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Abstract

Consistent estimators of the rank-de0cient fundamental matrix yielding information on the
relative orientation of two images in two-view motion analysis are derived. The estimators are
derived by minimizing a corrected contrast function in a quadratic measurement error model.
In addition, a consistent estimator for the measurement error variance is obtained. Simulation
results show the improved accuracy of the newly proposed estimator compared to the ordinary
total least-squares estimator. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction: fundamental matrix estimation

This paper deals with the exploitation of the epipolar constraint information for the
construction of the fundamental matrix for uncalibrated images, which once decom-
posed, solves the structure from motion problem (Cirrincione and Cirrincione, 1999;
M:uhlich and Mester, 1998; Xu and Zhang, 1996; Cirrincione, 1998).

Given a sequence of images, captured e.g. by one mobile camera (egomotion), the
0rst step is the extraction of the feature image points. These matches are then used
for the essential matrix (E) estimation if the camera is calibrated. In the uncalibrated
case, by using the same techniques, the fundamental matrix (F) can be recovered. The
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essential matrix, after decomposition, yields the motion parameters. Solving for these
matrices requires the same approach. In the absence of noise, the fundamental matrix
is obtained from the epipolar constraints given below.

Let ui=[ui(1) ui(2) 1]T ∈R3×1 and vi=[vi(1) vi(2) 1]T ∈R3×1; i=1; : : : ; N , represent
the homogeneous pixel coordinates in the 0rst and second image, respectively. The
model is

vT
i Fui = 0 for i = 1; : : : ; N; (1)

where F ∈R3×3 is the fundamental matrix which is identical for all pairs of corre-
sponding vectors ui, vi, 16 i6N . We assume that rank (F)=2, and F is a parameter
of interest. This set can be solved exactly only in absence of noise, e.g. by using the
eight-point algorithm (Hartley, 1997). For noisy images, more matches are needed and
a measurement error model (Fuller, 1987) must be considered, because the 0rst two
components of the vectors ui, vi are observed with errors. We suppose that

ui = u0; i + ũ i and vi = v0; i + ṽi for i = 1; : : : ; N (2)

and that there exists F0 ∈R3×3, such that

vT
0; iF0u0; i = 0 for i = 1; : : : ; N: (3)

The matrix F0 ∈R3×3 is the true fundamental matrix F and rank(F0) = 2. We assume
that F0 is normalized, i.e., ‖F0‖F = 1. The vectors u0; i and v0; i are the true values
of the measurements ui and vi, respectively, and ũ i and ṽi represent the measurement
errors.

In M:uhlich and Mester (1998) a total least-squares (TLS) (Van Hu.el and Vande-
walle, 1991) estimator of F0 is proposed. The idea is to transform (1) in the form

(ui ⊗ vi)T vec(F) = 0 for i = 1; : : : ; N (4)

and to interpret the observations ai , ui ⊗ vi as

ai = u0; i ⊗ v0; i + di; (5)

where d1; : : : ; dN are zero mean i.i.d. random vectors. These assumptions justify the
application of the TLS method (Van Hu.el and Vandewalle, 1991).

The TLS estimator of F0 is found by solving

min
f=vec(F)

‖Af ‖2 = min
N∑
i=1

r2
i s:t: fTf = 1; (6)

where A , [a1 · · · aN ]T and ri , aT
i f is the ith residual. This problem is solved

by the eigenvector of ATA (moment matrix) associated to the smallest eigenvalue or
equivalently the right singular vector of A associated to the smallest singular value.
The TLS solution is suboptimal, biased, and inconsistent (Van Hu.el and Vandewalle,
1991) because the perturbations in the aT

i rows are not Gaussian distributed as their
elements involve the product of two spatial coordinates. Even if the combined vector
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of measurement errors [ũT
i ṽ

T
i ]T is zero mean i.i.d., di is not i.i.d. It can be shown

that

E[didT
i ] = Vũ ⊗ (v0; ivT

0; i) + (u0; iuT
0; i) ⊗ Vṽ + Vũ ⊗ Vṽ;

where E[ũ iũ
T
i ] , Vũ and E[ṽi ṽ

T
i ] , Vṽ.

