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ABSTRACT

A methodfor blind separatiorof instantaneousnixture of
coloredsourcespasedon the minimizationa Gaussiarmu-
tual informationcriterion, is proposed.t amountgo jointly
approximatelydiagonalizinga setof estimatedspectralden-
sity matrices. Separatioris shovn to be achievzable (up to
a scalingand a permutation)if no pair of sourcescanhave
proportionalspectradensities An effcient algorithmfor the
joint approximatediagonalizationof positive matrix is de-
scribed. Theoreticalresultson the asymptoticperformance
of the procedureare given and somesimulationsare per
formedshaving goodagreementvith thetheory It is seen
that nearly optimal performancecan be attainedby jointly
diagonalizingonly afew spectraimatrices.

1 INTRODUCTION

Blind separatiorof sourceshave receved muchinterestre-
centlybecaus®f its mary applicationsn signalprocessing.
We considerherethe simplestcasein which linearinstanta-
neousmixturesof independensourcesarerecordedandthe
goal is to recover the sourceswithout relying on ary spe-
cific assumptiorother than their mutualindependence.n
mary earlierpapergsee[3] for areview), only the maginal
instantaneoudistributions of the obsenationsenterconsid-
erationandit is thenwell known thatthe useof secondrder
statisticsis insufficient. However, Phamand Garat[9] have
consideredhe caseof coloredsourcesandderived a separa-
tion procedurebasedonly on secondrderlaggedmoments.
Theuseof suchmomentshasalsobeenexploited by Tong et
al. [10] andBelouchranietal. [1]. In this paperwe propose
a novel procedurederived from the Gaussianmutualinfor-
mationcriterion which alsorelieson secondorder statistics
only. It hassomesimilaritiesto the SOBI methodof [1] in
thatit consistsessentiallyof diagonalizingjointly approxi-
matelya setof matrices.However it usesa differentmeasure
of deviation from diagonality not requiringthe constraintof
orthogonalityasin theSOBImethod.Thisis importantsince
suchconstrainimpliesa pre-whiteningstep,which canhave
adwerseeffect on the overall performancenf the method[2].
Further our criterion resultsfrom the well understoodcon-
ceptsof mutualinformationandentropyandthe matricesto
be diagonalizedarise naturally while in the SOBI method
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they arechosenin anadhocmanner It is thennot surpris-
ing thatour methodcannearlyachieze the Cramér-Rao(CR)
bound,asseenin thesimulations.

2 GAUSSIAN MUTUAL
SOURCE SEPARATION

INFORMATION AND

The conceptof mutualinformationis well known and have
beenproposedas a criterion for of sourcesseparation([4],

[6]), butit is normally definedfor a setof randomvariables.
To exploit thetime dependencstructureof thesignal,Pham
[7] hasextendedit to stationaryrandomprocesses.lt is

known thatthe mutualinformationbetweenk” randomvec-
torsYy, ..., Yk equalszfi1 H(Yy)—H(Y1,...,Yg)where
H(Yy) = —Elog fy, (Yx) is the (Shannon)kentropyof Y,

with density fy,, and H(Y1, ..., Yk) is the (joint) entropy
of Y1,..., Yk, thatis the entropyof the vectorobtainedby

stackingthecomponent®f Y1, ..., Y. For astationarypro-
cess{Y(t), t € Z}, Pham[7] definesthe entropy(power)
H[Y (-)] asthelimit asT — oo of H[Y (1),...,Y(T)]/T

andthendefinesthe mutualinformation betweenk jointly

stationaryprocesse¥’ (-), ..., Yk (+) by

K
IYi(), . Ye()] = ZH[Yk(')] - HY1(:), ., Yk ()]

The propertythatthemutualinformationbetweerrandom
variablesis non negative andcanbe zeroonly if they arein-
dependenfseefor ex. [3], [6]) clearlyextendsto the caseof
randomprocessesHowever, the useof mutualinformation
in this caseleadsto costly numericalproceduresand also
complex analysis. Thereforewe introducethe conceptof
GaussiarentropyandGaussiamutualinformation,denoted
by H, and/,, definedin the sameway but with the random
vectorsor processeswolvedbeingreplacedy the Gaussian
vectorsor processebaving thesamecovariancestructure.lt
is known thatfor a K -vectorstationaryprocessy (-):

H,[Y()] = 4i /7r log det[472fy (\)]dA + %

T J_n

wherefy is its spectraldensitymatrix [7]. Thusletting Y7,
..., Yg bethecomponent®f Y:

IQ[Y—]()aJYK()] =



{logdet diag[fy (\)] — logdet fy (\)}dX (1)

ar
Wheredlag(-v ) denoteghe diagonalmatrix with the samedi-
agonalasthatof theindicatedmatrix.

