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The entirely coupled region of

supercritical contact processes

Achillefs Tzioufas∗

Abstract

We consider translation-invariant, finite range, supercritical contact pro-
cesses. We show the existence of unbounded space-time cones within which
the descendancy of the process from full occupancy may with positive prob-
ability be identical to that of the process from the single site at its apex.
The proof comprises an argument that leans upon refinements of a successful
coupling among these two processes, and is valid in d-dimensions.

1. Introduction. The contact process is an extensively studied class of spa-
tial Markov process introduced by Harris [H74] in 1974; contact distributions were
considered first in Mollison [M72], for later developments in this regard, see also
Mollison [M77]. The process can be viewed as a simple model for spatial growth,
or the spread of an infection in a spatially structured population. In this note we
will adopt the perspective and associated terminology stemming from the former
interpretation. We have opted to work our proofs in detail in one (spatial) dimen-
sion, since the d-dimensional extension is directly analogous and is omitted as such.
We consider the following class of translation-invariant and finite range contact pro-
cesses (ξt : t ≥ 0). Regarding sites in ξt as occupied and others as vacant, the process
with parameters µ = (µi; i = −M, . . . ,M, i 6= 0) evolves according to the following
local prescription:
(i) Particles die at rate 1.
(ii) A particle at x gives birth at rate µy−x at y, |x− y| ≤ M , y 6= x.
(iii) There is no more than one particle per site1.

Note that equivalently, the rate at which births occur can be any linear combination
of the parameter rates, and that deaths may occur at any constant rate. For back-
ground regarding this process we refer the reader to Liggett [L85, L99] and Durrett
[D95].

Whenever {ξt 6= ∅ ∀t} occurs, we say that the process survives, or that survival
occurs; whenever {ξt 6= ∅ ∀t}c occurs we say that the process dies out. We say that
the process is supercritical whenever µ is such that the probability of survival from a
finite sets is strictly positive. Note that, although this is not the classical definition
of supercriticality, which is, for instance in the uniform, symmetric interaction case,
i.e. µ := µi for all i, that µ > µc := inf{µ : P(ξt 6= ∅ ∀t) > 0}, the two definitions

∗University

1This may be thought of either as that births at occupied sites are disallowed, or that those
births take place, but result in merging and coalescence with the already existent, at the site that
birth is given, particle; the latter conceptualizing will be in force in the sequel.

1

http://arxiv.org/abs/1311.2958v5


are equivalent for it is known that the process for the parameters on the critical
surface dies out with probability one, cf. Bezuidenhout and Grimmett [BG90] and
Bezuidenhout and Gray [BG94].

Let ξOt be the process started from {0} and further let rt = sup ξOt and lt = inf ξOt
be respectively the rightmost and leftmost sites of ξOt . In addition, let α (resp. β)
be the asymptotic velocity2 of rt (resp. lt), i.e. rt/t → α and lt/t → β, as t → ∞,
a.s. on survival. Furthermore, let It = [(β + ǫ)t, (α − ǫ)t], t ∈ R+, where ǫ > 0 is
such that β + ǫ < α− ǫ. We can now state the result.

Theorem 1. Let ξOt and ξZt be the supercritical contact process started from {0}
and Z respectively. We have that: ξZt ∩ It = ξOt ∩ It, for all t, with strictly positive

probability.

Note that no loss of generality is incurred by the proviso on the asymptotic
velocities in Theorem 1 that is known to be equivalent to supercriticality of the
class of processes considered; cf. with Theorem 1, § 3, Durrett and Schonmann
[DS87]. The proof goes through refining the argument used in showing that there
is a positive chance for two contact processes started from all sites and from any
finite set to agree on that set for all times3, employed in the proofs of the central
limit theorem for the endmost particles of the process; cf. with Chpt. 4, Remark 2,
Tzioufas [T11]. The proof relies on a direct probabilistic argument and does not
rely on renormalization arguments other than those necessitated in the proof of the
so-called lower-inclusion part of the asymptotic shape theorem (see the explanatory
comments below for term usage).