A lot of techniques have been tried in order to improve the accuracy of the eight-point
algorithm in the presence of noise (Cirrincione and Cirrincione, 1999; Cirrincione,
1998; Chaudhuri and Chatterjee, 1996; Torr and Murray, 1997; Hartley, 1997; M:uhlich
and Mester, 1998; Leedan and Meer, 2000). In case of large images, the condition num-
ber of ATA worsens because of the lack of homogeneity in the image coordinates. In
order to avoid this problem, several scalings of the point coordinates have been pro-
posed with good results (Hartley, 1997). One way of scaling is to normalize the input
vectors. Chaudhuri and Chatterjee (1996) use this preprocessing before ordinary TLS
(this approach yields very bad results). Another preprocessing used in the literature is
the statistical scaling of Hartley (1997) which requires a centering and a scaling (either
isotropic or non-isotropic) of the image feature points. This preprocessing has found
a theoretical justi0cation in the paper of M:uhlich and Mester (1998) limited to the
assumption of noise con0ned only in the second image. These authors only justify the
isotropic scaling in the second image while accepting the two scalings in the 0rst im-
age, and propose the use of the mixed LS-TLS algorithm (Van Hu.el and Vandewalle,
1991). However, these assumptions are also not realistic.

Cirrincione (Cirrincione, 1998; Chaudhuri and Chatterjee, 1996) further improved the
(M:uhlich and Mester, 1998) method by means of a robust constrained TLS (CTLS)
technique, which solves (6) by taking into account the algebraic dependencies between
the errors. Also Leedan and Meer (2000) applied a similar approach using a general-
ized TLS techniques (Van Hu.el and Vandewalle, 1989). Despite these improvements
the CTLS estimation remains inconsistent and biased. The same applies to all other
estimates mentioned above under the conditions of models (2) and (3).

In this paper we derive a consistent estimator for the fundamental matrix F0 by
taking more realistic assumptions. Instead of (5), we give assumptions on the errors
ũ i and ṽi in (2).

(i) The error vectors {ũ i; ṽi ; i¿ 1} are independent with E[ũ i]=E[ṽi]=0, for i¿ 1.
(ii) cov(ũ i) = cov(ṽi) = �2

0 · diag(1; 1; 0); i¿ 1, with 0xed �0 ¿ 0.
Let ũ i = [ũ i(1) ũ i(2) ũ i(3)]T. Assumption (ii) means that the components of ũ i are
non-correlated, ũ i(3) = 0 and var(ũ i(1)) = var(ũ i(2)) = �2

0. The same holds for ṽi.
Models (2) and (3) are quadratic measurement error models (Fuller, 1987), where

the right-hand side is observed without error.
In Section 2, a consistent fundamental matrix estimator is derived assuming that

the measurement error variance �2
0 is known. Section 3 considers consistent esti-

mator of this measurement error variance if the latter is unknown. The computa-
tion of the fundamental matrix is summarized in Section 4 and Section 5 presents
simulation results, which con0rm the consistency properties of the newly proposed
estimator and show its good performance compared to an ordinary TLS
estimator.
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2. Consistent estimator in the case of known measurement error variance

In this section we suppose that �2
0 is known, i.e. the covariance structure of the errors

is known. The estimator proposed below is the corrected minimum contrast estimator,
considered in Kukush and Zwanzig in a more general context. It is related to the
method of corrected score functions a (Carroll et al., 1995, Chapter 6).

We start with the LS objective function

qLS(F ; u1; : : : ; uN ; v1; : : : ; vN )

,
N∑
i=1

(vT
i Fui)

2; F ∈R3×3; ui ∈R3×1; vi ∈R3×1:

Next, we construct an adjusted objective function q(F ; u1; : : : ; uN ; v1; : : : ; vN ), such that

E[q(F ; u0;1 + ũ 1; : : : ; u0;N + ũ N ; v0;1 + ṽ1; : : : ; v0;N + ṽN )]

= qLS(F ; u0;1; : : : ; u0;N ; v0;1; : : : ; v0;N ) (7)

for each F ∈R3×3; u0; i ∈R3×1; v0; i ∈R3×1; i = 1; : : : ; N .