As the Gaussiamimutualinformationinvolvesonly the co-
variancestructure,it measuresn fact only the correlation
(and not dependencefetweenthe sourceprocessesBut it
is still enoughfor sourceseparatiorbecausét alsoincludes
laggedcorrelationandthe mixture modelis linear instanta-
neous Specificallywe shallbe concernedvith themodel

X(t) = AS(1) )

whereX(t) is the vectorsof obsenation, with components
Xi(t), ..., Xk (t) and S(t) is the vector of sourceswith
components (t), ..., Sk(t), andA isa K x K nonsin-
gularmatrix. In theblind context, a sensibleseparatiorpro-
cedures to find amatrix B minimizing 7,[Y1(-), ..., Yr (-)]
whereY;(-) arethecomponent®f BX(.) andrepresenthe
reconstructedgources.The following resultshows that this
criterionis a contrastjn thesenseof [4].

Proposition 1 Assume that the spectral densities fs, of Sk,
k=1, ..., K, are aimost everywhere positive and no
pair of them can be proportional. Then 7,[Y7(+), ..., Yk (-)],
where the Y} (+) are as above and assumed to be not identi-
cally zero, is minimized if and only if BA is a product of a
permutation and a diagonal matrix.

3 THE SEPARATION METHOD

As the spectraldensity fy in (1) will have to be estimated
by alocal average,we begin by replacingit by a smoothed
versionf¥ = Ky » fy where Ky, is a 2r-periodic non
negative kerneltendingthe Dirac combas M — oo andx

denoteghe (circular) corvolution. Then,replacingthe inte-

gral by adiscreteapproximationye obtainthecriterion

L
(), Vi) = 5 S {logdet diaglf (V)
=1

—logdet £/ ()}, (3)
which canbeshawn to retainthe contrasiproperty

Proposition 2 Assumethat £ (\;) = (K * fs,) (M), [ =

1,..., L, are positive and there is no pair j, k& for which the
vectors
MO0 - AT and [ () M ()

are proportional. Then Ié‘/f[l/] (), ..., Yk (-)] where the Y}
are as in Proposition 1, can be zero if and only if BA isa
product of a permutation and a diagonal matrix.

Sincefy = BfYBT wheref = Ky * fx, (3) canbe
consistentlyestimatedy

L

% > " {log det diag[Bf' (\)B™]~log det[Bfy (\)B"]}.
=1

(4)

wherefy is a consistenestimatefor f/. Two classesof
spectrakstimatordave beencommonlyusedin literature:

70 = Z’rZAM( —n?)IN( 2};) (5)

wherely = (27N)~'[S 1, e MX(4)][S o, XX (4)]T
is theperiodogramN beingthe samplesize,and

Ear(u)e ™Ry (u) (6)

whereRy (1) = Yie, X (1)
ancefunctionandkas (u)

(t+r)T is thesamplecovari-
= [ Kar(A)eit A,

3.1 Joint approximate diagonalization algorithm

Thecriterion (4) canbeviewed asa measuref global devi-
ation from diagonalityof the matricesBf (\,)BT, 1 = 1,

., L, asdet M < det diag(M) for ary positive matrix M,
with equalityif andonly if M is diagonal(by the Hadamard
inequality see[5], exercise15.51). Thus minimizing (4)
amountgo diagonalizingointly approximatelythe matrices
£2(N), ..., £¥ (A1) An efiicientalgorithmfor thispurpose
hasbeenderived by the author[8] andis briefly described
here.Thealgorithmusesheclassiclacobiapproactof mak-
ing successie transformationsnonorthogonaln generalpn
eachpairof rowsof B. Let B;. andB;. denoteapair of rows
of B, thealgorithmchangeshemto

[Bla]_ 2 [0 hinBZa]
BjA 1_4hijhji hji 0 BjA !

where

with

This operationis appliedto all pairsof rows (which consti-
tutesa sweepthenrepeatedgainuntil convergence.

3.2 On-lineprocessing
Often ks (u) is chosenof the form k(u/M) for somelag
window generatotk with support[—1, 1]. Thenformula(6)
requiresonly the evaluationof Ry (0), ..., Ry (M — 1)
which canbedoneon-line. But thereis abettermethod.De-
composeky asky(u) = S3°0_ ki (v — w)ki 2 (v).

Thenit canbe checkedhat(5) canbewritten as

B0 = o 3 (52X )k + X))

t=—o0



whereX, (t) = ¢X(t) if 1 < ¢ < N, = 0 otherwise.This
suggestestimatingf () by the outputof a smoothingfil-

ter appliedto (k}i}” * XA)(t)(kj(}/2 * XT)(t). Oncethees-
timatesf (A1), ..., f¥ (\;) have beenobtained(on-line),
theirjoint approximateliagonalizatiorcanbedoneby apply-
ing only onesweepof theaborve algorithm,startingwith the
mostrecentdiagonalizingmatrix, becausehis matrix should
bealreadycloseto thesolution.

4 ASYMPTOTIC PROPERTIES OF THE ESTIMA-
TOR

We provide heresomeresultson the asymptoticoehaior of
theestimatoB obtainedrom theminimizationof (4), asthe
samplesize N goesto infinity with M andA4, ..., Ay, fixed

Proposition 3 There exists a random permutation matrix P
such that the matrix C = PBA has off diagonal elements
converging almost surely to zero.

