
Free/Open Source Software Development: Recent
Research Results and Emerging Opportunit ies

W alt Scacchi
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455 USA

Wscacchi@ics.uci.edu

ABSTRACT
The focus of this paper is to review what is known about free and
open source software development (FOSSD) work practices,
development processes, project and community dynamics, and
other socio-technical relationships. It focuses on exploring how
FOSS is developed and evolved based on an extensive review of
a set of empirical studies of FOSSD projects that articulate
different levels of analysis. These characterize what has been
analyzed in FOSSD studies across levels that examine (i) why
individuals participate; (ii) resources and capabilities
supporting development activities; (iii) how cooperation,
coordination, and control are realized in projects; (iv) alliance
formation and inter-project social networking; (v) FOSS as a
multi-project software ecosystem, and (vi) FOSS as a social
movement. Next, there is a discussion of limitations and
constraints in the FOSSD studies so far. Last, attention shifts to
identifying emerging opportunities for future FOSSD studies
that can give rise to the development of new software
engineering tools or techniques, as well as to new empirical
studies of software development.

Categories and Subject Descriptors
D.2.0 Software, SOFTWARE ENGINEERING, General
K.4.2 Computing Milieux, COMPUTERS AND SOCIETY, Social
Issues

General Terms: Design, Documentation, Human Factors,
Management

Keywords: Free software, open source software, empirical
studies, socio-technical relationships, software development
practices

1. INTRODUCTION
This paper examines and compares practices, patterns, and
processes that emerge in empirical studies of free/open source
software development (FOSSD) projects. FOSSD is a way for
building, deploying, and sustaining large software systems on a
global basis, and differs in many interesting ways from the
principles and practices traditionally advocated for software
engineering (SE) [Somerville 2004]. FOSSD is not software

engineering done poorly. Instead, FOSSD is different. It is a
community intensive approach to the development of software
systems and related artifacts and communications are openly
accessible and publicly available over the Web. Thousands of
FOSS systems are now in use by thousands to millions of end-
users, and some of these FOSS systems entail hundreds-of-
thousands to millions of lines of source code. So what’s going
on here, and how are FOSSD processes that are being used to
build and sustain these projects different, and how might
differences be employed to explain what’s going on with
FOSSD, and why? This paper seeks to provide some answers,
though it does so by drawing extensively on a larger and more
comprehensive study found elsewhere [54], which may be
consulted for further study and details.

1.1 What is FOSS/D?
Free (as in freedom/liberty) software and open source software
are often treated as the same thing [e.g., 16,32]. However, there
are differences between them with regards to the licenses
assigned to the respective software. Free software generally
appears licensed with the GNU General Public License (GPL),
while OSS may use either the GPL or some other license that
allows for the integration of software that may not be free
software. Free software can be seen as a social movement [cf. 12],
whereas OSS is just a software development methodology,
according to free software advocates like Richard M. Stallman
and the Free Software Foundation.

The hallmark of free software and most OSS is that the source
code is available for remote access, open to study and
modification, and available for redistribution to other with few
constraints, except the right to insure these freedoms. OSS
sometimes adds or removes similar freedoms or copyright
privileges depending on which OSS copyright and end-user
license agreement is associated with a particular OSS code base.
More simply, free software is always available as OSS, but OSS
is not always free software.

FOSS developers are typically also end-users of the FOSS they
develop, and other end-users often participate in and contribute
to FOSSD efforts. There is also widespread recognition that
FOSSD projects can produce high quality and sustainable
software systems that can be used by thousands to millions of
end-users [41]. Subsequently, what is known about SE processes
may not be equally applicable to FOSSD processes without
some explicit rationale or empirical justification. Thus, it is
appropriate to review what is known about FOSSD.

1.2 Results from recent studies of FOSSD
There are a growing number of studies that offer some insight or
findings on FOSSD practices each in turn reflects on different
kinds of processes that are to sample a set of studies that raise

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC/FSE’07, September 3-7, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009…$5.00.

interesting issues or challenging problems for understanding
what affects how FOSSD efforts are accomplished, as what kinds
of socio-technical relationships emerge along the way to
facilitate these efforts. As such, consider the research findings
reported below as starting points for further investigation,
rather than as defining characteristics of most or all FOSSD
projects or processes.

We now turn to examine what has been analyzed in FOSSD
studies across different levels that examine why individuals
participate in FOSSD efforts; what resources and capabilities
shared by individuals and groups developing FOSS; projects as
organizational form for cooperating, coordinating, and
controlling FOSS development effort; alliance formation and
inter-project social networking; FOSS as a multi-project
software ecosystem, and FOSS as a social movement. These
levels thus span the study of FOSSD from individual participant
to social world.

2. INDIVIDUAL PARTICIPATION IN
FOSSD PROJECTS
One of the most common questions about FOSSD projects to
date is why will software developers join and participate in such
efforts, often without pay for sustained periods of time.
Sometimes they may simply see their effort as something that is
fun, personally rewarding, or provides a venue where they can
exercise and improve their technical skill or competence in a
manner that may not be possible within their current job or line
of work [7,60]. However, people who participate, contribute, and
join FOSS projects tend to act in ways where building trust and
reputation, achieving “geek fame”, being creative, advancing
through evermore challenging technical roles [31], as well as
giving and being generous with one’s time, expertise, and
source code [3] are valued traits.

Many FOSS developers participate in and contribute to multiple
FOSSD projects, possibly in different roles. In one study, 5% of
developers surveyed reported participating in 10 or more
FOSSD projects [24]. Administrators of FOSS project Web sites
and source code repositories also serve as gatekeepers in the
choices they make for what information to post, when and where
within the site to post it, as well as what not to post. Similarly,
they may choose to create a site map that constitutes a
classification of site and domain content, as well as outlining
community structure and boundaries. Most frequently,
participants in FOSS projects engage in online discussion
forums or threaded email messages as a central way to observe,
participate in, and contribute to public discussions of topics of
interest to ongoing project participants [64].

The vast majority of source code that becomes part of FOSS
released by a project is typically developed by a small group of
core developers who control the architecture and direction of
development [cf. 41]. Subsequently, most participants typically
contribute to just a single module, though some modules may
be include patches or modifications contributed by hundreds of
contributors.

3. RESOURCES AND CAPABILITIES
SUPPORTING FOSSD
What kinds of resources or development capabilities are needed
to help make FOSS efforts more likely to succeed? Based on
what has been observed and reported across many empirical
studies of FOSSD projects, the following kinds of socio-

technical resources enable the development of both FOSS
software and ongoing project that is sustaining its evolution,
application and refinement, though other kinds of resources
may also be involved [51,52,53].

