Q is not concentrated on a great subsphere.
It would be helpful (even though not strictly necessary) if the reader is familiar with
basic point process and random measure terminology; see e.g. [14]. For our purposes it is
mostly enough to interpret η as a random discrete subset of Hd−1. The number of points
(hyperplanes) in a measurable set A ⊂ Hd−1 is then given by |η ∩ A| and has a Poisson
distribution with parameter λ(A). Since λ is invariant under translations (we have for
all x ∈ Rd that λ(·) = λ({H : H + x ∈ ·})), the Poisson process η is stationary, that is
distributionally invariant under translations. Furthermore we can derive from Campbell’s
theorem (see e.g. [14, Proposition 2.7]) and (2.3) that

E[|η ∩ [K]|] <∞, K ⊂ Rd compact. (2.4)

As usual we assume (without loss of generality) that |η(ω) ∩ [K]| <∞ for all ω ∈ Ω and
all compact K ⊂ Rd. More details on Poisson hyperplane processes can be found in [18,
Section 4.4].

Let m ∈ {1, . . . , d}. We define a random measure Φm on Rd by

Φm(B) :=
1

m!

∑ 6=

H1,...,Hm∈η

Hd−m(B ∩H1 ∩ · · · ∩Hm) (2.5)

for Borel sets B ⊂ Rd, where
∑ 6= denotes summation over pairwise distinct entries and

where Hd−m is the Hausdorff measure of dimension d −m; see e.g. [14, Appendix A.3].
Using the arguments on p. 130 of [18] one can show that almost surely for all distinct
H1, . . . , Hm ∈ η the intersection H1 ∩ · · · ∩Hm is either empty or has dimension d −m.
Combining this with (2.4), we see that the random measures Φ1, . . . ,Φm are almost surely
locally finite, that is finite on bounded Borel sets. The random variable Φm(B) is the
volume contents (in the appropriate dimension) of all possible intersections of d − m
hyperplanes within B.

It can be shown that (almost surely) the intersection of d + 1 different hyperplanes
from η is empty. Therefore the random measure Φd is almost surely a point process
without multiplicities, so that Φd(B) is just the number of (intersection) points x ∈ B
with {x} = H1∩· · ·∩Hd for some H1, . . . , Hd ∈ η. It is convenient to define a simple (and
locally finite) point process Φ as the set of all points x ∈ Rd with {x} = H1 ∩ · · · ∩ Hd

for some H1, . . . , Hd ∈ η. When (as it is common) interpreting Φ as a random counting
measure, we have that P(Φ = Φd) = 1. Figure 1 shows two samples of η and Φ.

Among other things, Theorem 4.4.8 in [18] gives a formula for the intensity γm :=
E[Φm([0, 1]d)] of Φm. We only need to know that it is positive and finite. In the remaining
part of this section we recall some second order properties of Φm. (At first reading some
details could be skipped without too much loss.) Let A,B be bounded Borel subsets of
Rd. Using the theory of U-statistics [14, Section 12.3] it was shown in [13] that

lim
r→∞

r−(2d−1)Cov[Φm(rA),Φm(rB)] = Cm(A,B), (2.6)
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Figure 1: Samples of Poisson hyperplane processes η (lines) and the corresponding in-
tersection processes Φ (solid circles) for two directional distributions: isotropic (left) and
only three directions (right).

where

Cm(A,B) :=
1

((m− 1)!)2

∫ (∫
Hd−m(A ∩H1 ∩ · · · ∩Hm)λm−1

(
d(H2, . . . , Hm)

))
×
(∫

Hd−m(B ∩H1 ∩H ′2 ∩ · · · ∩H ′m)λm−1
(
d(H ′2, . . . , H

′
m)
))

λ(dH1). (2.7)

If m = 1, this has to be read as

C1(A,B) =

∫
Hd−1(A ∩H1)Hd−1(B ∩H1)λ(dH1).

The asymptotic variance Cm(A,A) was derived in [9]. We note that Cm(A,A) is finite
(this is implied by the form (2.3) of λ) and that Cm(A,A) = 0 iff∫

Hd−m(A ∩H1 ∩ · · · ∩Hm)λm(d(H1, . . . , Hm)) = 0.

