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Abstract

Earlier work has demonstrated generative models capable of synthesising near photo-realistic grey-scale images of objects. These models

have been augmented with colour information, and recently with edge information. This paper extends the active appearance model

framework by modelling the appearance of both derived feature bands and an intensity band. As a special case of feature-band augmented

appearance modelling we propose a dedicated representation with applications to face segmentation. The representation addresses a major

problem within face recognition by lowering the sensitivity to lighting conditions. Results show that the localisation accuracy of facial

features is considerably increased using this appearance representation under diffuse and directional lighting and at multiple scales.

q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Models capable of synthesising complete images of

objects have over the past few years proven their worth

when interpreting images. Applications include real-time

tracking of deformable objects [1,2], face recognition

[3–5], and recovery of anatomical structures in magnetic

resonance images [6–9], ultrasound images [10] and X-rays

[9,11]. The key idea in all of these generative models is to

perform a per-pixel comparison between unseen input

images and synthesised images and subsequently drive these

to equality.

In this paper, we investigate a generative model that has

proven widely applicable. The active appearance models

(AAMs) [12,13] have been applied to most of the examples

given above. As Cootes and Taylor [14] we model the

appearance of edge strength, but in contrast this is also

augmented with colour information and conventional raw

intensities. We show that a considerable gain in accuracy

can be achieved, merely by selecting a more appropriate

representation of the particular object class being modelled.

This paper demonstrates that mature image processing

methods can co-exist in rewarding symbiosis with a modern

generative model-based vision technique.

2. Active appearance models

Active appearance models (AAMs) [12,13] establish a

compact parameterisation of object variability, as learned

from a training set by estimating a set of latent variables.

The modelled object properties are usually shape and pixel

intensities. The latter is henceforward denoted texture. From

these quantities new images similar to the training set can be

generated.

Objects are defined by marking up each example with

points of correspondence over the set either by hand, or by

semi- to completely automated methods. The key to the

compactness of these models is a proper compensation of

shape variability prior to modelling texture variability.

Models omitting this shape compensation, such as the

Eigen-face model [15], experience major difficulties in

modelling texture variability in a compact manner.

By exploiting prior knowledge about the local nature of

the optimisation space, these models can be fitted to unseen

images in a fraction of a second, given a reasonable

initialisation.

Variability is modelled by means of a principal

component analysis (PCA), i.e. an eigen analysis of the

dispersions of shape and texture. Shapes are brought into

alignment using a generalised procrustes analysis (GPA)

[16], and textures are warped into correspondence using a

thin-plate spline [17] or a piece-wise affine warp, thereby

compensating for any variation in shape. Let �x and �t denote

the shape and texture mean, respectively. The (ranked)

model parameters, c; can then generate new instances in
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a simple linear manner

x ¼ �x þFsc; t ¼ �t þFtc; ð1Þ

where Fs and Ft are eigenvectors obtained from the

training set. The object instance, ðx; tÞ; is synthesised into an

image by warping the pixel intensities of t into the geometry

of the shape x:

By defining a suitable measure of fit, Mðc; IÞ; the model

could be matched to an unseen image, I; using standard

optimisation techniques such as conjugate-gradient, Leven-

berg-Marquardt or Metropolis-Hastings in a simulated

annealing scheme. However, AAMs take a different

approach where residual vectors between the model and

image, dt ¼ tmodel 2 timage are regressed against known

displacement vectors, dc; using principal components

regression:

dc ¼ Rdt: ð2Þ

Embedded into an iterative updating scheme, this has

proven to be a very efficient way of matching these models

to unseen images. For large models (many texture samples)

built on large training sets, this approach becomes quite

resource demanding w.r.t. memory and computation.

However, recent experiments [18] have shown that

estimating the Jacobian, ›ðdtÞ=›c; over the training set

using a simple weighting scheme, in practice yields better

results than the regression approach with far less compu-

tational and memory requirements. In the work below the

regression approach has been taken.

This sums up the basic theory of AAMs. For further

details refer to Refs. [13,18,19].

3. Multi-band AAMs

Contrary to the above univariate view of images, the

most frequently used image source—the RGB camera—is

multivariate. Thus, collapsing the red, green and blue band

into a single intensity band looses specificity. As Edwards

et al. [12] we model multiple texture bands by simple

concatenation. Any correlation between bands is to be

picked up by the PCA analogue to the recovered correlation

along shape contours. The concept of texture is conse-

quently extended to encapsulate any corresponding

measurement over the training set. Let m denote the number

of texture samples in band i:

ui ¼ ½ ui1 ui2 · · · uim �: ð3Þ

The concatenated texture vector will then be for p texture

bands:

t ¼ ½ u1 u2 · · · up �: ð4Þ

Henceforth all AAM processing is left unchanged. This is

multi-band modelling of appearance. As hinted this

approach can be taken to all structures of corresponding

input data, three dimensional problems, time-series [7],

3D þ time, etc. Often, the hard part is to obtain the

correspondence, in particular for cases with sparse or

incomplete data.