3.1 Personal software development
resources
FOSS developers, end-users, and other volunteers often provide
their own personal computing resources in order to access or
participate in a FOSS development project. They similarly
provide their own access to the Internet, and may even host
personal Web sites or information repositories. Furthermore,
FOSS developers bring their own choice of tools and
development methods to a project. Sustained commitment of
personal resources helps subsidize the emergence and evolution
of the ongoing project, its shared (public) information artifacts,
and resulting open source code. It spreads the cost for creating
and maintaining the information infrastructure of the virtual
organization that constitute a FOSSD project [7,12,44].

3.2 Beliefs supporting FOSSD
Why do software developers and others contribute their skill,
time, and effort to the development of FOSS and related
information resources? Though there are probably many diverse
answers to such a question, it seems that one such answer must
account for the belief in the freedom to access, study, modify,
redistribute and share the evolving results from a FOSS
development project. Without such belief, it seems unlikely that
there could be “free” and “open source” software development
projects [10,11,20]. However, one important consideration that
follows is what the consequences from such belief are, and how
these consequences are put into action.

A longitudinal study of the free software project
GNUenterprise.org [12,13] identified many kinds of beliefs,
values, and social norms that shaped actions taken and choices
made in the development of the free GNUe software. Primary
among them were freedom of expression and freedom of choice.
Neither of these freedoms is explicitly declared, assured, or
protected by free software copyright or commons-based
intellectual property rights, or end-user license agreements
(EULAs). However, they are central tenets free or open source
modes of production and culture [2, Ghosh 2005]. In particular,
in FOSS projects, these additional freedoms are expressed in
choices for what to develop or work on (e.g., choice of work
subject or personal interest over work assignment), how to
develop it (choice of method to use instead of a corporate
standard), and what tools to employ (choice over which personal
tools to employ versus only using what is provided). They also
are expressed in choices for when to release work products
(choice of satisfaction of work quality over schedule),
determining what to review and when (modulated by ongoing
project ownership responsibility), and expressing what can be
said to whom with or without reservation (modulated by trust
and accountability mechanisms). Shared belief and practice in
these freedoms of expression and choice are part of the virtual
organizational culture that characterizes a FOSSD project [13].
Subsequently, putting these beliefs and cultural resources into
action continues to build and reproduce socio-technical
interactions networks that enabled sustained FOSSD projects
and free software.

3.3 FOSSD informalisms
Software informalisms [51] are the information resources and
artifacts that participants use to describe, proscribe, or prescribe
what’s happening in a FOSSD project. They are informal
narrative resources that are comparatively easy to use, and
publicly accessible to those who want to join the project, or just
browse around. Subsequently, [51] and others [34] demonstrate
how software informalisms can take the place of formalisms, like
“requirement specifications” or software design notations which
are seen as necessary to develop high quality software according
to the SE community [cf. 59]. Yet these software informalisms
often capture the detailed rationale and debates for why changes
were made in particular development activities, artifacts, or
source code files.

The most common types of informalisms used in FOSSD
projects include (i) communications and messages within
project Email lists, (ii) threaded message discussion forums,
bulletin boards, or group blogs, (iii) news postings, (iv) project
digests, and (v) instant messaging or Internet relay chat. They
also include (vi) scenarios of usage as linked Web pages, (vii)
how-to guides, (viii) to-do lists, (ix) FAQs, and other itemized
lists, and (x) project Wikis, as well as (xi) traditional system
documentation and (xii) external publications. FOSS (xiii)
project property licenses are documents that also help to define
what software or related project content are protected resources
that can subsequently be shared, examined, modified, and
redistributed. Finally, (xiv) open software architecture diagrams,
(xv) intra-application functionality realized via scripting
languages like Perl and PhP, and the ability to either (xvi)
incorporate plug-in externally developer software modules, or
(xvii) integrate software components, modules, or scripts from
other OSSD efforts, are all resources that are used as needed
according to the interests or actions of project participants.

All of the software informalisms are found or accessed from
(xviii) project related Web sites or portals. These Web
environments where most FOSS software informalisms can be
found, accessed, studied, modified, and redistributed [51]. A
Web presence helps make visible the project’s information
infrastructure and the array of information resources that
populate it. These include (xix) FOSSD multi-project Web sites
(e.g., SourgeForge.net, Savanah.org, Freshment.org, Tigris.org,
Apache.org, Mozilla.org), community software Web sites (PhP-
Nuke.org), and (xx) project-specific Web sites (e.g.,
www.GNUenterprise.org), as well as (xxi) embedded project
source code Webs (directories), (xxii) project repositories (CVS
[19]), and (xxii) software bug reports and (xxiv) issue tracking
data base like Bugzilla (see hwww.bugzilla.org/).

Together, these 20+ types of software informalisms constitute a
substantial yet continually evolving web of informal, semi-
structured, or processable information resources. This web
results from the hyperlinking and cross-referencing that
interrelate the contents of different informalisms together.
Subsequently, these FOSS informalisms are produced, used,
consumed, or reused within and across FOSS development
projects.

3.4 Competently skilled, self-organizing,
and self-managed FOSS developers
Developing complex software modules for FOSS applications
requires skill and expertise in a target application domain. For
example, contributing to a FOSSD project like Filezilla, requires
knowledge and skill in handling file transfer conditions, events,

and protocols. Developing FOSS modules or applications in a
way that enables an open architecture requires a base of prior
experience in constructing open systems. The skilled use of
project management tools for tracking and resolving open
issues, and also for bug reports contribute to the development
of such system architecture. These are among the valuable
professional skills that are mobilized, brought to, or drawn to
FOSS development projects [cf. 6,7]. These skills are resources
that FOSS developers bring to their projects.

FOSS developers organize their work as a virtual organizational
form that seems to differ from what is common to in-house,
centrally managed software development projects, which are
commonly assumed in traditional SE textbooks. In the
decentralized virtual organization of a large ongoing FOSSD
project like the Apache.org or Mozilla.org, a skill-based
meritocracy appears [18]. While there may be few explicit rules
about what development tasks should be performed, who should
perform, when, why, or how, this is not to say there are no rules
that serve to govern the project or collective action within it.

The rules of governance and control are informally articulated
but readily recognized by project participants. These rules serve
to control the rights and privileges that developers share or
delegate to one another in areas such as who can commit source
code to the project’s shared repository for release and
redistribution [cf. 19,20]. Similarly, rules of control are
expressed and incorporated into the open source code itself in
terms of how, where, and when to access system-managed data
via application program interfaces, end-user interfaces, or other
features or depictions of overall system architecture. But these
rules may and do get changed through ongoing project
development. Subsequently, FOSS project participants self-
organize around the expertise, reputation, and accomplishments
of core developers, secondary contributors, and tertiary
reviewers, as well as other peripheral volunteers.