Since Q is not concentrated on a great subsphere, this happens if and only if the Lebesgue
measure of A vanishes; see the proof of [18, Theorem 4.4.8]. Therefore we obtain from (2.6)
that the random measures Φ1, . . . ,Φd are hyperfluctuating (if d ≥ 2). The results in [9, 13]
show that, for each finite collection B1, . . . , Bn of bounded Borel sets, the random vector
r−(d−1/2)(Φm(rB1)−E[Φm(rB1)], . . . ,Φm(rBn)−E[Φm(rBn)]) converges in distribution to
a multivariate normal distribution.

It is worth noting that the asymptotic covariances (2.7) are non-negative. If η is
isotropic (meaning that Q is the uniform distribution on Sd−1), there exist more detailed
non-asymptotic second order results. In this case [9, p. 936] shows the pair correlation
function ρ2 (see e.g. [14, Section 8.2]) of the intersection point process Φ = Φd is given by

ρ2(x) = 1 +
d∑
i=1

aiγ
−i‖x‖−i, x ∈ Rd, x 6= 0, (2.8)
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where the coefficients a1, . . . , ad are strictly poisitive and do only depend on the dimension.
Hence, as ‖x‖ → ∞, ρ2(x)− 1→ 0 only at speed ‖x‖−1. In particular, the truncated pair
correlation function ρ2 − 1 is not integrable outside of any neighborhood of the origin.
Using the well-known formula [14, Exercise 8.9]

Var[Φ(B)] = γdVd(B) + γ2d

∫
Vd(B ∩ (B + x))(ρ2(x)− 1) dx,

(valid for all bounded Borel sets B ⊂ Rd) and assuming that B is convex, it is not too
hard to confirm (2.6) (using polar coordinates) for A = B and a certain positive constant
Cd(B,B). The value of this constant can be found in [9].

Remark 2.1. Assume that Q vanishes on any great subsphere. Then the random mea-
sures Φ1, . . . ,Φd have the following mixing property. Let i ∈ {1, . . . , d}. Then Φi can be
interpreted as a random element in a suitably space M of measures on Rd equipped with
a suitable σ-field [10, 14]. Let A,B be arbitrary measurable subsets of M. Then

lim
‖x‖→∞

P(Φi ∈ A, θxΦi ∈ B) = P(Φi ∈ A)P(Φi ∈ B),

where the random measure θxΦi is defined by θxΦi(C) := Φi(C + x) for Borel sets C ⊂
Rd. This is a straightforward consequence of [18, Theorem 10.5.3] and the fact that
Φi is derived from η in a translation invariant way. In particular Φi is ergodic, that is
P(Φi ∈ A) ∈ {0, 1} for each translation invariant measurable set A ⊂M.

3 A reconstruction algorithm

Let η be a Poisson hyperplane process as in Section 2. Let Φ be the intersection point
process associated with η. (Recall from Section 2 that P(Φ = Φd) = 1, where Φd is given
by (2.5) for m = d.) Let K ⊂ Rd be a non-empty convex and compact set. In this section
we describe an algorithm which reconstructs η ∩ [K] (see Algorithm 3.3 and Fig. 2) by
observing the points of Φ in a (random) bounded domain in the complement of K. In the
next section we shall show that this domain is exponentially small.

We say that n ≥ d points from Rd are in general hyperplane position if any d of them
are affinely independent and span the same hyperplane. The straightforward idea of the
algorithm comes from the following proposition of some independent interest. We have
not been able to find this result in the literature.

Proposition 3.1. Almost surely the following is true. Any distinct points x1, . . . , x2d−1 ∈
Φ in general hyperplane position span a hyperplane H ∈ η.

Proof. We start the proof with an auxiliary observation. Let m ∈ N and let f be a
measurable function on (Hd−1)m taking values in the space of all non-empty closed subsets
of Rd. (We equip this space with the usual Fell–Matheron topology; see [18]). We assert
that

P(there exist distinct H1, . . . , Hm+1 ∈ η such that f(H1, . . . , Hm) ⊂ Hm+1) = 0. (3.1)
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Obviously the indicator function of the event in (3.1) can be bounded by

X :=
∑ 6=

H1,...,Hm+1∈η

1{f(H1, . . . , Hm) ⊂ Hm+1}.