Note 1. The function qLS is a contrast function in the sense of Kukush and Zwanzig.
E.g. it equals 0 (for large enough N ) i. F is proportional to the true value matrix.
According to the method from Kukush and Zwanzig the qLS function leads through
the q function from (7) to a consistent estimating procedure.

At the 0rst stage an estimator F̂1 is de0ned as the random matrix

F̂1 ∈ arg min q(F ; u1; : : : ; uN ; v1; : : : ; vN ) s:t: ‖F‖F = 1: (8)

(The minimization could have a non-unique solution. See Note 2.) Following M:uhlich
and Mester (1998), we construct an estimator F̂ at the second stage by expanding the
current estimator F̂1 to a sum of rank one matrices and suppressing the matrix with the
lowest Frobenius norm. Practically, this is done by deleting the smallest singular triplet
in the dyadic decomposition of F̂1 (Golub and Van Loan, 1996). For the estimator F̂ ,
we have rank(F̂) = 2 or 1.

Now, we 0nd the solution q of Eq. (7). By assumption (i), it is possible to split the
problem and solve the equation

E[c(F; u0 + ũ; v0 + ṽ)] = cLS(F; u0; v0); (9)

F ∈R3×3; u0 ∈R3×1; v0 ∈R3×1; cLS , (vT
0Fu0)2,

E[ũ] = E[ṽ] = 0; cov(ũ) = cov(ṽ) , V = �2
0 diag(1; 1; 0)

and ũ and ṽ are independent.
The function

c(F; u; v) , tr((vvT − V )F(uuT − V )FT) (10)
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satis0es Eq. (9) (see Appendix A). Then the solution of (7) is given by

q(F ; u1; : : : ; uN ; v1; : : : ; vN ) = tr

(
N∑
i=1

(vivT
i − V )F(uiuT

i − V )FT

)
:

We denote f , vec(F). Then

q(F ; u1; : : : ; uN ; v1; : : : ; vN ) = fT

(
N∑
i=1

(uiuT
i − V ) ⊗ (vivT

i − V )

)
f:

Denote

SN ,
N∑
i=1

(uiuT
i − V ) ⊗ (vivT

i − V ): (11)

Let

f̂1 ∈ arg minfTSNf s:t: ‖f‖ = 1: (12)

The matrix SN is symmetric. From (12) we see that f̂1 is a normalized eigenvector of
SN , associated with the smallest eigenvalue �9 of SN .

Now, suppose that ‖F̂1 −F0‖F 6 � with f̂1 , vec(F̂1). By our conditions, we have
rank(F0) = 2. Therefore for the estimator F̂ on the second stage, we have

‖F̂1 − F̂‖F 6 ‖F̂1 − F0‖F 6 �: (13)

Then

‖F̂ − F0‖F 6 ‖F̂ − F̂1‖F + ‖F̂1 − F0‖F 6 2�:

Thus for consistency of the estimator F̂ , it is suPcient to show that the estimator F̂1

is consistent. Note that the matrix (−F0) also satis0es (3), and ‖− F0‖F = ‖F0‖F = 1.
Therefore, we estimate F0 up to a scalar factor equal to ±1. Introduce the matrix

FN ,
1
N

N∑
i=1

(u0; iuT
0; i) ⊗ (v0; ivT

0; i): (14)

For the vector f0 , vec(F0), we have, see (3),

fT
0FNf0 =

1
N

N∑
i=1

tr(v0; ivT
0; iF0u0; iuT

0; iF
T
0 ) = 0;

and FN ¿ 0. Thus �min(FN )=0. We require that there exists N0 such that rank(FN )=8
for N¿N0. Moreover, we need a stronger assumption.

Let �1(FN )¿ �2(FN )¿ · · ·¿ �9(FN ) = 0 be the eigenvalues of FN .
(iii) There exist N0¿ 1 and c0 ¿ 0, s.t. for all N¿N0; �8(FN )¿ c0.

