

DESY behiilt sich aile Rechte fiir den Fall der Schutzrechtserteilung und fiir die wirtschaftliche
Verwertung der in diesem Bericht enthaltenen lnformationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in
case of filing application for or grant of patents.

To be sure that your preprints are promptly included in the
HIGH ENERGY PHYSICS INDEX,

send them to the following (if possible by air mail):

DESY
Bibliothek
Notkestrasse 85
D-2000 Hamburg 52
Germany

DESY 91-046
May 1991

ISSN 0418-9833

General Asymmetric Neural Networks and
Structure Design by Genetic Algorithms

Stefan Bornholdt
Deutsches Elektronen-Synchrotron DESY

Notkestr.85, 2000 Hamburg 52, FRG

Dirk Graudenz1

Institut fiir Theoretische Physik, Lehrstuhl E
RWTJI Aachen, 5100 Aachen, FRG

April 29, 1991

1 Supported by Bundesministerium ftir Forschung und Technologie under con­

tract number 05 5AC 91P.

Abstract

A learning algorithm for neural networks based on genetic algorithms is

proposed. The concept leads in a natural way to a model for the expla­

nation of inherited behavior. Explicitly we study a simplified model for a

brain with sensory and motor neurons. We use a general asymmetric net­

work whose structure is solely determined by an evolutionary process. This

system is simulated numerically. U turns out that the network obtained by

the algorithm reaches a stable state after a small number of sweeps. Some

results illustrating the learning capabilities are presented.

1 Introduction

Recently, there has been a lot of interest in the fields of neural networks.

In the future, these devices are expected to solve problems that could not

be dealt with by conventional von Neumann computers, such as pattern

recognition or associative memory problems, which call for highly parallel

and error tolerable machines.

Neural networks are basically simplified models of brains. They consist

of a number of small computational units imitating neurons and couplings

or "synapses" between them. Several architectures specifying these models

have been proposed in the past. Among them are the Hopfield model [1]

which is closely related to the Ising spin model and different types of mul­

tilayer networks [2]. On the cellular level it is rather easy to build a model

that imitates a biological neuron and its connection to a neighbor neuron.

And indeed the present models do a good job in performing these so-called

local learning rules, like the simple Hebb rule [3] or more sophisticated

concepts with couplings that are asymmetric or depend on param.eters like

time or neural activity [4,5].

The problem in building a neural network is not so much to define

the local learning rule, but to find out how to arrange the neurons in the

net and how to choose their couplings in order to obtain a desired learn­

ing behavior. We refer to this latter set. of instructions as global learning

rules. This can be illustrated with the Hopfield model, a fully connected

neural net using the local learning rule proposed by Hebb. This ruie as­

sumes that. correlations between the states of "two neurons determine the

coupling between them. Without specifying any global learning recipe, this

net already performs like a sin1ple associative memory. It can be improved

-cosiderably if the couplings are computed by means Of the Moore-Penrose

pseudoinverse, a global learning rule for the Hopfield network that. stores

patterns as states of minimal energy [6). For multi-layer networks error

back-propagation [7 ,8,9] is a powerful tool that is well adapted to this spe­

cific network type.

However, it. is hard to derive these global conc-epts frmn biological obser­

vations. The multi-layer structure of networks may well be n1odeled after

some regions of the cortex but already the back-calculation of couplings

appears to be unnatural. Also the simple observation that brains do not

1

---"----5-..--..-_,-,__ _____ r_, -~--~-':-~~ r -cccc-~ .c~--':' --~ ~-----:;;:-----':---
- ,.._____,_..._ ___ ~

entirely consist of layer structures indicates that this may not be the ujti­

mate architecture for any kind of computational problems. The question

is whether there is a general principle that can be used for these purposes

and that is not. tied to a certain network type.

In nature the brain has evolved by trial and error, and it is widely

believed that the coarse structure of the brain is determined genetically.

Also simple behavioral patterns that are not learned during the lifetime of

an individual are determined this way. Genetic algorithms that simulate

the process of evolution are capable of solving problenis whose complexity

does not allow for a direct solution [10].