If E[X] = 0, then (3.1) follows. By the multivariate Mecke formula [14, Theorem 4.5],

E[X] =

∫
1{f(H1, . . . , Hm) ⊂ Hm+1}λm+1(d(H1, . . . , Hm+1)).

By Fubini’s theorem it then enough to prove that∫
1{F ⊂ H}λ(dH) = 0 (3.2)

for any non-empty closed set F ⊂ Rd. By monotonicity of integration it is sufficient to
assume that F = {x} for some x ∈ Rd. But then (3.2) directly follows from (2.3) and∫

1{〈x, u〉 = r} dr = 0 for each u ∈ Sd−1.
We now turn to the main part of the proof. Let I1, . . . , I2d−1 ⊂ N be distinct with

|I1| = · · · = |I2d−1| = d. We shall refer to these sets as blocks and to subsets of blocks
as subblocks. For convenience we assume that I1 = [d] := {1, . . . , d}. Assume that
∪2d−1i=1 Ii = [n] for some n ≥ d. Consider (H1, . . . , Hn) ∈ ηn with Hi 6= Hj for i 6= j and
the following properties. For each i ∈ {1, . . . , 2d− 1} we have that ∩j∈IiHj consists of a
single point xi and x1, . . . , x2d−1 are in general hyperplane position. Let H be affine hull
of {x1, . . . , x2d−1}. We will show that almost surely H ∈ {H1, . . . , H2d−1}.

Let us assume on the contrary that H /∈ {H1, . . . , H2d−1}. Then each k ∈ [n] (for
instance k = 1) belongs to at most d− 1 of the blocks. Indeed, by the general hyperplane
assumption we would otherwise have that H1 = H. We will show that almost surely

∩j∈IHj ⊂ H (3.3)

for all subblocks I.
We prove (3.3) by (descending) induction on the cardinality k of I. In the case k = d

(3.3) holds by definition of H. So assume that (3.3) holds for all subblocks of cardinality
k ∈ {2, . . . , d}. We need to show that it holds for each subblock I of cardinality k − 1.
For notational convenience we take I = [k − 1]. By induction hypothesis we have that

H1 ∩ · · · ∩Hk ⊂ H. (3.4)

Set H ′ := H1 ∩ · · · ∩ Hk−1 ∩ H. Since H1 ∩ · · · ∩ Hk−1 6= ∅ we have (almost surely)
that dimH1 ∩ · · · ∩ Hk−1 = (d − (k − 1)). Since dimH = d − 1 we therefore obtain
that dimH ′ ∈ {d − k, d − (k − 1)}. Let us first assume that dimH ′ = d − k. By (3.4)
(and since H1 ∩ · · · ∩ Hk 6= ∅) we have that dimHk ∩ H ′ = d − k. Therefore we obtain
that Hk ∩ H ′ = H ′, that is H ′ ⊂ Hk. Since k is contained in at most d − 1 of the
subblocks, for instance in I1, . . . , Id−1, the blocks Id, . . . , I2d−1 still generate H, that is
H = aff{xd, . . . , x2d−1}. Therefore H ′ is “independent” of Hk, contradicting H ′ ⊂ Hk.
More rigorously we can apply (3.1) to conclude that this case can almost surely not occur.
Let us now assume that dimH ′ = d − (k − 1). Then dimH ′ = dimH1 ∩ · · · ∩Hk−1 and
therefore H ′ = H1 ∩ · · · ∩ Hk−1. This means that H1 ∩ · · · ∩ Hk−1 ⊂ H, as required to
finish the induction.

Using (3.4) for subblocks of size 1, yields that Hk = H for each k ∈ [n]. This
contradiction finishes the proof of the lemma.
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P1

P2

P3

n    = 16 n    = 112 (ii)n    = 112 (i)

P1

P2

P3

Figure 2: Reconstruction algorithm of η ∩ [K]: Given a convex domain K, the algorithm
recursively scans the points in Φ ∩KTn (solid circles). At step n = 16, three hyperplanes
are reconstructed (left). At step n = 112, three polygons P1, P2, P3 are reconstructed
within the outer parallel set KTn (center). Hence, all hyperplanes in η∩ [K] (dashed lines)
can be reconstructed (right).