Note 2. The minimization problem (12) could have a non-unique solution; but due to
assumption (iii) for N ¿N0(!) the smallest eigenvalue of SN will be unique; and then
the estimator f̂1 will be uniquely de0ned; up to a sign.
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The next assumptions are needed for the convergence

1
N

SN −FN → 0 as N → ∞ a:s: (15)

(iv) (1=N )
∑N

i=1 ‖u0; i‖46 const, and (1=N )
∑N

i=1 ‖v0; i‖46 const.
(v) For 0xed �¿ 0, E[‖ũ i‖4+�]6 const, and E[‖ṽi‖4+�]6 const.

For two matrices A and B of the same size de0ne the distance between A and B as
the Frobenius norm of their di.erence,

dist(A; B) , ‖A− B‖F :
Now, we prove the strong consistency of the estimator F̂1, which is de0ned in (8).

Theorem 1 (Strong consistency). Assume that assumptions (i)–(v) hold. Then

dist(F̂1; {−F0;+F0}) → 0 as N → ∞ a:s: (16)

Proof. We divide the proof into several steps.
(a) Proof of convergence (15): From (11) and (14) we have

1
N

SN −FN =
1
N

N∑
i=1

((u0; iuT
i;0 + ri) ⊗ (v0; ivT

i;0 + qi) − (u0; iuT
i;0) ⊗ (v0; ivT

i;0))

with

ri , (ũ iuT
0; i + u0; i ũ

T
i ) + (ũ iũ

T
i − V ); (17)

qi , (ṽivT
0; i + v0; i ṽ

T
i ) + (ṽi ṽ

T
i − V ): (18)

Then

1
N

SN −FN =
1
N

N∑
i=1

ri ⊗ qi +
1
N

N∑
i=1

((u0; iuT
0; i) ⊗ qi)

+
1
N

N∑
i=1

(ri ⊗ (v0; ivT
0; i)) , R1 + R2 + R3: (19)

The terms R1, R2, and R3 are average sums of the independent random matrices with
zero mean, therefore, we can apply Rosenthal inequality (Rosenthal, 1970).

(a.1) Proof of convergence R1 → 0 a:s:: First, we consider the summand

R11 ,
1
N

N∑
i=1

(ũ iũ
T
i − V ) ⊗ (ṽi ṽ

T
i − V ):

Let � be a number from assumption (v), �6 1. We have

E[‖R11‖2+�=2]6
const
N 2+�=2


 N∑

i=1

E[‖(ũ iũ
T
i − V ) ⊗ (ṽi ṽ

T
i − V )‖2+�=2

F ]
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+

(
N∑
i=1

E[‖(ũ iũ
T
i − V ) ⊗ (ṽi ṽ

T
i − V )‖2

F ]

)1+�=4



6
const
N 2+�=2 (N + N 1+�=4)

6
const
N 1+�=4

and

∞∑
N=1

E[‖R11‖2+�=2]¡∞:

Therefore by the Chebyshev inequality and Borel–Cantelli lemma (Papoulis, 1991)
R11 → 0, as N → ∞ a.s.

(a.2) Proof of convergence R12 , (1=N )
∑

i=1 N (ũ iuT
0; i) ⊗ (ṽi ṽ

T
i − V ) → 0 a:s:: We

have

E[‖R12‖2+�=2]6
const
N 2+�=2


 N∑

i=1

E[‖(ũ iuT
0; i) ⊗ (ṽi ṽ

T
i − V )‖2+�=2

F ]

+

(
N∑
i=1

E[‖(ũ iuT
0; i) ⊗ (ṽi ṽ

T
i − V )‖2

F ]

)1+�=4



6
const
N 2+�=2


 N∑

i=1

‖u0; i‖2+�=2 +

(
N∑
i=1

‖u0; i‖2

)1+�=4



= const


 1
N 1+�=2

1
N

N∑
i=1

E[‖u0; i‖2+�=2]

+
1

N 1+�=4

(
1
N

N∑
i=1

E[‖u0; i‖2]

)1+�=4



6
const
N 1+�=4

and

∞∑
N=1

E[‖R12‖2+�=2]¡∞;

which implies the convergence R21 → 0, as N → ∞ a.s.
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(a.3) Proof of convergence R13 , (1=N )
∑N

i=1(ũ iuT
0; i) ⊗ (ṽivT

0; i) → 0 a.s.: We have

E[‖R13‖2+�=2]