There have been attempts to apply genetic algorithms to neural net­

works [11]. However, they still used a predefined architecture of the net­

work, like a two layer feed forward type, and used the genetic algorithm

in order to alter the couplings in the fixed neural net. ·The new concept

in the present approach is the application of evolutionary methods to the

structure of neural networks itself. The structure of the neural net will be

determined by the algorithm and no global learning rule has to be specified

for a given problem, except the parameters of the genetic algorithm.

In this paper we propose the application of genetic algorithms to the

problem oflearning algorithms for neural networks. In section 2 we describe

a very simple model that we use to demonstrate our ideas. In section 3 the

genetic algorithm is described that we used to train our toy model network.

Numerical simulations are presented in section 4. In section 5- we summarize

our results and propose possible extensions of our work.

2 The Model

This section will specify the neural network model that is used in our sim­

ulations. Section 2.1 gives a brief review of presently used network models

and serves as a motivation for our specific model which is described in

section 2.2.

2

-"·--,.-- ·----- -----

2.1 Neural Network Architectures

Let us first have a look at the smallest unit of a neural net, a neuron

i with its couplings to other neurons. A neuron in the state Sj sends

a signal with strength JijSj to neuron i, where Jij denotes the coupling

between neuron i and neuron j. Summing all incoming signals at neuron

i leads to the so-called membrane potential m; of neuron i. This potential

determines the new state of neuron i, in the simplest case the new state is

just defined as s;ew = sgn(m1). For binary neurons with states Si = ±1

which are fully connected by symmetric couplings J;; = J;; this is called

a Hopfield-type neural network [1]. Such a simple net. of model neurons

stabilizes itself via the ruutual couplings towards local minima of a global

energy function of the system. By cleverly choosing the coupling strengths

between the neurons, one can store binary patterns in the system, even

more than one at a time, each pattern corresponding to a local minimurn

in the overall energy function. If the system is put close to a stored pattern

then its dynamics will recover the complete stored pattern. This is applied

to pattern recognition with great success.

However, the imn1ediate problem that arises is how to choose the synap­

tic couplings in order to obtain this dynamic. behavior. One sitnple prescrip­

tion that works surprisingly well has its origin in a work of neurophysiol­

ogist Donald Hebb [3]. According to this rule, a synaptic connection that

is very active will grow in strength, whereas synapses that are less active

become weaker. Hebb's rule allows to store sets of different patterns at the

same time in a single neural net and works well in pattern recognition and

for associative memory purposes. Indeed it represents a simplified model

for memory in biological brains. It is defined on the local level of single

synapses and is biologically motivated. Being the simplest of all learning

rules it is not nec.essarily the best of all, and indeed it serves as a basis

for a number of more advanced rules. One popular way of irnproving the

storage capacity and the separability of situilar patterns is to calculate the

synaptic couplings via t.he so-called pseudoinverse rnethod [12]. However,

one has to pay the prie-e that the learnlng rule is not locally defined any­

m.ore, but. calculated by some global technique "fron1 the outside" instead.

At this point one leaves the terrain of iinnlediate biologic.al motivation for

the learning concept.

3

The second task of the brain besides memory is of course information

processing of various kinds. The Hopfield type networks perform rather

poorly in this d01nain. Nets with distinct. layers of neurons are more suited

to solve these problems. The information to be processed enters the net­

work through an input layer of neurons which influences an output layer in

a way that is given by the couplings inbetween the neurons. In these sys­

tetus, the synapses are in general unidirectional. There may be additional

layers of neurons between input and output layer where the information

runs through and is being processed. The unidirectional or feed-forward

networks of this type are usually called perceptrons [2,13]. It turns out

that a two layered perceptron fails to reproduce even such a basic oper­

ation like the logical exclusive-or function and one needs to introduce at

least. one intermediate or hidden layer of neurons to overcome this problem.

Again the tnain task in building such a network is to choose the synaptic

couplings in the right way, and once there are more than two layers of

neurons, a local prescription like the Hebb rule won't do. The most suc­

cessful method to train these networks is known as error back-propagation

[7 ,8,9]. The error of the network output is used to calculate corrections

to the synaptic c.ouplings and the network is improved in subsequent iter­

ative steps. This works very well in numerous applications. However, no

sucl1 mechanisms have been found in biological systems and one may ask

whether there are any basic biological principles that could be used instead.