Remark 3.2. In general it is not possible to reduce the number 2d−1 of points featuring in
Proposition 3.1. To see this, we may consider the case d = 3 and a directional distribution
which is concentrated on {e1, e2, e3,−e1,−e2,−e3}, where {e1, e2, e3} is an orthonormal
system. In that case there exist infinitely many choices of four intersection points in
general hyperplane position whose affine hull is not a hyperplane from η. Indeed, the
hyperplanes tessellate space into cuboids and the four points can be chosen as endpoints
of diametrically oposed edges of any cuboid.

Our algorithm requires some notation. Let

d(x,K) := min{‖y − x‖ : y ∈ Rd}

denote the Euclidean distance between x ∈ Rd and K and let

Kr := {x ∈ Kc : d(x,K) ≤ r} (3.5)

denote the outer parallel set of K at distance r ≥ 0. Note that K0 = ∅. Define random
times Tn, n ≥ 1, inductively by setting

Tn+1 := min{r > Tn : Φ ∩ (Kr \KTn) 6= ∅},

where T0 := 0. We form a (random) set ξn of hyperplanes as follows. A hyperplane H
belongs to ξn if it does not intersect K and if it contains 2d − 1 different points from
Φ ∩KTn in general hyperplane position. By Proposition 3.1 we have almost surely that
ξn ⊂ η. For a hyperplane H with H ∩K = ∅ we let H(K) denote the half-space bounded
by H with K ⊂ H(K).

Algorithm 3.3. The algorithm iterates over the random times Tn, n ≥ 1, (recursively)
scanning the points in Φ ∩KTn . If the algorithm stops at time Tn, then it returns a set
χn of hyperplanes that will be proved to coincide (almost surely) with η ∩ [K]. Stage n
of the algorithm is defined as follows (cf. Fig. 2):
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(i) Determine ξn and check whether there are integers k1, . . . , k2d−1 and distinct Hi,j ∈
ξn (i ∈ [kj], j ∈ [2d− 1]) such that the boundary of

Pj :=

kj⋂
i=1

Hi,j(K)

is contained in KTn for each j ∈ [2d − 1]. If such hyperplanes do not exist, the
algorithm continues with stage n+ 1. If they do exist, the algorithm continues with
step (ii) and stops after it.

(ii) Find all collections of 2d− 1 points in Φ ∩KTn in general hyperplane position such
that the generated hyperplane intersects K. If there are such points, χn is the set
of all those hyperplanes. If there are no such points, then χn := ∅.

Let T := Tn if the algorithm stops at stage n. We set T :=∞ if it never stops. We can
interpret T as the running time of the algorithm in continuous time. In the next section
we will not only show that T is (almost surely) finite but does also have exponential
moments. Here we wish to assure ourselves of the essentially geometric fact that the
algorithm indeed determines η ∩ [K].

Proposition 3.4. On the event {T <∞} we have almost surely that χT = η ∩ [K].

Proof. Assume that the algorithm stops at at stage n and let P1, . . . , P2d−1 be as in step
(i) of the algorithm. These are bounded polytopes which contain K in their interior and
which are made up of different hyperplanes from η. Assume that H ∈ η intersects K.
Then H intersects for each i ∈ [2d−1] the boundary of the polytope Pi, and in fact, at least
one of its edges. Therefore there exist distinct hyperplanes H1, . . . , H(2d−1)(d−1) ∈ η \ {H}
such that

H ∩
⋂
j∈Ii

Hj 6= ∅, i ∈ [2d− 1],

where Ii := {(i − 1)(d − 1) + 1, . . . , i(d − 1)}. Almost surely each of these intersections
consists of only one point xi, say. We assert that these points are in general hyperplane
position. If they are not, then d among those points, x1, . . . , xd say, are affinely dependent.
Then one of those points, xd say, must lie in aff{x1, . . . , xd−1}. Therefore we need to show
that the probability of finding distinct H0, . . . , Hd(d−1) ∈ η such that {xi} := H0∩∩j∈IiHj

is a singleton for each i ∈ [d] and

xd ∈ aff{x1, . . . , xd−1}

is zero. Similarly as in the proof of (3.1) this probability can be bounded by∫∫∫
1{|H ∩ ∩j∈I1Hj| = · · · = |H ∩ ∩j∈IdHj| = 1}