The first formulation of a version of Theorem 1 in the literature is the so-called
”formation of the descendancy barriers”; for precise statements and proofs cf. with
§ 2.2, p. 913 ff., Andjel et.al. [AMPV10]. The special case of the analog of Theorem
1 for the so-called basic case (i.e. nearest neighbors and symmetric interaction) in
d-dimensions may also be derived by a simple Borel-Cantelli lemma application
through Theorem 1.1 of Garet and Marchand [GM14], which offers large deviations
estimates corresponding to the extension of the shape theorem for this process in
a random environment achieved in Garet and Marchand [GM12] by building upon
various large deviations estimates associated to the original shape theorem.

Theorem 1 will be derived as a consequence of Proposition 2 given below. We
now comment on the intimate relation among them for the (supercritical) process
in dimension one and under the simplifying assumption of basic interaction. The
asymptotic shape theorem in this case may be shown as a simple corollary of the
almost sure existence of a strictly positive asymptotic velocity of the rightmost
site. To see this recall the well-known fact (cf. Durrett [D80]) that, by simple two-
dimensional path intersection properties of the graphical representation (cf. Harris

2a consequence of Liggett’s [L85] version of Kingman’s subadditive theorem [K68], originally
derived in Durrett [D80].

3Note however that this result relies on a different assumption, namely that the two processes
can be coupled to agree on finite sets for all sufficiently large times with probability one on the
event that the finite process survives; this condition cannot be in general dropped for this to hold.
To see this consider for instance the one-sided interaction process from finite sets (i.e. µi 6= 0 for
i ≥ 1) for which the finite dimensional distributions converge to the Dirac measure on the empty
set: that is, in the supercritical case, despite that the cardinality of particles tends to infinity when
the process survives, particles wander off to infinity.
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[H78]), the process started from a singleton and that started from all sites are iden-
tical amongst the endmost sites of the former, provided that its descendancy is not
empty. In the light of this coupling, the following statement that we refer to as
the lower-inclusion part of the asymptotic shape theorem is then immediate: the
descendancy of the process from the single site at the origin and from full occupancy
are identical within any linearly growing at rate smaller than the asymptotic veloci-
ties interval, for all sufficiently large times, almost surely provided survival occurs4.
In view of these comments, we may now phrase the contents of Theorem 1 as follows.
Provided that the random coupling time associated to the lower inclusion part of the
asymptotic shape theorem is almost surely finite, the corresponding coupling event

may commence from time zero with positive probability.

2. Preliminaries. The following result is derived in Durrett and Schonmann
[DS87] by means of their extension of the renormalized construction of Durrett and
Griffeath [DG83] to translation invariant, finite range, discrete time one-dimensional
contact processes (another outline of these arguments may also be found in § 4
below). Note that we shall use coordinatewise notation equally well when convenient,
that is we write ξ(·) = 1(· ∈ ξ), where 1(·) denotes the indicator function.

Proposition 2 ((2), §6 in [DS87]). Grant assumptions in Theorem 1. Let Rt =
sups≤t rs and Lt = infs≤t ls. Then {x : ξOt (x) = ξZt (x) and Lt ≤ x ≤ Rt} ⊇ It ∩ Z,

for all t sufficiently large, almost surely on {ξOt 6= ∅, for all t}.

3. Proof of Theorem 1. Familiarity with the construction of (ξAt : A ⊂ Z) by
a graphical representation, a realization of which will be denoted typically by ω,
and standard associated terminology is assumed, see for example the introductory
sections in [D95, L99]. We will use the notation: for all ω ∈ E1, ω ∈ E2 a.e. to
denote that P({ω : ω ∈ E1, ω 6∈ E2}) = 0 (where a.e. stands for almost everywhere
(on E1)).