3.5 Discretionary time and effort of FOSS
developers
Are FOSS developers working for “free” or for advancing their
career and professional development? There are many personal
and professional career oriented reasons for why participants
will contribute their time and effort to the sometimes difficult
and demanding tasks of software development. These include
self-determination, peer recognition, project affiliation or
identification, and self-promotion, as well as belief in the
inherent value of free software.

In the practice of self-determination, no one has the
administrative authority to tell a project member what to do,
when, how, or why. FOSS developers can choose to work on what
interests them personally.

In the practice of peer recognition, a developer becomes
recognized as an increasingly valued project contributor as a
growing number of their contributions make their way into the
core software modules. Also, project contributors who span
multiple FOSS project communities serve as “social gateways”
that increase the ongoing project’s social mass [cf. 40], as well
as affording opportunities for inter-project software
composition and interoperation [30].

In self-promotion, project participants communicate and share
their experiences, perhaps from other application domains or
work situations, about how to accomplish some task, or how to
develop and advance through one’s career. Being able to move
from the project periphery towards the center or core of the

development effort requires not only the time and effort of a
contributor, but also the ability to communicate, learn from, and
convince others as to the value or significance of the
contributions.

The last source of discretionary time and effort that has been
reported is found in the freedoms and beliefs in FOSSD that are
shared, reiterated and put into observable interactions. If a
project participant fails to sustain or reiterate the freedoms and
beliefs codified in the GPL, then it is likely the person’s
technical choice in the project may be called into question [13],
or the person will leave the project.

3.6 Trust and social accountability
mechanisms
Developing complex FOSS source code and applications
requires trust and accountability among project participants.
Though trust and accountability in a FOSSD project may be
invisible resources, ongoing software and project development
work occur only when these intangible resources and
mechanisms for social control are present [cf. Gallivan 2001,
Hertzum, et al. 2002].

These intangible resources (or “social capital”) arise in many
forms. They include (a) assuming ownership or responsibility of
a FOSSD project software module, (b) voting on the approval of
individual action or contribution to ongoing project software
[18], (c) shared peer reviewing [2, 10, 11], and (d) contributing
gifts [3] that are reusable and modifiable common goods. They
also exist through the project’s recognition of a core
developer’s status, reputation, and geek fame. Without these
attributions, FOSS developers may lack the credibility they
need to bring conflicts over how best to proceed to some
accommodating resolution. Finally, as a FOSSD project grows in
terms of the number of contributing developers, end-users, and
external sponsors, then project’s socio-technical mass (i.e., web
of interacting resources) becomes sufficient to insure that
individual trust and accountability to the project are sustained
and evolving, thus enabling social networking externalities
[40].

4. COOPERATION, COORDINATION,
AND CONTROL IN FOSSD PROJECTS
Conflicts arise in both FOSSD and SE projects. Finding ways to
prevent, mitigate, or resolve conflicts becomes part of the cost
(in terms of social capital) that must be incurred by FOSS
developers for progress to occur. Minimizing the occurrence,
duration, and invested effort in such conflicts quickly becomes
a goal for the core developers in an FOSSD project. Similarly,
finding tools and project organizational forms that minimize or
mitigate recurring types of conflicts also becomes a goal for
experienced core developers.

Software version control, as part of a software configuration
management activity, is a recurring situation that requires
coordination but enables stabilization and synchronization of
dispersed and somewhat invisible development work [Grinter
1996]. Tools like CVS, Subversion, Git, and others are being
used in FOSSD projects as both (a) a centralized mechanism for
coordinating and synchronizing FOSS development, as well as
(b) an online venue for mediating control over what software
enhancements, extensions, or architectural revisions will be
checked-in and made available for check-out throughout the
decentralized project as part of the publicly released version [cf.
47].

FOSSD efforts rely on mechanisms and conditions for gentle but
sufficient social control that helps constrain the overall
complexity of the project. These constraints act in lieu of an
explicit administrative authority or software project
management regime that would schedule, budget, staff, and
control the project’s development trajectory with varying
degrees of administrative authority and technical competence
[cf. 59].

Each project team, or CVS repository administrator in it, must
decide what can be checked in, and who will or will not be able
to check-in new or modified software source code content.
Sometimes these policies are made explicit through a voting
scheme [18], or by reference to coding or data representation
standards [28], while in others they are left informal, implicit,
and subject to negotiation as needed. In either situation, version
updates must be coordinated in order for a new system build and
release to take place. Subsequently, those developers who want
to submit updates to the project’s shared repository rely
extensively on online discussions that are supported using
“lean media” such as threaded messages (via discussion forum,
bulletin board, or similar) posted on a Web site [64], rather than
through onerous system configuration control boards. Thus,
software version control, system build and release is a
coordination and control process mediated by the joint use of
versioning, system building, and communication tools [14].

In a FOSSD project meritocracy, software development work
appears to be logically centralized, while being physically
distributed in an autonomous and decentralized manner [44
However, it is neither simply a “cathedral” or a “bazaar”, as these
terms have been used to describe alternative ways of organizing
FOSSD projects. Instead, when meritocracy operates as a virtual
enterprise, it relies on virtual project management (VPM) to
mobilize, coordinate, control, build, and assure the quality of
FOSS development activities [52]. It may invite or encourage
system contributors to come forward and take a shared,
individual responsibility that will serve to benefit the FOSS
collective of user-developers. VPM requires multiple people to
act in the roles of team leader, sub-system manager, or system
module owner in a manner that may be short-term or long-term,
based on their skill, accomplishments, availability and belief in
ongoing project development.

Thus, FOSSD efforts rely on mechanisms and conditions for
gentle but sufficient social control that helps constrain the
overall complexity of the project. These constraints act in lieu
of an explicit administrative authority or software project
management regime that would schedule, budget, staff, and
control the project’s development trajectory with varying
degrees of administrative authority and technical competence
[cf. 59].

5. ALLIANCE FORMATION, INTER-
PROJECT SOCIAL NETWORKING AND
COMMUNITY DEVELOPMENT
How does the gathering of FOSS developers give rise to a more
persistent self-sustaining organization or project community?
Through choices that developers make for their participation
and contribution to a FOSSD project, they find that there are
like-minded individuals who also choose to participate and
contribute to a project. These software developers find and
connect with each other through FOSSD Web sites and online
discourse in software informalisms (e.g., threaded discussions

on bulletin boards), and they find they share many technical
competencies, values, and beliefs in common.