1{H ∩ ∩j∈IdHj ⊂ aff
(
H ∩ ∩j∈I1Hj, . . . , H ∩ ∩j∈Id−1

Hj)}
λ(dH)λd(d−1)(d(H1, . . . , Hd(d−1))).
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Therefore it is enough to show that for λ-a.e. H ∈ Hd−1 and each affine space E ⊂ H of
dimension at most d− 2∫

1{| ∩j∈Id Hj| = 1,∩j∈IdHj ⊂ E}λd−1H (d(H1, . . . , Hd−1)) = 0, (3.6)

where λH is the measure on the space of all affine subspaces of H given by

λH :=

∫
1{H ′ ∩H ∈ ·}λ(dH ′).

For λ-a.e. H, the measure λH is concentrated on the (d− 2)-dimensional subspaces of H
and invariant under translations in H. In fact, λH is the intensity measure of the Poisson
process ηH := {H ′ ∩H : H ′ ∈ η}. Up to a constant multiple,

B 7→
∫

1{B ∩H1 ∩ · · · ∩Hd−1 6= ∅}λd−1H (d(H1, . . . , Hd−1))

is (as a function of the Borel set B ⊂ H) the intensity measure of the intersection process
associated with ηH (see [18, p. 135]) and therefore proportional to Lebesgue measure on
H. (It can also be checked more directly, that this function is a locally finite translation
invariant measure.) Hence (3.6) follows.

Remark 3.5. Assume that that the directional distribution Q is absolutely continuous
with respect to Lebesgue measure on Hd−1. Then the algorithm can be considerably
simplified. In step (i) it is enough two find just two polytopes P1, P2 made up of distinct
hyperplanes in ξn. Any hyperplane H from η that intersects K, intersects the boundary of
the polytope P1 in d affinely independent points from Φ and the same applies to P2 (even
without further assumptions of Q). With some efforts it can be shown that the resulting
2d intersection points are almost surely in general hyperplane position. The forthcoming
Theorem 4.1 remains valid. We do not go into the technical details.

Remark 3.6. The reconstruction algorithm 3.3 is not optimized for computational effi-
ciency. For instance, the algorithm could already be stopped whenever there exists just
one polytope which contains K in its interior but no points of Φ in the relative interior
of its edges. (In this case η ∩ [K] = ∅.) Moreover, it is not necessary that the boundaries
of the polytopes Pj are completely contained in KTn . It would suffice to find polyhedral
sets with sufficiently large parts of their boundaries contained in KTn .

4 Strong rigidity

In this section we shall exploit the algorithm from Section 3 to show that the intersec-
tion processes Φ1, . . . ,Φm associated with a Poisson hyperplane process have very strong
rigidity properties.

We start with giving a few definitions. Let Ψ be a random measure on Rd (for instance
one of the Φ1, . . . ,Φm). For a Borel set B ⊂ Rd we denote by ΨB := Ψ(·∩B) the restriction
of Ψ to B. A mapping Z from Ω into the space of non-empty closed subsets of Rd is called
Ψ-stopping set if {Z ⊂ F} := {ω ∈ Ω : Z(ω) ⊂ F} is for each closed set F ⊂ Rd an
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element of the σ-field σ(ΨF ) generated by ΨF . (In particular Z is then a random closed
set [15].) By ΨZ we understand the restriction of Ψ to Z (that is the random measure
ω 7→ Ψ(ω)Z(ω).) If Z is a Ψ-stopping set, then we say that η ∩ [K] is almost surely
determined by ΨZ , if there exists a measurable mapping f (with suitable domain) such
that η ∩ [K] = f(ΨZ) holds almost surely.