4. The VHE representation

As a special case of multi-band appearance we propose a

representation suitable for segmentation of face-like images.

A secondary aim is to stress the ease with which one can add

feature bands to create new representations suitable for a

particular domain.

The statistical approach to model building has many

striking advantages. Variability, dependencies, etc. are

learned (estimated) from representative example solutions

contrary to being designed (coded) explicitly into the model.

However, some sources of variation are harder to generalise

than others. Given a few people who smile it is a reasonable

task to build a complete model of smiling mouths, i.e. a

model that generalise well. This is due to the low intrinsic

dimensionality of the geometrical deformation involved in a

smile. On the contrary, lighting effects on a face are very

hard to describe. The intrinsic dimensionality is high; 3D

geometry of the face, skin surface (dry, sweaty), lighting

(type, position, colour), etc.

As an alternative to learning the effects of lighting such

as shadows and highlights, we propose a representation

less sensitive to these. First, we notice that lighting effects

have less influence on the hue band in the hue, saturation

and value (HSV) colour space. By modelling hue, we aim

at obtaining the specificity of colour models without the

sensitivity to effects of lighting. Second, as [14] we notice

that edge estimators per se are less sensitive to lighting

effects than raw intensities. Since edge estimators are

implemented as numeric differential operators (e.g. Sobel-

filters) these are unfortunately inherently sensitive to

noise, which calls out for some degree of regularisation.

This is often achieved through a modest filtering with a

Gaussian kernel (preferably of the differential operator).

Since this damps the high frequency content of an image,

which is less desirable in a segmentation application, we

choose to retain a pure intensity-based band. All together

these three bands form the value, hue and edge (VHE)

representation:

† V, value—the value (intensity) in the HSV colour-

space.

† H, modified hue—the angular hue, h, of an HSV

representation. Here modified to accommodate single-

band storage. Since faces have little hue variation, the

hue circle is here collapsed around the approximate

circular mean, u ¼ 0 and uþ p in the following way:

hmod ¼
h if h , p

2p2 h otherwise

(
: ð5Þ
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Though this introduces ambiguity in hues we expect

this to be acceptable compared to the effects of

wrapping angles.

† E, edge—the edge strength, calculated as the gradient

magnitude

g ¼
ffiffiffiffiffiffiffiffiffiffi
g2

x þ g2
y

q
; ð6Þ

where gx and gy are horizontal and vertical gradient

images obtained from numeric differential operators

with a suitable amount of Gaussian smoothing.

5. Implementation

All conducted experiments were based on an extended

version of the AAM–API, which is an AAM implemen-

tation in Cþþ by one of the authors. A beta version of the

AAM–API can be downloaded from http://www.imm.dtu.

dk/~aam/. This page also gives several examples on AAMs

in other contexts.

6. Experiments

To test the hypotheses regarding the described VHE

representation a database of 74 face images was compiled:

† Set A—37 people facing front to the camera with a

neutral facial expression. Lighting conditions were

neutral using diffuse light from above.

† Set B—the same 37 people facing front to the camera

with a (new) neutral facial expression. A directional light

source was added to simulate partial non-diffuse lighting

conditions, i.e. horizontal lighting from the right, as seen

from the camera.

Still images were acquired using a Sony DV video

camera (DCR-TRV900E PAL) in 640 £ 480 JPEG colour

format and subsequently annotated using 58 landmarks.

Refer to Fig. 1 for example images from Set A and B.

Grey-scale versions were obtained using the luminance

RGB-weighting scheme:

G ¼ 0:30R þ 0:59G þ 0:11B: ð7Þ

Alternatively, a principal component or maximum auto-

correlation factor transform [20] could be applied to the

RGB bands to obtain grey-scale versions.

VHE versions of Set A and B were obtained using the

procedure described previously. Refer to Fig. 2 for an

example VHE transform. Notice the markedly lower

horizontal resolution in the modified hue band. This is due

to the internal subsampling of the chrominance bands in the

video formation and the JPEG compression scheme.