6
const
N 2+�=2


 N∑

i=1

E[‖(ũ iuT
0; i) ⊗ (ṽivT

0; i)‖2+�=2
F ]

+

(
N∑
i=1

E[‖(ũ iuT
0; i) ⊗ (ṽivT

0; i)‖2
F ]

)1+�=4



6
const
N 2+�=2


 N∑

i=1

‖u0; i‖4+� +
N∑
i=1

‖v0; i‖4+�

+


 N∑

i=1

‖u0; i‖2




1+�=4

+

(
N∑
i=1

‖v0; i‖2

)1+�=4



6
const
N 2+�=2


( N∑

i=1

‖u0; i‖4

)1+�=4

+

(
N∑
i=1

‖v0; i‖4

)1+�=4

+

(
N∑
i=1

‖u0; i‖2

)1+�=4

+

(
N∑
i=1

‖v0; i‖2

)1+�=4



6
const
N 1+�=4


( 1

N

N∑
i=1

‖u0; i‖4

)1+�=4

+

(
1
N

N∑
i=1

‖v0; i‖4

)1+�=4

+

(
1
N

N∑
i=1

‖u0; i‖2

)1+�=4

+

(
1
N

N∑
i=1

‖v0; i‖2

)1+�=4



6
const
N 1+�=4

and this proves that R13 → 0, as N → ∞ a.s.
The other summands of R1 are considered similarly. Thus R1 → 0, as N → ∞ a.s.
Similarly, it is proved that R2 → 0 and R3 → 0, as N → ∞ a.s. Now, convergence

(15) follows from expansion (19).
(b) Proof of convergence (16): A matrix FN , which approximates (1=N )SN , has the

smallest eigenvalue �9(FN )=0, and all remaining eigenvalues are separated from zero,
i.e., �i(FN )¿ c0; 16 i6 8, see assumption (iii) (we suppose N¿N0).

We 0x !∈� (here � is the probability space) and N¿N0. Let ‖(1=N )SN −
FN‖F 6 �. We want to estimate dist(F̂1(!); {±F0}). Recall that f̂1(!) is a normalized
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eigenvector of (1=N )SN (!) associated with the smallest eigenvalue �9((1=N )SN (!)) and
f0 is a normalized eigenvector of FN belonging to �9(FN ) = 0.

By convergence (15), established in part (a) of the proof, we can view (1=N )SN as
a (small) perturbation of FN . We refer to classical perturbation theory, see e.g. (Golub
and Van Loan, 1996, p. 396, Corollary 8.1.6), bounding the eigenvalues of perturbed
matrices. For the smallest eigenvalues of (1=N )SN and FN we have∥∥∥∥ 1

N
SN −FN

∥∥∥∥
F
6 �⇒

∣∣∣∣�9

(
1
N
SN (!)

)
− �9(FN )

∣∣∣∣6 �

⇒
∣∣∣∣�9

(
1
N
SN (!)

)∣∣∣∣6 �: (20)

More important, however, is the e.ect of the perturbation on the corresponding nor-
malized eigenvectors f̂1 and f0. By making use of the perturbation theorems of eigen-
vectors, as given in Wedin (1972) and Davis and Kahan (1970), we have

dist(f̂1(!);±f0)6
�

�8(FN ) − �9((1=N )SN (!))
:

By assumption (iii) and inequality (20), we have

dist(f̂1(!);±f0)6
�

c0 − �
:

Then

dist(F̂1(!); {±F0}) = dist(f̂1(!); {±f0})6L(�) ,
�

c0 − �
and lim�→0 L(�) = 0. This relation and the convergence ‖(1=N )SN − FN‖F → 0 as
N → ∞ a.s. prove convergence (16). Theorem 1 is proved.

As a consequence we have for the estimator F̂ , which is obtained at the second
stage, that

dist(F̂ ; {±F0}) → 0 as N → ∞ a:s: (21)

Recall that rank(F0) = 2. This and (21) imply that a.s. there exists a random number
N1 = N1(!) such that for all N ¿N1; rank(F̂) = 2.

3. Consistent estimator in the case of unknown noise covariance

Denote

T , diag(1; 1; 0):

Then V = cov(ũ i) = cov(ṽi) = �2
0T . Now, we suppose that �2

0 is unknown. We assume
the following.