The following result shows that η ∩ [K] is almost surely determined by a Φ-stopping
set Z ⊂ Kc of exponentially small size. Here we quantify the size of a closed set F ⊂ Rd

by the radius R(F ) of the smallest ball centred at the origin and containing F . (If F is
not bounded then we set R(F ) :=∞.)

Theorem 4.1. Let K ⊂ Rd be convex and compact. Then there exists a Φ-stopping set
Z with Z ⊂ Kc and such that η ∩ [K] is almost surely determined by Φ ∩ Z. Moreover,
there exist constants c1, c2 > 0 such that

P(R(Z) > s) ≤ c1e
−c2s, s ≥ 1. (4.1)

Proof. We consider the algorithm from Section 3 with running time T , defined after
Algorithm 3.3. We assert that Z := KT has all desired properties, where K∞ := Kc. The
inclusion Z ⊂ Kc is a direct consequence of the definitions. The stopping set property
can be considered as pretty much obvious. The reader might wish to skip the following
technical argument. Define N as the set of all locally finite subsets of Rd. The algorithm
from Section 3 can be used (in an obvious way) to define a measurable mapping Z̃ from
N (equipped with the standard σ-field) to the space of all closed subsets of Rd such that
Z = Z̃(Φ). We need to show that Z̃ is a stopping set, that is {µ : Z̃(µ) ⊂ F} is for
all closed sets F ⊂ Rd an element of the σ-field generated by the mapping µ 7→ µ ∩ F
from N to N. To prove this we use [1, Proposition A.1]. According to this proposition
it is sufficient to show that Z̃((ψ ∩ Z̃(ψ)) ∪ ϕ) = Z̃(ψ) for all ψ, ϕ ∈ N with ϕ ⊂ Z̃(ψ)c.
But this follows from the definition of the algorithm. Indeed, suppose that ψ ∈ N is a
realization of the intersection process and that the algorithm stops at time t. Restricting
ψ to Kt and then adding a configuration ϕ in the complement of Kt does not change the
running time t.

We show (4.1) by modifying the idea of the proof of Lemma 1 in [17]. Since Q is not
concentrated on a great subsphere there exist linearly independent vectors e1, . . . , ed ∈ Rd

in the support of Q. Since Q is even, the vectors ed+1 := −e1, . . . , e2d := −ed are also in
the support of Q. We can then find a (large) constant b > 0 and (small) pairwise disjoint
closed neighborhoods Ui of ei, i ∈ {1, . . . , 2d}, such that Ud+i = {−u : u ∈ Ui} and each
intersection

P =
2d⋂
i=1

H−(ui, 1)

with ui ∈ Ui, i ∈ {1, . . . , 2d}, is a polytope with R(P ) ≤ b. Here we write, for given
u ∈ Rd and s ∈ R, H−(u, s) := {y ∈ Rd : 〈y, u〉 ≤ s}. Let t ≥ 0. From linearity of the
scalar product we then obtain that

R

( 2d⋂
i=1

H−(ui, ti)

)
≤ b(R(K) + t), (4.2)

10



whenever R(K) ≤ ti ≤ R(K) + t and ui ∈ Ui for i ∈ {1, . . . , 2d}.
We need a straightforward analytic fact. Since the determinant is a continuous function

we can assume that there exists a > 0 such that

| det(u1, . . . , ud)| ≥ a, (u1, . . . , ud) ∈ U1 × · · · × Ud. (4.3)

For i ∈ {1, . . . , d} let ui ∈ Ui ∪ Ud+i and si ∈ R. Then Hu1,s1 ∩ · · · ∩Hud,sd consists of a
single point x (by (4.3) and Ud+i = −Ui), whose Euclidean norm can be bounded as

‖x‖ ≤ b′max{|si| : i = 1, . . . , d}, (4.4)

where b′ > 0 is a constant that depends only on the dimension and the (fixed) sets
U1, . . . , Ud. To see this we note that x (now interpreted as a column vector) is the unique
solution of the linear equation Ax = s, where A is the matrix with rows u1, . . . , ud and
s is the column vector with entries s1, . . . , sd. By (4.3) we have that x = A−1s. It is
well-known that

‖x‖∞ ≤ ‖A−1‖∞‖s‖∞,

where ‖x‖∞ := max{|xi| : i = 1, . . . , d} and ‖A−1‖∞ is the maximum absolute row sum of
A−1. In view of the explicit expression of A−1 in terms of det(A)−1 and the minors of A
and the minimum principle for continuous functions we have that ‖A−1‖∞ is bounded from
above by a positive constant. (Recall that u1, . . . , ud are unit vectors.) Since ‖x‖ ≤ c‖x‖∞
for some c > 0 we obtain (4.4).