Our present approach is to train a neural network using a genetic algorithm

without specifying any details about the "hidden" architecture. Of course

this is not the way our brain learns during its lifetime, but it is plausible

that at least those neural structures that are passed on genetically have

been developed on an evolutionary tiruescale. This includes e.g. "hard

wired" neural circuitry for heart rhythn1 or breathing, as well as behavioral

patterns that. are genetically determined.

2.2 The Model for a Genetically Altered Neural Net

The neural network that will be processed by a genetic algorithn1 was chosen

to be as general as possible and to not constrain the evolutionary pr·ocess

by any intrinsic structures or paratnet.ers. The sin1plest. neural net that

fulfills these require1nent consists of three regions: a set of sensory neurons

4

INPUT - sensory r-----1
neurons

cortex
neurons

Figure 1: Basic architecture

motor
neurons

OUTPUT

and one of motor neurons that process input and output information, and

an arbitrary set of neurons as a central "cortex" region. The synaptic con­

nections between sensory neurons and c.ortex neurons are of feed forward

type, as are those between cortex neurons and motor neurons. However,

in the cortex region we allow arbitrary connections between the neurons.

Of course, in a more general approach, one c.ould also introduce dired cou­

plings of feed forward type between input and output neurons. This would

correspond to an additional two-layer perceptron type network in the sys­

tem, or, from a tnore biological point of view, wouid aiiow reflexes between

sensory and motor neurons, without any further processing of information

through intermediate neurons. Since this is not our main interest at the

moment, we will concentrate on the pure cortex version as described above.

Hardly anything else has to be said about the tnOdel, since we want to

leave it to the genetic algorithm to generate the structure of the neural net.

The further features are kept as general as possible. We allow asymmetric

couplings inbetween the neurons of the cortex, and the number of synapses

to be diluted. This does not mean that the neural net that eventually

e1nerges the genetic algorithm has to be asymmetric or diluted. However,

this is the most general concept and the algorithn1 will be free to choose

any degree of asyn1met.ry or dilution. Biological brains usually are highly

5

diluted and their synapses between two neurons are mostly asymmet~ic.

This is a strong motivation to allow for these features in our tnodel, as Well.

A problem that one might expect to encounter in an asymmetric network

is their instability [14,15]. They do not necessarily reach a stable state

of lowest energy after a finite number of update cycles, but may enter a

periodic cycle of different states. VVithin a genetic algorithm, however, they

hardly cause any serious problen1s since they sitnply do not survive. To

ensure this, the update will be asynchronous. Then the possible periodic

cydes vary and it becon1es very unlikely that a nonStable asynchronous

network remains undetected over a longer period of time until, eventually,

it will be singled out by the genetic algorithm.

As for the type of neuron that is used in the model, one is free to choose

the one that is suited best for a given problem. In our simulations teaching

a Boolean function to a neural network, we took binary, discrete neurons for

convenience. However, there is no strong biological motivation for strictly

binary neurons, since biological neurons, once they fire, still show ?Orne sort

of variation of their output through the firing frequency. Since this makes

a difference also from the point of view of the genetic algorithm, we will

further comment on this point below.

3 The Program

In this section we describe the program that we used for the si1nulations.

In section 3.1 the basic principles of genetic algorithms are reviewed: In

3.2 we describe how the structure for a model brain is implemented in our

progratn. Finally, in 3.3 it is described how mutation and selection act in

our example.

3.1 The Genetic Algorithm

Genetic algorithms are capable of solving diffic.ult optimization problems

that do not allow for a straightforward solution [10]. Frequently, the results

of these algorithn1s are not the optimal solution, but only an approximation.

This can be tolerated if the approximation is not too bad. Genetic. algo­

rithms are 1nodelled after the proeess of evolution in nature [16,1-7L which

6

-.r' --"·--" ___ }"<_ - -~--- _ _,--·. -~--- _r~- ''"""- ~-'"--·~ "'-----"'---"'·---"'·--

Initialize the
gene pool

Calculate the fittest
of the individuals

Is the result
satisfactory?

reproduce the fittest,
remove the least fittest

Figure 2: Structure of genetic algorithms

is, loosely speaking, the interplay of sn1all mutations and selection, result­

ing in a stepwise optimization of organisms. The algorithms apply these

principles to technical problen1s. The main structure of genetic algorithms

ist depicted in fig. 3.1 [10].