In all experiments AAMs were initialised using a sparse

global search exploiting the convergence distance of each

parameter. Often this is only done in a few selected

parameters. In this case position and scale were adequate.

From the results of the global search a candidate set is

chosen and iterated further until convergence. The best of

these converged results denotes the initial position. To

improve speed and robustness this is done on models built at

multiple scales. For details see Ref. [21].

6.1. Segmentation of unknown identity using diffuse lighting

To assess the segmentation capabilities under standar-

dised lighting conditions cross-validation were carried out

on three different AAM representations of Set A: grey-scale,

colour and VHE. To obtain optimal performance a leave-

one-out scheme was used. Thus, 37 models were built from

36 examples each leading to 37 evaluations of each

representation. Input images were subsampled to 320 £ 240

pixels prior to any AAM processing. The texture models

were ,8000 pixels/band and it took on average 28

combined parameters to represent 95% of the variation

observed in the training set.

The results in Table 1 show a subtle increase in accuracy

for the VHE representation compared to the standard grey-

scale AAM.

Fig. 1. Top row: example annotation. Bottom row: cropped example images

from Set A using diffuse lighting (left) and Set B using directional lighting

(right).
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The pt.–pt. measure denotes the Euclidean distance

between corresponding landmarks of the model and the

ground truth, whereas pt.–crv. is the shortest distance to the

curve in a neighbourhood of the corresponding ground truth

landmark.

Unexpectedly, Table 1 shows that the more specific

colour AAM is slightly less accurate than the grey-scale

AAM w.r.t. to mean pt.–pt. distance and equivalent for

the mean pt.–crv. distance, though with a small decrease

in uncertainty for the pt.–crv. measure. The latter

suggests that the colour AAMs slide more along

contours. Though designed to handle changes in lighting,

the VHE AAMs outperform both the grey-scale and

colour AAMs by a modest amount under controlled

lighting conditions.

6.2. Segmentation of known identity using directional

lighting

Subsequently, the three representations were tested for

their ability to segment known faces with subtle changes in

expression but major changes in lighting. This was carried

out by building three AAMs in grey-scale, colour and VHE,

respectively, on Set A (320 £ 240 pixels). Refer to Fig. 3 for

the first principal mode of the VHE AAM.

All three models were subsequently tested on all images in

Set B. Table 2 shows an increase in segmentation accuracy of

17% (pt.–pt.) and 21% (pt.–crv.) for VHE compared to grey-

scale. Further, the VHE has lower uncertainty estimates.

From the error distributions in Fig. 4 it is noted that the VHE

has a lower maximum error and in general a tail less heavy

than the grey-scale and the colour AAM1.

6.3. Accuracy at different scales

Occasionally, it is not feasible to build AAMs in the

original input resolution. This can be due to constraints such

as memory consumption, computation time, etc. In a case

with high-resolution input but a constraint on the model size

one could ask whether a multi-band model should be chosen

over a single-band model with a higher resolution.

To test this 18 AAMs were built in six different

resolutions using each of the three representations, grey-

scale, colour and VHE. From Set A 27 examples were

selected for training. Image resolutions spanned from

Fig. 2. Top row: VHE representation of a face (left) and value band (right).

Bottom row: modified hue band (left) and edge band (right).

Fig. 3. First combined principal mode, c1; for a VHE AAM built on Set

A. Value, modified hue and edge bands are shown row-wise, top-down. The

deformations are c1 ¼ 23s1 (left), mean (middle) and c1 ¼ 3s1 (right)

where s1 is one standard deviation over the training set. Bands are stretched

linearly for display.

Table 1

Leave-one-out segmentation results

Mean pt.–pt. Mean pt.–crv.

Grey-scale 2.73 ^ 0.78 1.35 ^ 0.46

Colour 2.84 ^ 0.75 1.35 ^ 0.40

VHE 2.63 ^ 0.64 1.27 ^ 0.40
1 The break-ups in the log-plot curves for the grey-scale and colour AAM

are due to histogram bins with zero entries.
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108 £ 80 pixels to full input resolution at 640 £ 480 pixels.

The resulting model sizes were in the range 850–92,118

texture samples. Using the described initialisation method

all 18 models were evaluated against the remaining 10

examples of Set A. In Fig. 5 the mean pt.–pt. error is plotted

against the model size. Here, pt.–pt. errors are measured in

units of pixel width at the used resolution. While the VHE

performs best, Fig. 5 stresses the fact that a simple pt.–pt.

measure is worthless as performance indicator without the

image resolution or model size given.