For notational simplicity we now assume that K is a ball with radius R centred at the
origin. In fact, in view of the assertion this is no restriction of generality. Consider the
following sets of hyperplanes:

Ai(t) := {H(u, s) : u ∈ Ui, R < s ≤ R + t}, i ∈ [2d].

We assert the event inclusion

2d⋂
i=1

{|η ∩ Ai(t)| ≥ 2d− 1} ⊂ {R(Z) ≤ b′′(R + t)}, P-a.s., (4.5)

where b′′ := max{b, b′} with b′ as in (4.4).
To show (4.5), we assume that |η ∩ Ai(t)| ≥ 2d − 1 for each i ∈ [2d]. Then we can

find distinct hyperplanes Hi,j ∈ η (i ∈ [2d], j ∈ [2d− 1]) not intersecting K such that the
polytopes

Pj :=
2d⋂
i=1

Hi,j(K), j ∈ [2d− 1],

contain K in their interior and satisfy R(Pj) ≤ b(R + t); see (4.2). Next we show that
each Hi,j is in ξn as soon as Tn ≥ b′′(R + t) − R. (Then our algorithm has identified
these hyperplanes by time Tn.) Take H1,1, for instance. Define x1, . . . , x2d−1 ∈ Φ by
{xj} := H1,1 ∩ ∩di=2Hi,j. It can then be shown as in the proof of Proposition 3.4 that
these points are in general hyperplane position. Therefore we obtain from (4.4) and the
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definition of A1(t) that ‖x1‖ ≤ b′(R+ t) and in fact ‖xj‖ ≤ b′(R+ t) for each j ∈ [2d− 1].
Therefore Hi,j ∈ ξn, provided that Tn ≥ b′(R + t) − R. We have already seen that
R(Pj) ≤ b(R + t), so that the boundary of Pj is contained in KTn if Tn ≥ b(R + t) − R.
(Note that KTn is a spherical shell with outer radius R + Tn centred at the origin.)
Altogether we obtain that T ≤ b′′(R + t) − R and hence R(Z) = R(KT ) ≤ b′′(R + t),
proving (4.5).

Having established (4.5) we next note that

P(R(Z) > b′′(R + t)) ≤ P
( 2d⋃
i=1

{|η ∩ Ai(t)| ≤ 2d− 2}
)

≤
2d∑
i=1

P(|η ∩ Ai(t)| ≤ 2d− 2)

=
2d∑
i=1

exp[−λ(Ai(t))]
2d−2∑
j=0

λ(Ai(t))
j

j!
,

where we have used the defining properties of a Poisson process to obtain the final equality.
By (2.3) we have that

λ(Ai(t)) = γtQ(Ui). (4.6)

Setting a := min{Q(Ui) : i ∈ [2d]} and using that Q(Ui) ≤ 1 for each i ∈ [2d], we obtain
that

P(R(Z) > b(R + t)) ≤ 2de−γat
2d−2∑
j=0

γj

j!
tj.

This implies (4.1) for suitably chosen c1, c2.

Remark 4.2. The stopping set Z in Theorem 4.1 depends measurably on Φ ∩ Kc (is
a measurable function of Φ ∩ Kc). This follows from the definition of the algorithm,
but also from the following argument, which applies to general stopping sets Z with the
property Z ⊂ Kc. By standard properties of random closed sets it suffices to check for
each compact F ⊂ Rd that {Z ∩ F = ∅} ∈ σ(η ∩ Kc). Since Z ⊂ Kc we have that
{Z ∩ F = ∅} = {Z ∩ (F ∪ K) = ∅}. Since F ∪ K is compact, there is a decreasing
sequence (Un)n≥1 of open sets with intersection F ∪K and such that

{Z ∩ (F ∪K) = ∅} =
∞⋃
n=1

{Z ∩ Un = ∅} =
∞⋃
n=1

{Z ⊂ U c
n}.