Individual "organisms" are described by a set of genes which consti­

tutes the genome. The set of all genon1es of a population constitutes the

gene pool. The genome of an individual determines its phenotype, i.e. all

properties of the organistn having c.onsequences in the rea} world [18]. In

order to solve a given problem via genetic algorithms, one is interested in

7

the phenotype of the optimal individuals for a given environment.

A genetic algorithm works as follows. First, the gene pool is initialiZ;d,

that means, all genes are set to their starting values. This could be a

random choice in the allowed parameter range. Then, in every evolutionary

step, the fitness of each individual is calculated. If there is an individual

that solves the problem, the algorithm stops. If this is not the case, a

selection step follows. The fittest individuals are reproduced, the least

fittest are removed from the population, and the others simply "survive".

Then, in the next. step, mutations are performed, th8.t is, the genome of

each individual is slightly perturbed with a certain probability. Then the

next evolutionary step follows. It. is clear that such an algorithm can be

in1ple1nent.ed on a computer in a very general way, and we think it is not

necessary to describe this part of the program in detail.

3.2 Implementation of the Network Model

Now we describe the implementation of the model that has been described

in section 2. The network consists of three parts: the input neurons, the

"cortex", and the output neurons. Input and output neurons are repre­

sented by an array of variables, whereas the cortex neurons are organized

as linked lists, a dynamical structure more smtable than static arrays. This

keeps memory requirements low. Each node of these linked lists represents

a "synapse" that is connected to another neuron. A synapse is then spec.:

ified by the neuron to which it is connected (by a pointer), and by the

coupling strength (a real number). It is obvious that for diluted networks a

lot of memory can be saved (in contrast to a matrix of couplings 1;;). How­

ever, one has to pay a price for this, since a certain amount of computer

code is needed for the organization of this more complicated data structure.

A benefit is that this dynamical struc.ture is smtable for modification by

genetic algorithms, this will be discussed in detail later.

The dynanrical evolution of the network is performed bjr an asynchronous

algorithn1. The n1odel neurons can be in states Si E {±1}. In each step,

an arbitrary neuron i is chosen (at timet). Then the membrane potential

m.i is calculated,
mt = LJ.;jSj,

j

8

(1)

and the new state at time t + 1 is defined by

s; := sgn(m,). (2)

This corresponds to the dynamics at temperature T = 0 of the Hamiltonian

1
H = --" J··S·S 2~t)fJ" ,, (3)

Since our goal is to train the network to learn binary functions, we have to

test whether the network has learned a specified function. If the function

has n input bits and r output bits, we then have to test 211 possibilities,

resulting in zn · r bits that can be right or wrong. We apply each of the

2n possibilities to the inputs of the network and set the state of all other

neurons to -1, in order to have a well defined initial state. Then the update

algorithm is applied until the state of the network doesn't change any more

for a eertain number of sweeps (three in our program), such that with a

certain probability a stable state is reac.hed. Of course, we have to restrict

the number of sweeps to an upper limit, since asymmetric networks do

not in general settle down to a stable state. In any case the state of the

output neurons after the described procedure is the final output state of the

network, which can th~n be compared with the output of the given Boolean

function for the specific input. Applying all 2n input values sequentially,

the number of correct output bits can thus be determined.

The number of correct output bits is a measure for the efficiency of the

hetwork. In addition, there are other quantities of the network that should

be optimized, like the time the network needs to reach a stable state and

the number of neurons. In our program the "fitness" of a given network is

given by

!=~ - . -~ 'a'
(4)

where nc is the number of correct bits of the Boolean function and a. ist

the average number of sweeps until the network reaches a stable state.

Therefore, a large number of correct bi_ts is favoured, and among the best

of them those are favoured that reach the final state fast. The genome

of our networks is given by the. complete structure of the network and

the couplings J1nand the phenotypic expression is given by the Boolean

function that is simulated by the network.

9

3.3 Mutation and Selection

Now that we have described the genetic algorithm and the implementation

of the network, we still have to specify the interface between the two parts.

This is done by fixing a prescription for tnutations and for the selection step.

We begin by describing the selection step for a population consisting of P

individuals J,, i = 1, ... , P. First their individual fitness J(I,) is calculated.