In a typical benchmarking scheme pixel distances relates

to a physical measure. In this experiment we define the

measure a PWI which is the Pixel Width at the original Input

resolution, i.e. 640 £ 480 pixels. The PWI equivalent of

Fig. 5 is shown in Fig. 6. From the zoom in Fig. 6 (bottom) it

Table 2

Segmentation results using directional lighting

Mean pt.–pt. Mean pt.–crv.

Grey-scale 3.51 ^ 0.85 1.78 ^ 0.49

Colour 3.22 ^ 0.67 1.67 ^ 0.44

VHE 2.91 ^ 0.65 1.40 ^ 0.36

Fig. 5. AAM pt.–pt. accuracy measured as image pixel size vs model size

(left) and std. of image pixel size vs model size.

Fig. 6. AAM pt.–pt. accuracy measured as PWI vs model size (left) and std.

of PWI vs model size in full (top) and zoomed (bottom) view.

Fig. 4. Distribution of pt.–crv. errors using directional lighting. Shown as

normal (top) and log (bottom) plots.
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is seen that the VHE representation performs best for

models larger than ,5000 texture samples.

If the choice should only regard the resolution of grey-

scale AAMs Fig. 6 (bottom) shows that the rate of

improvement in PWI accuracy is far smaller for models

with more than ,3000 texture samples.

Remarkably, the colour AAM had the lowest over-all

PWI accuracy and unclear trends in both PWI mean and

PWI standard deviation plots.

7. Discussion

Experiments have shown that a simple pre-processing of

input images can increase segmentation accuracy on a

limited set of facial images. The VHE representation

outperforms conventional grey-scale AAMs and colour

AAMs in cases with diffuse and partial directional

illumination. The gain is obtained with negligible compu-

tational costs compared to colour AAMs but at the cost of a

three times larger texture model compared to grey-scale

AAMs.

Though stretched for display reasons, Fig. 3 indicates

areas where the hue is ill-defined, e.g. at the eyes where the

saturation is near zero. Further, in this discrete 24 bit RGB

setting, pixels near zero intensity also results in ill-defined

hue angles. These areas could be learned from the training

set and subsequently down-weighted. This would lead to

better models.

Circumventing the need for two texture bands to

represent the cyclic hue as shown may be too primitive.

Colour ambiguity is introduced at all colour angels ^u

measured from the point of collapse (in this case pure red at

angle 0). However, in the presented case the loss in colour

specificity is more than compensated by the gain from the

over-all decrease in lighting sensitivity. This may not

always be the case. For human faces though, hue is

concentrated around the angle 0/3608 [22]. For applications

with limited and approximate unimodal distribution of

hue—other than faces—the circular mean should be

estimated [23] to ensure a proper representation. For

multimodal cases two texture bands should be used.

Concatenating all bands with a subsequent common

linear normalisation as done in AAMs seem less optimal. In

the VHE case the three subbands all have substantially

different statistics suggesting that bands should be normal-

ised separately using possibly non-linear means of normal-

isation. This was earlier done on ultrasound images [10]

with great success. In an initial stage this was applied to the

edge band with limited success. The error increased due to

the emphasis that was put on the noisy low to medium

intensities, i.e. areas where the gradient are ill-defined. This

could possibly be solved by a non-linear edge weighting

scheme as suggested in Ref. [14] or by using a more

elaborate regularisation prior to the gradient estimation,

e.g. the anisotropic Perona–Malik diffusion scheme [24] or

similar.

Finally, instead of patching the problem of non-Gaussian

sources a more graceful solution would be to address the

core of the problem. Namely, that PCA is based on

assumptions of normally distributed variables. Independent

component analysis (ICA) [25] could prove to be a good

replacement of PCA.

8. Conclusions

Given the presence of colour information in a face

segmentation task we have experienced the presented VHE

representation to be an appealing alternative to model raw

RGB intensities, in particular when dealing with change in

lighting conditions. Using diffuse and partial directional

lighting and at multiple scales, the VHE representation

yielded higher accuracy than the conventional grey-scale

and colour AAM. Only for very small models, grey-scale

AAMs were more accurate.

From the current experiments, the VHE representation

should be preferred over the colour representation.

Further, compared to the grey-scale representation, the

VHE should also be preferred if the required extra

memory and computational power are available. For

applications other than face segmentation, we have

suggested modifications needed to utilise this intensity,

hue and edge representation.

We have sought to promote the idea of modelling

derived features combined with intensity information.

Results have shown that with subtle changes to a

traditional grey-scale AAM framework and simple domain

specific pre-processing a considerable increase in accuracy

can be obtained. We anticipate that this also holds for

other domains.
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