Let An = {ξZt ∩ It = ξOt ∩ It, for all t ≥ n}, for integer n ≥ 0. Proposition 2
implies that for all ω ∈ {ξOt 6= ∅, for all t}, ω ∈ {ξOt ∩It = ξZt ∩It, for all t ≥ t0}, for
some t0, a.e.. Hence P (∪n≥0An) equals P(ξ

O
t 6= ∅, for all t) which is positive as the

process is supercritical, which implies, say, by contradiction, that there is n0 finite
such that P(An0

) > 0.
We show that this last conclusion implies that, indeed, P(A0) > 0. Let A′

n0
be

such that ω′ ∈ A′
n0

if and only if there exists ω ∈ An0
such that ω and ω′ are identical

realizations except perhaps from any δ-symbols (death marks) in Bn0
= V × [0, n0],

where V = {−vl, . . . , vr} and vr, vl are the smallest integer greater than (α − ǫ)n0

and than min{0, (β+ ǫ)n0} respectively. Let Ãn = {ξZt ∩ It = ξVt ∩ It, for all t ≥ n},
and let F be the event that no δ-symbols appear in Bn0

. We have that

P(A′
n0

∩ F ) = P(A′
n0
)P(F )

≥ P(An0
)e−(2|V |+1)n0 > 0

and that Ã0 ⊇ A′
n0
∩F , where to see that the last claim is true note that if ω and ω′

are identical except that ω′ does not contain any δ-symbols in Bn0
that possibly exist

4the upper-inclusion counterpart being that the descendants of former process are contained
within any linearly growing at rate larger than the asymptotic velocities interval, for all sufficiently
large times, almost surely provided survival occurs.
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in ω, then ω ∈ An0
implies that5 ω′ ∈ Ãn0

, and indeed ω′ ∈ Ã0. Hence P(Ã0) > 0
and from that the result follows by the Markov property for ξOt at an appropriately
chosen sufficiently small time.

4. Proof outline for Proposition 2. We follow arguments from § 5, 6 in [DS87]
that regard the discrete-time version of the process, giving some additional remarks
and referring to the original work for more details whenever necessary. Consider
the graphical representation for a supercritical contact process which satisfies the
assumptions given in Theorem 1. We will argue that for any ǫ > 0 there exist
C, γ ∈ (0,∞) such that

P(ξO2t(x) 6= ξZ2t(x), ξ
O
2t 6= ∅) ≤ Ce−γt (1)

for all x ∈ I2t and t ≥ 0. To see that this suffices, note that the result for integer
times then follows from (1) and the 1st Borel-Cantelli lemma immediately, since

∑

n≥1

P
(

⋃

x∈I2n

ξO2n(x) 6= ξZ2n(x)| ξ
O
t 6= ∅, for all t

)

< ∞,

where we first used that P(ξOt 6= ∅∩{ξOt 6= ∅, for all t}c) is exponentially bounded in
t, a result proved by emulating a standard version of a restart argument, see Theorem
2.30 (a) in [L99]. Whereas, obtaining the result for all t then follows elementarily
by using a ”filling in” argument, emulating for instance (4.2.2) in Chpt. 4 in [T11].

To show (1) one considers the dual process (ξ̃xs ; 0 ≤ s < t) defined on the same
graphical representation by reversal of arrows over the time interval (t, 2t]. Note that
this process is independent of (ξOs , 0 ≤ s ≤ t) by independence of the Poisson process
in disjoint parts of the representation and that its distribution w.r.t. the space-
time point x × t is equal to a copy of the process w.r.t. the origin and parameters
µi = µ−i. (Hence, observe that in particular, if l̃s = inf{y : y ∈ ξ̃xs }, (l̃s − x) is equal
in distribution to (−rs), and similarly for sup{y : y ∈ ξ̃xs }). Then, (1) follows by
showing that, there exist C, γ ∈ (0,∞), such that

P(ξOt ∩ ξ̃xt = ∅, ξOt 6= ∅, ξ̃xt 6= ∅) ≤ Ce−γt, (2)

for all x ∈ I2t, where, to see that this suffices, note that {ξOt ∩ ξ̃xt 6= ∅, ξOt 6= ∅, ξ̃xt 6= ∅}
is contained in {ξO2t(x) = ξZ2t(x) = 1, ξO2t 6= ∅}.