Since Z is a Φ-stopping set we have that the above right-hand side is contained in
∪∞n=1σ(ΦUc

n
) ⊂ σ(ΦKc), as asserted.

Theorem 4.1 implies the announced strong rigidity properties of the intersection pro-
cesses.

Theorem 4.3. Let m ∈ {1, . . . , d} and let B ⊂ Rd be a bounded Borel set. Then there
exists a Φm-stopping set Z with Z ⊂ Bc and such that (Φm)B is almost surely determined
by (Φm)Z. Moreover, there exist constants c1, c2 > 0 such that (4.1) holds.
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Proof. Choose a convex and compact set K ⊂ Rd with B ⊂ K. Clearly, if the assertion
holds in the case B = K, then we obtain it for all B ⊂ K. Hence we can assume
that B = K. Let Z be as in Theorem 4.1. Since ΦF is for each closed F ⊂ Rd a
measurable function of (Φm)F it follows that Z is a Φm-stopping set. Moreover, (Φm)K is
a (measurable) function of η ∩ [K]. Hence Theorem 4.1 implies the assertions.

The rigidity property in Theorem 4.3 is considerably stronger than the strong rigidity
studied in [7]. The random measure (Φm)B is not only determined by (Φm)Bc , but already
by (Φm)Z for an exponentially small stopping set Z ⊂ Bc.

5 Hyperfluctuating Cox processes and thinnings

The strong rigidity property of the random measures Φ1, . . . ,Φm can easily be destroyed
by additional randomization. For example we may consider, for m ∈ {1, . . . , d}, a Cox
process Ψm directed by Φm [14, Chapter 13]. This means that the conditional distribution
of Ψm given Φm is that of a Poisson process with intensity measure Φm. For m = d
this point process can be interpreted as a multiset (or a random measure). Each point
of Φm gets (independently of the other points) a random multiplicity having a Poisson
distribution of mean 1. Let B ⊂ Rd be a bounded Borel set. Then the well-known
conditional variance formula (together with the stationarity of Φm) implies that

Var[Ψm(B)] = γmVd(B) + Var[Φm(B)],

where γm is the intensity of Φm; see [14, Proposition 13.6]. By (2.6), Ψm(B) has the
same variance asymptotics as Φm(B). In particular, Ψm is (for d ≥ 2) hyperfluctuating.
However, Ψm is not rigid. For example, given a Borel set B with positive volume, Ψm(B)
is not determined by the restriction of Ψm to the complement of B.

In the case of the intersection point process Φ there is an even simpler way of ran-
domizing, namely to form a p-thinning Φp of Φ for some p ∈ (0, 1). Formally, given Φ, the
points of Φ are taken independently of each other as points of Φp with probability p [14,
Section 5.3]. This point process is not rigid. A simple calculation (using the conditional
variance formula for instance) shows that

Var[Φp(B)] = p2Var[Φ(B)] + p(1− p)E[Φ(B)],

so that Φp inherits the variance asymptotics from Φ. It also not hard to see that the pair
correlation function of Φp is the same as that of Φ and hence given by the slowly decaying
function (2.8).

6 Concluding remarks

We have shown that the intersection point process Φ associated with a stationary Poisson
hyperplane process is rigid in a very strong sense. This holds for any directional distri-
bution which is not concentrated on a great subsphere. (Our arguments suggest that this
might be true for more general stationary and mixing hyperplane processes with absolute
continuous factorial moment measures.) On the other hand, Φ is hyperfluctating. Hence
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hyperuniformity is not necessary for rigidity as (weakly) conjectured in [6]. However, we
completely agree with the authors of [6] that the precise relationships between rigidity
and hyperuniformity constitute an interesting intriguing problem. We believe in the exis-
tence of generic point process assumptions that need to be added to rigidity to conclude
hyperuniformity. Preferably these assumptions should be as minimal as possible.
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