Becoming a central node in a social network of software
developers that interconnects multiple FOSS projects is also a
way to accumulate social capital and recognition from peers.
However, it also enables the merger of independent FOSS
systems into larger composite ones that gain the critical mass of
core developers to grow more substantially and attract ever
larger user-developer communities [39,53]. “Linchpin
developers” [39] participate in or span multiple FOSSD projects.
In so doing, they create alliances between otherwise
independent FOSSD projects.

Sharing beliefs, values, communications, artifacts and tools
among FOSS developers enables not only cooperation, but also
provides a basis for shared experience, camaraderie, and learning
[cf. 15,27,34,35]. FOSS developers most often participate and
contribute by choice, rather than by assignment, since they find
that conventional software development work provides the
experience of working with others who are assigned to a
development effort, whether or not they find that share technical
approaches, skills, competencies, beliefs or values. As a result,
FOSS developers find they get to work with people that share
their many values and beliefs in common, at least as far as
software development.

Multi-project clustering and interconnection enables small
FOSS projects to come together as a larger social network with
the critical mass [40] needed for their independent systems to be
merged and experience more growth in size, functionality, and
user base. It also enables shared architectural dependencies to
arise (perhaps unintentionally) in the software components or
sub-systems that are used/reused across projects [cf. 9,47].
FOSSD Web sites also serve as hubs for distributed cognition
that centralize attention for what is happening with the
development of the focal FOSS system, its status, participants
and contributors, discourse on pending/future needs, etc.

The values and beliefs associated with free software or open
source software are both signaled and institutionalized in the
choice of intellectual property licenses (e.g., GPL) that FOSSD
projects adopt and advocate. These licenses in turn help
establish norms for developing free software or open source
software, as well as for an alliance with other FOSSD projects
that use the same licenses.

Almost half of the over 150K FOSS projects registered at
SourceForce.net Web portal (as of July 2007) employ the GNU
General Public License (GPL) for free/libre software. The GPL
seeks to preserve and reiterate the beliefs and practices of
sharing, examining, modifying and redistributing FOSS
systems and assets as common property rights for collective
freedom [2]. A few large FOSSD projects seek to further protect
the collective free/open intellectual property rights through the
formation of legally constituted non-profit organizations or
foundations (e.g., Free Software Foundation, Apache Software
Foundation, GNOME Foundation) [45]. Other OSS projects,
because of the co-mingling of assets that were not created as free
property, have adopted variants that relax or strengthen the
rights and conditions laid out in the GPL. Dozens of these
licenses now exist, with new ones continuing to appear (cf.
www.opensource.org). Finally, when OSSD projects seek to
engage or receive corporate sponsorship, and the possible co-
mingling of corporate/proprietary intellectual property, then
some variation of a non-GPL open source license is employed,
as a way to signal a “business friendly” OSSD project, and thus

to encourage participation by developers who want to work in
such a business friendly and career enhancing project [23,62].

Community building, alliance forming, and participatory
contributing are essential and recurring activities that enable
FOSSD projects to persist without central corporate authority.
Thus, linking people, systems, and projects together through
shared artifacts and sustained online discourse enables a
sustained social network [38,39] and socio-technical
community, Web-based information infrastructure [30], and
network of alliances [28,34,42] to emerge.

6. FOSS AS A MULTI-PROJECT
SOFTWARE ECOSYSTEM
As noted above, many FOSSD projects have become
interdependent through the networking of software developers,
development artifacts, common tools, shared Web sites, and
computer-mediated communications. What emerges from this is
a kind of multi-project software ecosystem, whereby ongoing
development and evolution of one FOSS system gives rise to
propagated effects, architectural dependencies, or
vulnerabilities in one or more of the projects linked to it [4, 30].

Interdependencies within a FOSS ecosystem are most apparent
when FOSSD projects share source code modules, components,
or sub-systems, as well as common (linchpin) developers. In
such situations, the volume of source code of an individual
FOSSD project may appear to grow at a super-linear or
exponential rate [53,56] when modules, components, or sub-
systems are integrated in whole into an existing FOSS system
[53]. Such system growth patterns therefore seem to challenge
the well-established laws of software evolution [36,37]. Thus,
software evolution in a multi-project FOSS ecosystem is a
process of co-evolution of interrelated and interdependent
FOSSD projects, people, artifacts, tools, code, and project-
specific processes [e.g., 4,43,61,65].

It seems reasonable to observe that the world FOSSD is not the
only place where multi-project software ecosystems emerge, as
software sharing or reuse within traditional software
development enterprises is common [29,48]. However, the
process of the co-evolution of software ecosystems found in
either traditional or FOSSD projects in mostly unknown, though
some study has begun [48]. Thus, co-evolution of
interdependent software systems and standards for
interoperation within an FOSS ecosystem represents an
opportunity for research that investigates understanding such a
software evolution process through studies supported by
modeling and simulation techniques [1,30,55].

Overall, FOSS systems co-evolve with their development
communities. This means the evolution of one depends on the
evolution of the other. Said differently, a FOSS project with a
small number of developers (most typically one) will not
produce and sustain a viable system unless/until the team
reaches a larger critical mass of 5-15 core developers. However,
if and when critical mass is achieved, then it may be possible for
the FOSS system to grow in size and complexity at a sustained
exponential rate, defying the laws of software evolution that
have held for decades [36,37,53]. Furthermore, user-developer
communities co-evolve with their systems in a mutually
dependent manner [13,43,45,51,65], and system architectures
and functionality grow in discontinuous jumps as independent
FOSS projects decide to join forces [e.g., 43,53]. Whether this
trend is found in traditional or closed source software projects
is unclear. But what these findings and trends do indicate is that

it appears that the practice of FOSS development processes is
different from the processes traditionally advocated for SE.

7. FOSS AS A SOCIAL MOVEMENT
Social movements reflect sustained and recurring large-scale
collective activities within a society. Social movements can be
characterized by (a) their recurring structural forms (e.g.,
boundaries around movement sub-segments, multiple centers of
activity, and social networks that link the segments and centers)
and venues for action, (b) ideological beliefs, and (c)
organizations whose purpose is to advance and mobilize
broader interest in the movement [58]. The OSS movement arose
in the 1990’s [10,12,63] from the smaller, more fervent “free
software” movement [Gay 2003] started in the mid 1980’s.