(vi) �2
0 ∈ (0; d2], with known d¿ 0. (d depends on the data. See Note 3.)

We want to construct a consistent estimator �̂2, based on observations ui; vi; 16 i
6N , in models (2) and (3). We strengthen assumption (iii). Introduce a matrix

FN ( ) ,
1
N

N∑
i=1

(u0; iuT
0; i +  T ) ⊗ (v0; ivT

0; i +  T ) for  ∈ [ − d2; d2]:
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(vii) For each 0¡�¡d,

lim inf
N→∞

min
�26 6d2

�min(FN ( ))¿ 0

and

lim inf
N→∞

min
−d26 6−�2

|�min(FN ( ))|¿ 0:

Assumption (vii) implies that for 0¡ 6d2 and large N , FN ( ) is positive de0nite,
and for −d26  ¡ 0 and large N , FN ( ) is either positive de0nite or has a negative
eigenvalue. We mention that by assumption (iii), the matrix FN (0) = FN is positive
semide0nite with �9(FN ) = 0 and �8(FN )¿ c0; N¿N0.

We introduce the objective function

QN (�2) , |�min(SN (�2))| for 06 �26d2; (22)

where

SN (�2) ,
N∑
i=1

(uiuT
i − �2T ) ⊗ (vivT

i − �2T ): (23)

Note that SN (�2
0)=SN is given in (11). We de0ne an estimator �̂2 as a random variable

with

�̂2 = �̂2
N ∈ arg min

06�26d2
QN (�2): (24)

Note 3. QN (�2) tends to 0; as �2 tends to in0nity. It is reasonable to de0ne d from
assumption (vi); in such a way that for �¿ 2dQN (�2) is small; with 0xed given
threshold.

Lemma 2. Assume that assumptions (i)–(vii) hold. Then �̂2 → �2
0 as N → ∞ a.s.

Proof. First we observe that

1
N

SN (�2) =
1
N

N∑
i=1

(uiuT
i − V + (�2

0 − �2)T ) ⊗ (vivT
i − V + (�2

0 − �2)T )

is a quadratic function of (�2
0 − �2); �2

0 − �2 ∈ [− d2; d2]. Similar to the proof of (15);
it is easy to show that

�N (!) , sup
06�26d2

∥∥∥∥ 1
N

SN (�2) −FN (�2
0 − �2)

∥∥∥∥
F
→ 0 as N → ∞ a:s: (25)

We have∣∣∣∣�min

(
1
N

SN (�̂2)
)∣∣∣∣6

∣∣∣∣�min

(
1
N

SN (�2
0)
)∣∣∣∣6 �N (!) (26)

and ∣∣∣∣�min

(
1
N

SN (�̂2)
)∣∣∣∣¿ |�min(FN (�2

0 − �̂2))| − �N (!): (27)
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We 0x such !∈�; for which �N (!) → 0; as N → ∞. The sequence {�̂2
N (!); N¿ 1}

belongs to the interval [0; d2]. Consider any convergent subsequence {�2
N (m)(!); m¿ 1};

�2
N (m)(!) → �2

∞ as m → ∞. Suppose that �2
∞ 
= �2

0. Then for certain N1 = N1(!) and
� = �(!)¿ 0 we have for all N(m) ¿N1

|�min(FN(m) (�
2
0 − �̂2))|¿ min

�26| |6d2
|�min(FN(m) ( ))|: (28)

From (26)–(28); we have for N¿N1

min
�26| |6d2

|�min(FN ( ))|6 2�N (!) → 0 as N → ∞:

But this contradicts assumption (vii). Therefore �2
∞ =�2

0. Thus each convergent subse-
quence of {�̂2

N (!); N¿ 1} converges to �2
0 ; therefore �̂2

N (!) → �2
0 ; as N → ∞. We

0xed ! from a set �0 of probability one; therefore �̂2
N → �2

0 a.s. Lemma 2 is proved.

Now, the estimator f̂1 is de0ned as a normalized eigenvector belonging to the
minimal eigenvalue of SN (�̂2), and F̂1 is a matrix with vec(F̂1) = f̂1.