The proof of (2) then goes through imbedding the rescaled coupled with oriented
site percolation construction in order to deduce this from the corresponding result
for the last process with density arbitrarily close to 1. To show this first, let Kn

be independent retaining probability pS < 1 oriented site percolation on the usual

lattice
−→
L with set of sites the space-time points (y, n) ∈ Z

2 such that y + n is even
and n ≥ 0 obtained by adding a bond from each such point (y, n) to (y − 1, n + 1)
and to (y + 1, n + 1). Further, let K̃n be an independent copy of Kn and let also
Xn = {x1, . . . , x[cn]} and X̃n = {x̃1, . . . , x̃[cn]} be collections of points at level n with

5To infer this, consider sampling from A′
n0

∩ F and note that adjusting the death marks by
mapping on F results in enlarging ξOt and further that, as paths outside of the box Bn0

are left

intact by such adjustments, particles of ξ
Z\V
t cannot go through ξOt ∩ It × t, for all t ∈ [n0,∞), via

trajectories not intersecting with the box (property inherited from An0
). Further, asBn0

⊂ (ξVt ×t :
t ≤ n0), those particles cannot go through ξVt ∩It×t, for all t ∈ [n0,∞), via paths intersecting with
the box, because they are assimilated (by merging and coalescence) to ξVt . Finally, they cannot go
through ξVt ∩ It × t, for t ∈ [0, n0), simply because by definition of V , It × t ⊂ Bn0

.
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spatial coordinate y ≤ an, a < 1 , c > 0. Furthermore, let Ek denote the event that
both xk ∈ Kn and x̃k ∈ K̃n, and also let (E ′

k) denote an independent thinning of
probability p′ > 0 of the (Ek), k = 1, . . . [cn]. We can now state the following easy
consequence of Proposition 3 in [TF] we need to employ. If pS is sufficiently close
to 1 then, for any c > 0, there are q < 1 and C < ∞ such that

P

(

∩
[cn]
k=1Ē

′
k, {Kn 6= ∅, K̃n 6= ∅}

)

≤ Cqn, (3)

for any Xn, X̃n, and where Ē ′
k denotes the complement of E ′

k.
Assuming that the comparison of (ξOs , 0 ≤ s < t) with (Kn) takes effect (suc-

cessful embedding) by time 1, then the renormalized sites spread across the entire
interval InT , where n is such that nT < t−1 < (n+1)T and T is the corresponding
renormalized time constant. Hence, if the comparison of (ξ̃xs , 0 ≤ s < t) with (K̃n)
also takes effect after time 1, we have that, for any x, there is a c = c(α, β) > 0 such
that [ct] renormalized sites of the two processes spatially overlap (to check this, take
the observation following the definition ξ̃xs into account and note that the rightmost
(resp. leftmost) renormalized sites in a successful construction advance with asymp-
totic velocity α− ǫ (resp. β + ǫ)). We then derive (2) from (3) by simply pairing up
such spatially overlapping sites and choosing p′ > 0 there to be the probability of
joining pairs by a path which is spatially constrained within the span of paired sites.
For this we use the independence of observing a joining among distinct pairs, which
is due to the said constrain and independence of events measurable with respect to
disjoint parts of the graphical representation. Finally, to work around the difficulty
arising from an arbitrary starting point of the successful embeddings, one employs
a ”restart” technique that incorporates some basic geometrical considerations, see
e.g. Proposition 2.8 in [T11]. Following the arguments there, this difficulty may be
overcome by showing that, outside of an event of exponentially small probability in
t, one is reduced to working on the event for which the said conclusion regarding the
order of spatially overlapping renormalized sites for the two processes again holds,
and the last argument applies again to finish the proof.
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