It is naturalto measuref the separatiomuality by thera-
tiosC;/Ci, 1 < i # j < K, whereC}; aretheelementsof
C. It canbeshown thattheseelementsatisfythe equations

zf m/\ém
Zkal kls k (l)y =0, lgiyéjSK,

Zk ,m=1 zkfs km()‘ )éim
wherefd,  denotethe elementf £/ = A~ !fx(A~1)T.
By Propositior3 andthelndependencef thesourcesit may

befurthershavn thatthe(]zj/(]“, 1 <i#j <K havethe
sameasymptotiadistribution astheCjZ /C% solutionof

* * L
Ch, Cn 1100
L =1 fst ( )

+ —
Ci O
wheref¥ = £, = Ky * fs, and

wji 1<i#j<K (7)

1 L
wii = Z;fé‘f(kz)/fé‘f()\l)-

Moreover, the right handsideof (7) canberewritten as
1 N
7 2 (8 xS () (®)
t=1

whereh ! (j) arethe Fourier coeficientsof

Z (A= X)/ % ()

and S[N]( t) = Si[l+ (¢t —1) (mod N)] in the caseof
formula(5) orS[N]( t) = Si(t) if 1 <t < N,= 0 otherwise,
in the caseof formula(6).

Thevectorwith componentsheright handsideof (8) can
be shavn to be asymptoticallynormalwith meanzeroand
covariancematrix block diagonalwith diagonalblocks

Hs; (A)

Gy 2m M A
0= 2 L 00, 00 | i) |4 ) ¥

Onethendeduceghatthe vectorwith component@ij/éii,
1 < i # j < K is asymptoticallynormalwith meanzero
and covariancematrix block diagonalwith diagonalblocks
Q. G(”)ﬂ( ! /N, Whereﬂ(m is the 2 x 2 matrix with

(ZJJ
Wi, Wi ON thedlagonalandl elsavhere.

5 SOME SIMULATION EXAMPLES

We presentsomesimulationsto assesshe performanceof
our methods We considetthe caseof two source®beying an
autorgressve (AR) modelof order2 with AR polynomials
having comple rootsandcoeficientsgivenbelow.

source?
AR polesAR coef.
BeF2T/%E 0, — 64
9eFi27/4 0, — 81

EXp. sourcel

AR poles AR coef.
1 | .8%B7/10 9405, .64
2 | .85e%127/5 5253,—.7225

Experimentl correspondso the easycasewherespectral
peaksof the sourcesare well separatewvhile experiment2
correspondso the difficult casewherethey are closerand
alsomorepronounced.To seetheeffect of M for resolving
thespectrapeakswe have plottedonthe samefiguresl and
2 the true spectrafs, andtheir expectedestimatedor two
choicesM = 8 andM = 16 andfor theParzenkernel

—6(u/M)*(1 — |u/M]), 0<|ul< M/2
k() = 20— lu/MP,  MJ2<|ul< M
0 u>M

Thesefiguresshaow that our spectralestimatorshave a quite
large bias. However, aswill be seenbelow, our separation
methodstill performsreasonablyvell.
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Figurel: Spectraof thetwo sourcesn experimentl (solid)
andtheir expectedestimatesisingthe Parzenkernelwith pa-
rameterM = 8 (dash)and M = 16 (dot-dash)

The mixing matrix A is takento be 1]; but, as

-1 1
it can be easily shavn, the performanceof our methodis
independentf A, only the numberof iterationsrequiredby
thealgorithmto corverge may beaffected.



Figure2: Spectraof thetwo sourcesn experiment2 (solid)
andtheir expectedestimatesisingthe Parzenkernelwith pa-
rameterM = 8 (dash)and M = 16 (dot-dash)

The simulationresultsare reportedin table 1. We have
computedthe empirical covariancematrix (without center
ing) of the randomvector[C15/C1y Ca1/Cs2/]T basedon
1000 simulationtrials. For comparisonwe multiply these
matricesby the samplesize N = 256 andalsolist the cor
respondingtheoreticalasymptoticcovariancematrix (com-
putedwith two choicesof .) andthe CR bounds.The aver
age(acrossthe trials) of the numberof neededterationsis
alsoreported.

It canbeseerthattheasymptoticovariancematrixis very
closeto the CR bound,especiallyfor the highervalueof M
(= 16) andfor the experimentl. Evenin worstcase(exper
iment2, M = 8) it is still not very far from the CR bound,
althoughthe spectralbiasis quite large, asseenin figure 2.
Also, theuseof alargevalueof I (= 512) insteadof . = M
is seento have no appreciable. Note that by taking A; of
theform (21 — 1)=/L, 1 = 1, ..., L/2, only L/2 matri-
cesneededo be diagonalizedby symmetry Turningto the
empiricalcovariancematricesof the estimatorspnecansee
thatthey aresomevhathigherthanthetheoreticabsymptotic
values. This may be attributedto the finite samplingeffect,
sincethe CR bound,in nonlinearestimationproblems,is a
strict boundand can be attainedonly asymptotically Still
the performanceof our estimatorelative to the CR boundis
quite respectabldat samplesize 256). Finally, onecansee
thatourjoint diagonalizatioralgorithmcornvergesquitefast.
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