Theorem 3. Under assumptions (i)–(vii); dist(F̂1; {±F0}) → 0; as N → ∞ a.s.

Proof. Due to the quadratic structure of SN (�2); we have

sup
N¿1

sup
06�2

16d2 ; 06�2
26d2

|�2
1−�2

2|6�

∥∥∥∥ 1
N

SN (�2
1) − 1

N
SN (�2

2)
∥∥∥∥
F
→ 0 as � → 0 a:s:

This means that the function {SN (�2); �2 ∈ [0; d2]; N¿ 1} is equicontinuous; a.s.
Therefore; see Lemma 2;∥∥∥∥ 1

N
SN (�̂2

N ) −FN (0)
∥∥∥∥
F
6
∥∥∥∥ 1
N

SN (�̂2
N ) − 1

N
SN (�2

0)
∥∥∥∥
F

+
∥∥∥∥ 1
N

SN (�2
0) −FN (0)

∥∥∥∥
F

6 sup
N¿1

sup
06�26d2

|�2−�2
0|6|�̂2

N−�2
0|

∥∥∥∥ 1
N

SN (�2) − 1
N

SN (�2
0)
∥∥∥∥
F

+
∥∥∥∥ 1
N

SN (�2
0) −FN (0)

∥∥∥∥
F

→ 0 as N → ∞ a:s:

Recall that f̂1 is an eigenvector of (1=N )SN (�̂2
N ) and f0 is an eigenvector of FN (0);

and both correspond to the minimal eigenvalue. Then like in part (b) of the proof of
Theorem 1; we obtain that dist(F̂1; {±F0}) → 0; as N → ∞.



14 A. Kukush et al. / Computational Statistics & Data Analysis 41 (2002) 3–18

Now, the estimator F̂ at the second stage is obtained from F̂1 by expanding the
current estimate F̂1 to a sum of rank-one matrices and suppressing the matrix with the
lowest Frobenius norm. As a consequence of Theorem 3, we have convergence (21)
for the estimator F̂ .

4. Algorithm

For clarity of exposition, we outline here the computational procedure for computing
the ALS estimator of the quadratic measurement error model de0ned by (2) and (3),
as described in the previous sections.
Given: N pairs of observations ui ∈R3×1; vi ∈R3×1, 16 i6N and upper bound d2

satisfying assumption (v).
Stage 1: Computation of F̂1, ‖F̂1‖F = 1.
Compute �̂2 = arg min06�26d2 |�min(SN (�2))| with

SN (�2) ,
N∑
i=1

(uiuT
i − �2T ) ⊗ (vivT

i − �2T ); T = diag(1; 1; 0):

Compute the eigenvector f̂1 corresponding to �min(SN (�̂2)).
Set

F̂1 =



f̂1(1) f̂1(4) f̂1(7)

f̂1(2) f̂1(5) f̂1(8)

f̂1(3) f̂1(6) f̂1(9)


 :

Stage 2: Computation of F̂ , rank(F̂) = 2.
Compute the SVD of F̂1: F̂1 = USV T with UUT = I = V TV , U ∈R3×3, V ∈R3×3,

S = diag(s1; s2; s3) and s1¿ s2¿ s3.
Set F̂ = UŜV T with S = diag(s1; s2; 0).
End
If the noise variance �2

0 is known then the computation in Stage 1 reduces to the
computation of the smallest eigenpair (�9; f̂1) of SN (�2

0).

5. Experimental results

In this section, we present numerical results for the derived estimators F̂ and �̂2.
The data are simulated. The fundamental matrix F0 is a randomly chosen rank-two

matrix with unit Frobenius norm. The true coordinates u0; i and v0; i have third com-
ponents equal to one, and the 0rst two components are randomly chosen vectors in
R2×1 with unit norm and random direction. The perturbations ũ i and ṽi are selected
according to the assumptions stated in the paper, i.e., the third components ũ i(3) and
ṽi(3) are zeros for all i=1; : : : ; N and the set {ũ i(j); ṽi(j); i=1; : : : ; N; j=1; 2} form a
set of i.i.d random variables, zero mean normally distributed with variance �2

0. In each
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Fig. 1. Left: relative error of estimation ‖F0 − F̂‖F =‖F0‖F as a function of the sample size N , Right:
convergence of the noise variance estimate �̂2 to the true value �2

0.

experiment, the estimation is repeated a number of times with the same true data and
di.erent noise realizations. The presented results (except for Fig. 3) are the average
for 1000 repetitions.