These numbers are then ordered such that

J(Iu(i)) 2: f(Iu(i+Ij)· (5)

The individuals J,.(P-,.+l), ... , I<1(P) are retnoved from the population. Indi­

vidual J<1(l) is copied r 1 times into the population, and individual I<1(Z) r 2

times, where r = T1 + Tz (therefore the population size is eonstant). After

this selection step, the mutation step follows. There are, of course, a lot of

possibilities for the mutation of a given network. We used the simplest pos­

sibility one can eonceive of. With a certain probability, we remove a given

number n,. of neurons completely from the brain, and add a given number

na of neurons with numbers S1, ... , Sna of synapses with randomly chosen

couplings to the network. The choice of the numbers nn na and S1 , ... , Sna

is described in section 4. The couplings are distributed randomly in the

range of -1 to 1 and the synapses are coupled to randmnly chosen neurons

that are already present in the brain.

One tnight object that removing entire neurons with all their couplings

is not the most subtle kind of mutat.ion one can think of. In fact other

prescriptions with additional careful adjustment of single couplings and in­

sertion of single new synapses might be tnore suited to solve a given problem

tnuch faster. The point is, however, that even this crude concept of mu­

tation is suited for improving a neural net. through genetic algorithn1s and

that no complicated structure inform.ation or global learning rule has to be

specified. There axe even biological brains that use insertion of ne,~r neu­

rous during the learning process, which might serve as a distant biological

motivation for our system. The canary is knowu to learn his songs during

early sun1mer with the process of neurogenesis in his brain [19]. A number

of new neurons penetrates the existing brain and is built into the brain

during the process of 111emorizing the new songs. At the end of the sunnner

the canary "forgets" the tnelodies by deleting a number of neurons that are

10

____ ,___ ------

not used any more. The reason for this is simply that the small bird cannot

carry all the neurons that he needs during his rather long life. This anal­

ogy should not be stressed too much of course, since in our computational

model the process of inserting and deleting neurons happens on an evolu­

tionary timescale, and resembles much more the biological mechanisn1s of

inherited reflexes and instincts. What in fact is similar is the mechanism

of learning by adding neurons.

4 Numerical Simulations

In this section we will present a few numerical simulations with the model

described above. We trained a population of ten neural nets r.onsisting of

binary discrete neurons with Boolean functions. Binary neurons are well

suited for Boolean functions and make it easy to decide whether a network

has settled down to a stable state. The backdraw however is that part of

the fitness function f becomes discrete and undermines the basic principle

of evolution, the accumulation of infinitesimally small survival benefits.

For instance if we want to teach the syste1n a simple exclusive-or (XOR)

function with two input bits and one output bit, the five different. final

states of 0 to 4 correct bits are far apart. A inutation fron1 a bad network

with e.g. 3 correct bits to the next better one with 4 correct bits is rather

unlikely.
We first present the teaching of a simple XOR function to a neural net

using a genetic algorithn1, and move on to more complicated logical func­

tions with finer spaced fitness parameters later. The gene tie algorithm gen­

erated the c.orresponding neural networks representing the logical functions

in a finite amount of time for a wide range of parameters in the algorithm.

The only critical adjushnent is the rate of mutation, it has to bt" <'hosen as

to supply enough new mutations but not devastate previous achieven1ents

in the network. The probability for starting to add or starting to delete

neurons within the genetic algorithm was chosen to be p = 0.5. The-n there

is always a sufficiently large group of individuals preserving the successful

genes. In the- case of teaching a simple XOR fund.ion, the paratneters nu, nr

were chosen by a randotn number generator to be in the range 0 - 3, and

the nutuber of synapses per neuron Si to range from 0 to 7. U sin~; a randotn

11

number generator has the advantage that one does not need to introduce

new arbitrary parameters into the model. Instead, one offers various kinds

of mutations to the algorithm that (hopefully wisely) chooses the ones that

are best suited to solve a given problem. Some examples of teaching a sim­

ple XOR function to the genetically trained network are presented in the

first table.