The OSS movement is populated with thousands of OSS
development projects, each with its own Web site. Whether the
OSS movement is just another computerization movement [cf.
12,32], or is better recognized as a counter-movement to the
proprietary or closed source world of commercial software
development is unclear. For example, executives from
proprietary software firms have asserted that that OSS
(specifically that covered by the GNU Public License or “GPL”)
is a cancer that attaches itself to intellectual property [22].
However, other business sources seem to clearly disagree with
such characterizations and see OSS as an area for strategic
investment [21,46].

More than 150K projects are registered at OSS portals like
SourceForge.org, while other OSS portals like Freshment.org,
and Tigris.org contain thousands more. However, the vast
majority of these OSS projects at SourceForge appear to be
inactive, with less than two contributing developers, as well as
no software available for download, evaluation, or enhancement.
Nonetheless, at least a few thousand OSS projects seem to garner
most of the attention and community participation, but no one
project defines or leads the OSS movement. The Linux Kernel
project is perhaps the most widely known OSS project, with its
celebrity leaders, like Linus Torvalds. Ironically, The Linux
Kernel is also the most studied OSS project. However, there is no
basis to indicate that how things work in this project prescribe
or predict what might be found in other successful OSS projects.
Thus, the OSS movement is segmented about the boundaries of
each OSS project, though some of the larger project
communities have emerged as a result of smaller OSS projects
coming together.

In contrast to the OSS movement, Richard M. Stallman initiated
the free software movement [cf. 12,13]. Its participants or
advocates identify their affiliation and commitment by openly
developing and sharing their software following the digital
civil liberties expressed in the GPL. The GPL is a license
agreement that promotes and protects software source code
using the GPL copyright to always be available (always assuring
a “copy left”), that the code is open for study, modification, and
redistribution, with these rights preserved indefinitely.
Furthermore, any software system that incorporates or integrates
free software covered by the GPL, is asserted henceforth to also
be treated as free software. This so-called “viral” nature of the
GPL is seen by some to be an “anti-business” position, which is
the most commonly cited reason for why other projects have
since chose to identify them as open source software [Fink
2003]. However, new/pre-existing software that does not
integrate GPL source code is not infected by the GPL, even if
both kinds of software co-exist on the same computer or

operating system, or that access one another through open or
standards-based application program interfaces.

Overall, recognizing the free software and OSS have facilitated
the emergence of global-scale social (or computerization)
movements, indicates that FOSS is increasingly permeating
society at an industrial, governmental, and international level,
and is doing so in ways that no prior software technology or
development method has come close to achieving. Why this has
come about, what consequences it portends for the future of
FOSS, and whether corporate or public (government) policy
initiatives will increasingly address the development, adoption,
deployment, usage, and support of FOSS applications and
projects, all require further study. But is also in clear that it is
increasingly unlikely the any company, government, or nation
can successfully inhibit the near-term and mid-term societal
dispersion of FOSS or the FOSS movements.

8. DISCUSSION AND LIMITATIONS
One of the defining characteristics of data about the FOSSD
projects is that in general is it publicly available on a global
basis [25,39,40,53]. Data about FOSSD products, artifacts, and
other resources is kept in repositories associated with a
project’s Web site [cf. 26]. This may include the site’s content
management system, computer mediated communication
systems (email, persistent chat facilities, and discussion
forums), software versioning or configuration management
systems, and networked file systems. FOSSD process data is
generally either extractable or derivable from data/content in
these artifact repositories. First-person data may also be
available to those who participate in a project, even if just to
remotely observe (“lurk”) or to electronically interview other
participants about development activities, tools being used, the
status of certain artifacts, and the like. The availability of such
data perhaps suggest the a growing share of empirical SE
research will be performed in the domain of FOSSD projects,
rather than using traditional sources of data from in-house or
proprietary software development projects that have constraints
on access and publication. FOSSD process data collection from
publicly accessible artifact repositories may also be found to be
more cost-effective compared to studies of traditional closed-
source, proprietary, and in-house software development
repositories [cf. 5,26].

The modest sample of studies of FOSSD cited above is drawn
from a larger set of studies reviewed elsewhere [54]. However,
though this review does not examine the alternative research
methods employed in different empirical studies of FOSSD, it is
worth noting that such studies cover a wide range of empirical
methods. These include reflective practice and industry polls,
systematic surveys, ethnographic studies, mining FOSSD
artifact or informalism repositories, and multi-modal modeling
and analysis of FOSSD socio-technical interaction networks [cf.
50,55].

FOSSD is certainly not a panacea for developing complex
software systems, nor is it simply SE done poorly. Instead, it
represents an alternative community-intensive socio-technical
approach to develop software systems, artifacts, and social
relationships. However, it is not without its limitations and
constraints. Thus, we should be able to help see these limits as
manifest within the level of analysis or research for empirical
FOSSD studies examined above.

First, in terms of participating, joining, and contributing to
FOSS projects, an individual developer’s interest, motivation,

and commitment to a project and its contributors is dynamic
and not indefinite [cf. 49]. Some form of reciprocity and self-
serving or intrinsic motivation seems necessary to sustain
participation, whereas a perception of exploitation by others can
quickly dissolve a participant’s commitment to further
contribute, or worse to dissuade other participants to abandon
an open source project that has gone astray.

Second, in terms of cooperation, coordination, and control,
FOSS projects do not escape conflicts in technical decision-
making, or in choices of who gets to work on what, or who gets
to modify and update what. As FOSS projects generally lack
traditional project managers, then they must become self-reliant
in their ability to mitigate and resolve outstanding conflicts
and disagreements. Beliefs and values that shape system design
choices, as well as choices over which software tools to use, and
which software artifacts to produce or use, are determined
through negotiation rather than administrative assignment.
Negotiation and conflict management then become part of the
cost that FOSS developers must bear in order for them to have
their beliefs and values fulfilled. It is also part of the cost they
bear in convincing and negotiating with others often through
electronic communications to adopt their beliefs and values.
Time, effort, and attention spent in negotiation and conflict
management represent an investment in building and sustaining
a negotiated socio-technical network of dependencies.

Third, in terms of forming alliances and building community
through participation, artifacts, and tools points to a growing
dependence on other FOSS projects. The emergence of non-
profit foundations that were established to protect the property
rights of large multi-component FOSS project creates a demand
to sustain and protect such foundations. If a foundation
becomes too bureaucratic as a result to streamline its operations,
then this may drive contributors away from a project. So, these
foundations need to stay lean, and not become a source of
occupational careers, in order to survive and evolve. Similarly,
as FOSS projects give rise to new types of requirements for
community building, community software, and community
information sharing systems, these requirements need to be
addressed and managed by FOSS project contributors in roles
above and beyond those involved in enhancing the source code
of a FOSS project. FOSS alliances and communities depend on a
rich and growing web of socio-technical relations. Thus, if such
a web begins to come apart, or if the new requirements cannot be
embraced and satisfied, then the FOSS project community and
its alliances will begin to come apart.