The true value of the parameter F0 is known, which allows evaluation of the results.
We compare three estimators: (a) the TLS estimator F̂TLS, (b) the ALS estimator F̂
using the true noise variance �2

0 (see Section 2), and (c) the ALS estimator F̂ using
the estimated noise variance �̂2 (see Section 3). The TLS estimator is obtained as the
normalized, best rank-two approximation of any solution of the following optimization
problem

min
F

qLS(F ; u1; : : : ; uN ; v1; : : : ; vN ) s:t: ‖F‖F = 1:

This is equivalent to solving the set Af ≈ 0, see (4), in TLS sense (Van Hu.el and
Vandewalle, 1991), i.e. f̂1 is given by the right singular vector corresponding to the
smallest singular value of A. The TLS solution then results from the truncated rank
two SVD (Golub and Van Loan, 1996) of F̂1 constructed from f̂1 (by rearranging the
elements of f̂1 column by column in a 3 × 3 matrix).

Fig. 1 shows the relative error of estimation ‖F0 − F̂‖F=‖F0‖F as a function of
the sample size N , on the left plot, and the convergence of the estimate �̂2 on
the right plot. Fig. 2, left plot, shows the convergence of the 0rst stage estimator
F̂1 to the set of rank-de0cient matrices. This empirically con0rms inequality (13).
The right plot in Fig. 2 con0rms the convergence of (1=N )SN → FN , as N → ∞,
see (15).

Fig. 3 shows the function SN (�2) used in the estimation of �2
0 for N = 500 on the

left plot and for N = 30 on the right plot. These results are not averaged, i.e. they
are for 0xed noise realization. In general, SN (�2) is a non-convex, non-di.erentiable
function with many local minima. However, we observed empirically that the number
of local minima roughly decreases as N increases. For larger sample sizes and smaller
noise variance the function SN (�2) becomes unimodal.
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Fig. 3. The function SN (�2) used for the estimation of �2
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6. Conclusion

Consistent estimation and computation of the rank-de0cient fundamental matrix,
yielding all informations on motion or relative orientation of two images in two-view
motion analysis, is considered here. It is shown that a consistent estimator can be
derived by minimizing a corrected contrast function in a quadratic measurement error
model. In addition, a consistent estimator of the measurement error variance is derived.
The proposed adjusted least-squares estimator is computed in three steps: (1) estimate
the measurement error variance, (2) construct a preliminary matrix estimate and (3)
project that estimate into the space of singular matrices.

Numerical simulation results con0rm that the newly proposed estimator outperforms
the ordinary TLS based estimator.
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Appendix A

We show that

c(F; u; v) , tr((vvT − V )F(uuT − V )FT)

satis0es

E[c(F; u0 + ũ; v0 + ṽ)] = cLS(F; u0; v0); cLS(F; u0; v0) , (vT
0Fu0)2;

under the assumptions that E[ũ] = E[ṽ] = 0, cov(ũ) = cov(ṽ) , V and ũ and ṽ are
independent.

E[c(F; u0 + ũ; v0 + ṽ)]

=E[tr(((v0 + ṽ)(v0 + ṽ)T − V )F((u0 + ũ)T(u0 + ũ)T − V )FT)]

=E[tr((v0vT
0 + 2v0ṽ

T + (ṽṽT − V ))F(u0uT
0 + 2u0ũ

T + (ũũ T − V ))FT)]:

After expanding the right-hand side and applying the expectation operator to the sum-
mands, the assumptions imply that all summands except for the 0rst one are equal to
zero. Thus

E[c(F; u0 + ũ; v0 + ṽ)] = tr((v0vT
0 )F(u0uT

0 )FT):

But

tr((v0vT
0 )F(u0uT

0 ))FT) = (uT
0F

Tv0)(vT
0Fu0) = (vT

0Fu0)2 = cLS(F; u0; v0):
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