of generations N s #of sweeps D

1200 22 50 4.3 0.10
2400 7 12 2.5 0.25
5000 8 15 1.4 0.23

6000 12 19 2.3 0.13
5500 13 24 2.9 0.14

Table 1: Evolutionary teaching of XOR function

The parameters listed were taken at the end of the evolutionary pro­

cess when the network completely solved the given problem. The different

runs only differ in the starting value of the rando1n number generator for

the asynchronous update of the neurons. The number of sweeps gives the

average number of complete asynchronous update cycles until the network

settles down. The selection rule of the mutation process used in the simula­

tions is given by r 1 = 4 and r 2 = 3. That is, the two best of the individuals.

are reproduced four resp. three times and the offspring is mutated. From

the old population the three best. ones remain unchanged while the seven

last ones are ren1oved. The genetic process starts with a minimal brain of

one neuron and five randomly chosen synapses. Subsequently, new neurons

are inserted and in case they improve the brain, the brain survives, other­

wise it is removed. One observes that the brains steadily grow until they

reach an average brainsize t.hat is mainly determined by mutation param­

eters like the nun1ber of synapses, but also by the speed of performanc.e,

since larger nets bec.on1e too slow and are removed in the selection step. In

general the resulting brains are diluted. Their degree of dilution is defined

12

by
s

D= N' (6)

where S denotes the total number of synapses and N is the size of the

cortex region. It is given in the table for the resulting neural nets.

A network with still discrete neurons but several output bits is even

better suited for a genetically trained neural net, since the fitness function

is much finer spaced and the probability that the £tness function is im­

proved by a single mutation is larger than in the previous case. Therefore

Boolean functions with several output bits have been used for another set

of si1nulations. The func-tions that were chosen have two input bits and six

output bits in the following configurations:

• a Boolean fundion corresponding to six parallel XOR functions,

• six parallel OR fundions,

o four parallel OR combined with two parallel XOR functions,

• a nllxed Boolean function with randomly chosen bits, and

o six parallel XOR functions with one false bit.

For the simulations of these functions the same parruneters for the ge­

netic algorithnl have been used as before, except for the parameters na, nr

which \'itere now chosen by a randon1 number generator to be .in the range

0 - 7. Some typical runs are presented in the table.