Fourth, in terms of the co-evolution of FOSS systems and
community, as already noted, individual and shared resources of
people’s time, effort, attention, skill, sentiment (beliefs and
values), and computing resources are part of the socio-technical
web of FOSS. Reinventing existing software systems as FOSS
coincides with the emergence or reinvention of a community
who seeks to make such system reinvention occur. FOSS
systems are common pool resources that require collective
action for their development, mobilization, use, and evolution.
Without the collective action of the FOSS project community,
the common pool will dry up, and without the common pool, the
community begins to fragment and disappear, perhaps to search
for another pool elsewhere.

Last, empirical studies of FOSSD are expanding the scope of
what we can observer, discover, analyze, or learn about how large
software systems can be or have been developed. In addition to
traditional methods used to investigate FOSSD like reflective
practice, industry polls, survey research, and ethnographic

studies, comparatively new techniques for mining software
repositories [26] and multi-modal modeling and analysis of the
socio-technical processes and networks found in sustained
FOSSD projects [50,55] show that the empirical study of FOSSD
is growing and expanding. This in turn will contribute to and
help advance the empirical science in fields like SE, which
previously were limited by restricted access to data
characterizing large, proprietary software development projects.
Thus, the future of empirical studies of software development
practices, processes, and projects will increasingly be cast as
studies of FOSSD efforts.

9. OPPORTUNITIES FOR FOSSD AND
SE
There are a significant number of opportunities and challenges
that arise when we look to identifying which software
development or socio-technical interaction practices found in
studies of FOSSD projects might be applied in the world of SE.
Some of these opportunities follow. However, it is perhaps
surprising to observe that it is unclear whether the world of
FOSSD is interested in adopting the best practices found in the
world of SE, since after all, why would software developers seek
out to engage in FOSSD projects and practices is they were the
same or less than those found in SE? As such, let us consider the
opportunities for what FOSSD might contribute to the world SE.

First, FOSS poses the opportunity to favorably alter the costs
and constraints of accessing, analyzing, and sharing software
process and product data, metrics, and data collection
instruments. FOSSD is thus poised to alter the calculus of
empirical SE [5,25,53]. Software process discovery, modeling,
and simulation research [e.g., 55] is one arena that can take
advantage of such a historically new opportunity. Similarly, the
ability to extract or data mine software product content (source
code, development artifacts) within or across FOSS project
repositories [26] to support its visualization,
restructuring/refactoring, or redesign is likely to be a high-
yield, high impact area for SE study and experimentation.
Another would be examining the effectiveness and efficiency of
traditional face-to-face-to-artifact SE approaches or processes
for software inspections [e.g., 57] compared to the online peer
reviews prevalent in FOSSD efforts.

Second, based on results from studies of motivation,
participation, role migration, and turnover of individual FOSS
developers, it appears that the SE community would benefit
from empirical studies that examine similar conditions and
circumstances in conventional software development
enterprises. Current SE textbooks and development processes
seem to assume that individual developers have simple
technical roles and motivations driven by financial
compensation, technical education, and seek the quality
assuring rigor that purportedly follows from the use of formal
notations and analytical schemes. Said simply, is FOSSD more
fun, more interesting, and more rewarding than SE?

Third, based on results from studies of resources and
capabilities employed to support FOSSD projects, it appears
that conventional software cost estimation or accounting
techniques (e.g., “total cost of operation” or TCO) are limited to
analyzing resources or capabilities that are easily quantified or
monetized. This in turns suggests that many social and
organizational resources/capabilities are slighted or ignored,
thus producing results that miscalculate the diversity of

resources and capabilities that affect the ongoing/total costs of
software development projects, whether FOSS or SE based.

Fourth, based on results from studies of cooperation,
coordination, and control in FOSSD projects, it appears that
virtual project management and socio-technical role
migration/advancement can provide a slimmer and lighter
weight approach to SE project management. However, it is
unclear whether we will see corporate experiments in SE that
choose to eschew traditional project management and
administrative control regimes in favor of enabling software
developers the freedom of choice and expression that may bee
necessary to help provide the intrinsic motivation to self-
organize and self-manage their SE project work.

Fifth, based on results of studies on alliance formation, inter-
project social networking, community development, and multi-
project software ecosystems, it appears that SE projects
currently operate at a disadvantage compared to FOSSD projects.
In SE projects, it is commonly assumed that developers and end-
users are distinct communities, and that software evolution is
governed by market imperatives, the need to extract maximum
marginal gains (profit), and resource-limited software
maintenance effort. SE efforts are setup to produce systems
whose growth and evolution is limited, rather than capable of
sustaining exponential growth of co-evolving software
functional capability and developer-user community.

Last, based on studies of FOSS as a social movement, it appears
that there is an opportunity and challenge for encouraging the
emergence of a social movement that combines the best
practices of FOSSD and SE. The world of open source software
engineering (OSSE) is the likely locus of collective action that
might enable such a movement to arise. For example, the
community Web portal for Tigris.org is focused on cultivating
and nurturing the emerging OSSE community. Nearly 1000
OSSE projects are currently affiliated with this portal and
community. It might therefore prove fruitful to closely examine
different samples of OSSE projects at Tigris.org to see which SE
tools, techniques, and concepts are being brought to bear and to
what ends in different OSS projects.

10. CONCLUSIONS
Free and open source software development is emerging as an
alternative approach for how to develop large software systems.
FOSSD employs new types and new kinds of socio-technical
work practices, development processes, and community
networking when compared to those found in industrial
software projects, and those portrayed in software engineering
textbooks [59]. As a result, FOSSD offer new types and new
kinds of practices, processes, and organizational forms to
discover, observe, analyze, model, and simulate. Similarly,
understanding how FOSSD practices, processes, and projects are
similar to or different from traditional SE counterparts is an area
ripe for further research and comparative study. Many new
research opportunities exist in the empirical examination,
modeling, and simulation of FOSSD activities, efforts, and
communities.

FOSSD project source code, artifacts, and online repositories
represent and offer new publicly available data sources of a size,
diversity, and complexity not previously available for research,
on a global basis. For example, software process modeling and
simulation research and application has traditionally relied on
an empirical basis in real-world processes for analysis and
validation. However, such data has often been scarce, costly to

acquire, and is often not available for sharing or independent re-
analysis for reasons including confidentiality or non-disclosure
agreements. FOSSD projects and project artifact repositories
contain process data and product artifacts that can be collected,
analyzed, shared, and be re-analyzed in a free and open source
manner.

Last, through a survey of empirical studies of FOSSD projects
and other analyses presented in this article, it should be clear
there are an exciting variety and diversity of opportunities for
new research into software development processes, work
practices, project/community dynamics, and related socio-
technical interaction networks. Thus, you are encouraged to
consider how your efforts to research or apply FOSSD concepts,
techniques, or tools can be advanced through studies that
examine FOSSD activities, artifacts, and projects.

11. ACKNOWLEDGMENTS
The research described in this paper has been supported by
grants #0083075, #0205679, #0205724, #0350754, and
#0534771 from the U.S. National Science Foundation. No
endorsement implied.

12. REFERENCES
[1] Antoniades, I.P., Samoladas, I., Stamelos, I., Angelis, L., and

Bleris, G.L., Dynamic Simulation Models of the Open Source
Development Process, in [32], 174-202, 2005.

[2] Benkler, Y. The Wealth of Networks: How Social Production
Transforms Markets and Freedom, Yale University Press,
New Haven, CT, 2006.

[3] Bergquist, M. and Ljungberg, J., The power of gifts:
organizing social relationships in open source
communities, Info. Systems J., 11, 305-320, 2001.

[4] Capaluppi, A. and Michlmayr, M., From the Cathedral to the
Bazaar: An Empirical Study of the Lifecycle of Volunteer
Community Projects, in [OSS07], 31-44, 2007.

[5] Cook, J.E., Votta, L.G., and Wolf, A.L., Cost-Effective
Analysis of In-Place Software Processes, IEEE Trans.
Software Engineering, 24(8), 650-663, 1998.

[6] Crowston, K. and Howison, J., Hierarchy and centralization in
free and open source software team communications,
Knowledge Technology & Policy, 18(4), Winter, 65-85,
2006.

[7] Crowston, K., and Scozzi, B., Open Source Software Projects
as Virtual Organizations: Competency Rallying for Software
Development, IEE Proceedings--Software, 149(1), 3-17,
2002..

[8] Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M. and Succi,
G., (Eds.), Open Source Systems, IFIP Vol. 203, Springer,
Boston, 2006.

[9] De Souza, C. R. B., Froehlich, J., and Dourish, P., Seeking the
Source: Software Source Code as a Social and Technical
Artifact. Proc. ACM Intern. Conf. Supporting Group Work
(GROUP 2005), Sanibel Island, Florida, 197-206, 2005.

[10] DiBona, C., Cooper, D., and Stone, M., Open Sources 2.0,
O’Reilly Media, Sebastopol, CA. 2005.

[11] DiBona, C., Ockman, and Stone, M., Open Sources: Voices
from the Open Source Revolution, O’Reilly Media,
Sebastopol, CA, 1999.

[12] Elliott, M.S., Examining The Success of Computerization
Movements in the Ubiquitous Computing Era: Free and
Open Source Software Movements, in [33], 2008.

[13] Elliott, M. and Scacchi, W., Free Software Development:
Cooperation and Conflict in A Virtual Organizational
Culture, in [32], 152-172, 2005.

[14] Erenkrantz, J., Release Management within Open Source
Projects, Proc. 3rd. Workshop on Open Source Software
Engineering, 25th. Intern. Conf. Soft. Eng., Portland, OR,
May 2003.

[15] Espinosa, J. A., Kraut, R.E., Slaughter, S. A., Lerch, J. F.,
Herbsleb, J. D., Mockus, A., Shared Mental Models,
Familiarity, and Coordination: A Multi-method Study of
Distributed Software Teams. Intern. Conf. Information
Systems, Barcelona, Spain, December. 425-433, 2002.

[16] Feller, J., Fitzgerald, B., Hissam, S. and Lakhani, K. (Eds.),
Perspectives on Free and Open Source Software, MIT Press,
Cambridge, MA, 2005.

[17] Feller, J., Fitzgerald, B., Scacchi, W., and Sillitti, A., (Eds.),
Open Source Development, Adoption and Innovation, IFIP
Vol. 234, Springer, Boston, 2007.

[18] Fielding, R.T., Shared Leadership in the Apache Project.
Communications ACM, 42(4), 42-43, 1999.

[19] Fogel, K., Open Source Development with CVS, Coriolis
Press, Scottsdale, AZ, 1999.

[20] Fogel, K., Producing Open Source Software: How to Run a
Successful Free Software Project, O’Reilly Press,
Sebastopol, CA, 2005.

[21] Goldman, R. and Gabriel, R.P., Innovation Happens
Elsewhere: Open Source as Business Strategy, Morgan
Kaufmann Publishers, San Francisco, CA, 2005.

[22] Greene, T.C., Ballmer: “Linux is a Cancer”, The Register,
http://www.theregister.co.uk/2001/06/02/ballmer_linux_is
_a_cancer/, 2 June 2001.

[23] Hann, I-H., Roberts, J., Slaughter, S., and Fielding, R.,
Economic Incentives for Participating in Open Source
Software Projects, in Proc. Twenty-Third Intern. Conf.
Information Systems, 365-372, 2002.

[24] Hars, A. and Ou, S., Working for Free? Motivations for
participating in open source projects, Intern. J. Electronic
Commerce, 6(3), 25-39, 2002.

[25] Harrison, W., Editorial: Open Source and Empirical Software
Engineering, Empirical Software Engineering, 6(2), 193-
194, 2001.

[26] Howison, J., Conklin, M., and Crowston, K., FLOSSmole: A
Collaborative Repository for FLOSS Research Data and
Analyses. Intern. J. Info. Tech. and Web Engineering, 1(3),
17-26, 2006.

[27] Huntley, C.L., Organizational Learning in Open-Source
Software Projects: An Analysis of Debugging Data, IEEE
Trans. Engineering Management, 50(4), 485-493, 2003.

[28] Iannacci, F. Beyond Markets and Firms: The Emergence of
Open Source Networks, First Monday, 10(5), 2005.

[29] Jaaski, A. Experiences on Product Development with Open
Source Software, in [OSS07], 85-96. 2007.

[30] Jensen, C. and Scacchi, W., Process Modeling Across the
Web Information Infrastructure, Software Process —
Improvement and Practice, 10(3), 255-272, 2005.

[31] Jensen, C. and Scacchi, W., Role migration and advancement
processes in OSSD projects: A comparative case study, in
Proc. 29th Intern. Conf. Soft. Eng., ACM, Minneapolis, MN,
364-374, 2007.

[32] Koch, S. (Ed.), Free/Open Source Software Development, IGI
Publishing, Hershey, PA, 2005.