Boolean function # of generations #of sweeps N D

6fold XOR 2400 7.3 42 0.053

6fold OR 600 4.8 30 0.079

4fold OR, 2fold XOR 4500 4.9 44 0.046

MIXED 2700 4.0 40 0.078

6fold X()R, 1 false bit 5400 8.2 ~9 0.052
~~~- -- - ~-

Table 2: Evolution of Boolean functions 

13 

Again the parameters listed in the table have been taken at the !'nd 

of a teaching cycle, when the given function was learned by the network 

without error. 

The Boolean functions with two input bits considered so far correspond 

to four simultaneously stored patterns in the neural net. An example with 

a higher number of patterns is the parity function that gives a one in the 

output for an odd number in the input and a zero for an even number. 

It is a generalization of the XOR function. For the case of five input bits 

the neural net has to store 32 seperate activation pa!.terns. Results of a 

simulation of a 5 bit parity function with the genetically trained network 

are shown in the last table. 

Correct bits N s #of sweeps n, r, r, 
29 43 84 6.5 7 3 2 

30 62 124 6.5 7 3 2 

30 51 139 11.4 9 4 3 

32 61 134 7.5 9 4 3 

Table 3: Simulation of a 5 bit parity function after 10.000 generations 

Here, the number of correct bits of the 32 tested patterns is listed after 

10.000 generations. The parameters of the genetic algorithm have been 

ehosen as before except for the three listed on the right. n, gives the max­

imum number of synapses per neuron. 3000 generations was the minimum 

number we observed for a network to learn the 32 bits of a parity function 

correctly during the simulations. The generation of the hidden cortex unit 

is not c.ontrolled by any other prescription besides mutation and seledion. 

5 Summary and Outlook 

It has been shown that it is possible to train neural networks using ge­

netic algorithn1s without the need to specify any global learning rule for 

the synaptic couplings. The hidden region of the network does not. have 

to be specified in detail sinc.e its architecture is generated by the genetic. 

algorithm. 

14 



~--" ___________ ..,.._ _____ --;--..-~--"--- -~-·-------J..----..- .. ~-----.---.--- -----.--... --..----~---o;- ----~--...-----------.,_---·-

This model is biologically well motivated by genetically determined neu­

ral structures like brains that are found in nature in a large variety. The 

simulations presented in this paper provide a simple model for genetically 

determined behavior in biological organisms. 
Numerical studies have been successfully performed, teaching Boolean 

functions to a small network consisting of asymmetric neurons and using 

asynchronous update. 
This technique is well snited for training truly parallel neural network 

computers, since the couplings are altered locally and there will be no need 

for a global daemon that calculates the couplings, as in systems that use 

error back-propagation. 
Future improvements concentrate on refined mutation c.oncepts, to alter 

single couplings or the number of synapses of a single neuron, addition­

ally to the here used mutation by adding and removing complete neurons. 

Furthermore, the fitness-function of a system could be chosen to be finer 

spaced, in order to take better advantage of small differential survival bene­

fits, the key ingredient of evolutionary processes, rather than rely too much 

on chance. This can be achieved by a different measure or even introducing 

continuous neurons during the learning phase. The latter would not be too 

far fetched from the biological point of view, since biological neurons are 

able to continuously a:djust their firing rate in a certain range. 
Genetically generated neural networks are neither tied to any specific 

global learning rule nor to any special class of computational problems. 

Therefore, genetic networks may well be a promising concept in the future. 

Acknowledgements 
The authors thank H. Joos and C. Wetterich for critical comments on the 
manuscript and Ray D. Koluvek from the DESY computer center for the 

opportunity to use an IBM RISC station and for great support. 

References 

[1 J J .J. Hopfield: Neural Networks and Physical Systems with Emergent 

Computational Abilities, Pro. Nat!. Acad. Sci. USA 79, 2554 (1982) 

15 

[2] H.D. Block: The Perceptron: A Model for Brain Functioning, Rev. 

Mod. Phys. 34, 123 (1962) 

[3] D.O. Hebb: The Organization of Behavior: A Neurophysiological The­

ory, Wiley, New York (1949) 

[4] D. Kleinfeld and H. Sompolinsky: Associative Neural Network Model 

for the Generation of Temporal Patterns, Biophys. J. 54, 1039 (1988) 

[5] D. Horn and M. Usher: Neural Networks with Dynamical Thresholds, 

Phys. Rev. A 40, 1036 (1989) 

[6] T. Kohonen: Self-Organization and Associative Memory, Springer 

(1984) 

[7] Y. Le Cun: Learning Process in an Asymmetric Threshold Network, 

in: NATO ASI Ser. F 20, Springer (1986) 

[8] D.B. Parker: Learning-Logic: Casting the Cortex of the Human Brain 

in Silicon, MIT Techn. Rep. TR 47, (1985) 

[9] D.E. Rummelhard, G.E. Hinton, and R.J. Williams: Learning Repre­

sentations by Back-propagating Errors, Nature 323, 533 (1986) 

[10] D.E. Goldberg: Genetic Algorithms in Search, Optimization, and Ma­

chine Learning, Addison-Wesley (1989), and references therein 

[11] D.J. Montana and L. Davis: Training Feed Forward Neural Networks 

Using Genetic Algorithms, BBN Systems and Technologies, Cam­
bridge, Mass. (1989) 

[12] L. Personnaz, I. Guyon, and J. Dreyfus: Collective ·computational 

Properties of Neural Networks: New Learning Mechanisms, Phys. Rev. 

A34, 4217 (1986) 

[13] H.D. Block B.W. Knight Jr., and F. Rosenblatt: Analysis of a Four­

Layer Series-Coupled Perceptron, Rev. Mod. Phys. 34, 135 (1962) 

[14] B. Derrida and R. Meir: Chaotic Behavior of an Layered Neural Net· 
work, Phys. Rev. A 28, 3116 (1988) 

16 



[15] B. Miiller and J. Reinhard: Neural Networks: An Introduction, 

Springer (1990) 

[16] C.R. Darwin: The Origin of Species, Harmondsworth (1859) 

[17] R. Dawkins: The Blind Watchmaker, Longman (1986) 

[18] R. Dawkins: The Extended Phenotype, Oxford University Press (1982) 

[19] F. Nottebohm: From Bird Song To Neurogenesis, Scientific American 

2, 56 (1989) 

17 

-~~~ -------·-------"'--~--------"--~ --"----"'·--"'~--""-.-.-"-:---" ---'"'-