[33] Kraemer, K.L. and Elliott, M. (Eds.), Computerization
Movements and Technology Diffusion: From Mainframes to
Ubiquitous Computing, Information Today, Inc., to appear,
2008.

[34] Lanzara, G.F. and Morner, M., Artifacts rule! How organizing
happens in open source software projects, in B. Czarniawska
and T. Hernes (Eds.), Actor-Network Theory and Organizing,
Liber & Copenhagen Business School Press, Malmo,
Sweden, 197-206, 2005.

[35] Lave, J. and Wenger, E., Situated Learning: Legitimate
Peripheral Participation, Cambridge University Press,
Cambridge, UK, 1991.

[36] Lehman, M.M., Programs, Life Cycles, and Laws of Software
Evolution, Proc. IEEE, 68, 1060-1078, 1980.

[37] Lehman, M.M., Software Evolution and Software Evolution
Processes, Annals of Software Engineering, 12, 275-309,
2002.

[38] Lopez-Fernandez, L., Robles, G., Gonzalez-Barahona, J.M.,
and Herraiz, I., Applying Social Network Analysis to
Community-Driven Libre Software Projects, Intern. J. Info.
Tech. and Web Engineering, 1(3), 27-28, 2006.

[39] Madey, G., Freeh, V., and Tynan, R., Modeling the F/OSS
Community: A Quantitative Investigation, in [32], 203-221,
2005.

[40] Marwell, G. and Oliver, P., The Critical Mass in Collective
Action: A Micro-Social Theory. Cambridge University Press,
Cambridge, England, 1993.

[41] Mockus, A., Fielding, R., & Herbsleb, J.D., Two Case Studies
of Open Source Software Development: Apache and Mozilla,
ACM Trans. Soft. Eng. Meth., 11(3), 309-346, 2002.

[42] Monge, P.R., Fulk, J., Kalman, M.E., Flanagin, A.J., Parnassa,
C., and Rumsey, S., Production of Collective Action in
Alliance-Based Interorganizational Communication and
Information Systems, Organization Science, 9(3), 411-433,
1998.

[43] Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., and
Ye,Y., Evolution Patterns of Open-Source Software Systems
and Communities, Proc. 2002 Intern. Workshop Principles
of Software Evolution, 76-85, 2002.

[44] Noll, J. and Scacchi, W., Supporting Software Development
in Virtual Enterprises, J. Digital Information, 1(4), February,
http://jodi.tamu.edu/Articles/v01/i04/Noll/, 1999.

[45] O’Mahony, S. Guarding the Commons: How Community
Managed Software Projects Protect their Work, Research
Policy 32(7), 1179-1198, 2003.

[46] OSBC, Open Source Business Conference,
http://www.osbc.com, (accessed 15 July 2006, 30 June
2007).

[47] Ovaska, P., Rossi, M. and Marttiin, P. Architecture as a
Coordination Tool in Multi-Site Software Development,
Software Process—Improvement and Practice, 8(3), 233-
247, 2003.

[48] Robles, G., Duenas, S., and Gonzalez-Baharona, J.M.,
Corporate Involvement in Libre Software: Study of Presence
in Debian Code over Time, in [OSS07], 121-132, 2007.

[49] Robles, G. and Gonzalez-Baharona, J.M., Contributor
Turnover in Libre Software Projects, in [8], 273-286, 2006.

[50] Sack, W., Detienne, F., Ducheneaut, Burkhardt, Mahendran,
D., and Barcellini, F., A Methodological Framework for
Socio-Cognitive Analyses of Collaborative Design of Open
Source Software, Computer Supported Cooperative Work,
15(2/3), 229-250, 2006.

[51] Scacchi, W., Understanding the Requirements for
Developing Open Source Software Systems, IEE
Proceedings--Software, 149(1), 24-39, 2002.

[52] Scacchi, W., Free/Open Source Software Development
Practices in the Computer Game Community, IEEE Software,
21(1), 59-67, 2004.

[53] Scacchi, W., Understanding Free/Open Source Software
Evolution, in N.H. Madhavji, J.F. Ramil and D. Perry (Eds.),
Software Evolution and Feedback: Theory and Practice,
John Wiley and Sons Inc, New York, 181-206, 2006.

[54] Scacchi, W. Free/Open Source Software Development: Recent
Research Results and Methods, in M. Zelkowitz (Ed.),
Advances in Computers, 69, 243-295, 2007.

[55] Scacchi, W., Jensen, C., Noll. J. and Elliott, M.E. Multi-Modal
Modeling, Analysis and Validation of Open Source Software
Development Processes, Intern. J. Internet Technology and
Web Engineering, 1(3), 49-63, 2006.

[56] Schach, S.R., Jin, B., Wright, D.R., Heller, G.Z., and Offutt,
A.J., Maintainability of the Linux Kernel, IEE Proceedings –
Software, 149(1), 18-23, 2002.

[57] Seaman, C.B. and Basili, V., Communication and
Organization: An Empirical Study of Discussion in
Inspection Meetings, IEEE Trans. Software Engineering,
24(6), 559-572, 1998.

[58] Snow, D.A., Soule, S.A., and Kriesi, H., The Blackwell
Companion to Social Movements, Blackwell Publishers Ltd.,
Victoria, Australia, 2004.

[59] Sommerville, I., Software Engineering, 7th Edition, Addison-
Wesley, New York, 2004.

[60] von Krogh, G., Spaeth, S., and Lakhani, K., Community,
Joining, and Specialization in Open Source Software
Innovation: A Case Study, Research Policy, 32(7), 1217-
1241, 2003.

[61] Weiss, M., Moroiu, G. and Zhao, P., Evolution of Open
Source Communities, in [8], 21-32, 2006.

[62] West, J. and O’Mahony, S., Contrasting Community
Building in Sponsored and Community Founded Open
Source Projects, Proc. 38th. Hawaii Intern. Conf. Systems
Sciences, Waikola Village, HI, 2005.

[63] West, J. and Dedrick, J., The Effect of Computerization
Movements Upon Organizational Adoption of Open Source,
in [33], 2008.

[64] Yamauchi, Y., Yokozawa, M., Shinohara, T., and Ishida, T.,
Collaboration with Lean Media: How Open-Source Software
Succeeds, Proc. Computer Supported Cooperative Work
Conf. (CSCW’00), Philadelphia, PA, ACM Press, 329-338,
2000.

[65] Ye, Y., Nakajoki, K., Yamamoto, Y., and Kishida, K., The
Co-Evolution of Systems and Communities in Free and
Open Source Software Development, in [32], 59-82. 2005.

