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Abstract

We consider a strategic game, where players submit jobs to a machine that executes
all jobs in a way that minimizes energy while respecting the given deadlines. The energy
consumption is then charged to the players in some way. Each player wants to minimize
the sum of that charge and of their job’s deadline multiplied by a priority weight. Two
charging schemes are studied, the proportional cost share which does not always admit
pure Nash equilibria, and the marginal cost share, which does always admit pure Nash
equilibria, at the price of overcharging by a constant factor.

keywords scheduling, energy management, quality of service, optimization, mechanism
design.

1 Introduction

In many computing systems, maximizing quality of service comes generally at the price of
a high energy consumption. This is also the case for the speed scaling scheduling model
considered in this paper. It has been introduced in [16], and triggered a lot of work on offline
and online algorithms; see [1] for an overview.

The online and offline optimization problem for minimizing flow time while respecting a
maximum energy consumption has been studied for the single machine setting in [15, 2, 6, 9]
and for the parallel machines setting in [3]. For the variant where an aggregation of energy
and flow time is considered, polynomial approximation algorithms have been presented in
[8, 4, 12].

In this paper we propose to study this problem from a different perspective, namely as
a strategic game. In society many ecological problems are either addressed in a centralized
manner, like forcing citizens to sort household waste, or in a decentralized manner, like tax
incentives to enforce ecological behavior. This paper proposes incentives for a scheduling
game, in form of an energy cost charging scheme.

Consider a scheduling problem for a single processor, that can run at variable speed,
such as the modern microprocessors Intel SpeedStep, AMD PowerNow! or IBM EnergyScale.
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Higher speed means that jobs finish earlier at the price of a higher energy consumption.
Each job has some workload, representing a number of instructions to execute, and a release
time before which it cannot be scheduled. Every user submits a single job to a common
processor, declaring the job parameters, together with a deadline, that the player chooses at
his convenience.

The processor will schedule the submitted jobs preemptively, so that all release times and
deadlines are respected and the overall energy usage is minimized. The energy consumed by
the schedule needs to be charged to the users. The individual goal of each user is to minimize
the sum of the energy cost share and of the requested weighted deadline. The weight is a
private priority factor representing the individual importance of a small deadline. This factor
includes implicitly a conversion factor that allows for an aggregation of the deadline and
energy consumption into a single individual penalty.

In a companion paper [10] we study this game from the point of view of the game regulator,
in a different setting. The players announce with their job their priority factors, and the
regulator gets to decide on the completion time of the jobs. The usual questions one asks
for such a game, is the existence of a cost sharing mechanism that would be truthful on the
priority factors and which charge to the players amounts that sum up to a value comparable
within a constant factor to the actual energy consumption of the schedule. This contrasts
with the setting considered in this paper, where the player’s strategies are the job’s deadlines.

2 The model

Formally, we consider a non-cooperative game with n players and a regulator. The regulator
manages the machine where the jobs are executed. Each player has a job i with a workload
wi, a release time ri and a priority pi, representing a quality of service coefficient. The player
submits its job together with a deadline di > ri to the regulator. Workloads, release times
and deadlines are public information known to all players, while quality of service coefficients
can be private.

The regulator implements some cost sharing mechanism, which is known to all users.
This mechanism defines a cost share function bi specifying how much player i is charged. The
penalty of player i is the sum of two values: his energy cost share bi(w, r, d) defined by the
mechanism, where w = (w1, . . . , wn), r = (r1, . . . , rn), d = (d1, . . . , dn) are the input values,
and his waiting cost, which can be either pidi or pi(di − ri); we use the former waiting cost
throughout the article but all our results apply to both settings. The sum of all player’s
penalties, i.e., energy cost shares and waiting costs will be called the utilitarian social cost.

The regulator computes a minimum energy schedule for a single machine in the speed
scaling model. In this model at any point in time t the processor can run at some speed
s(t) ≥ 0. As a result, for any time interval I, the workload executed in I is

∫
t∈I s(t) dt at

the price of an energy consumption valuated at
∫
t∈I s(t)

α dt for some fixed physical constant
α ∈ [2, 3] which is device dependent [7].

The sum of the energy used by this optimum schedule and of all the players’ waiting costs
will be called the effective social cost.

The minimum energy schedule can be computed in time O(n2 log n) [11] and has (among
others) the following properties [16]. The jobs in the schedule are executed by preemptive
earliest deadline first order (EDF), and the speed s(t) at which they are processed is piecewise
constant. Preemptive EDF means that at every time point among all jobs which are already
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released and not yet completed, the job with the smallest deadline is executed, using job
indexes to break ties.

The cost sharing mechanism defines the game completely. Ideally, we would like the game
and the mechanism to have the following properties.

existence of pure Nash equilibria This means that there is always a strategy profile vec-
tor d such that no player can unilaterally deviate from his strategy di while strictly
decreasing his penalty.

budget balance The mechanism is c-budged balanced, when the sum of the cost shares is
no smaller than the total energy consumption and no larger than c times the energy
consumption. Ideally we would like c to be close to 1.

In the sequel we introduce and study two different cost sharing mechanisms, namely
Proportional Cost Sharing where every player pays exactly the cost generated during
the execution of his job, and Marginal Cost Sharing where every player pays the increase
of energy cost generated by adding this player to the game.

3 Proportional cost sharing

The proportional cost sharing is the simplest budget balanced cost sharing scheme one can
think of. Every player i is charged exactly the energy consumed during the execution of his
job. Unfortunately this mechanism does not behave well as we show in Theorem 1.

Fact 1. In a single player game, the player’s penalty is minimized by the deadline

r1 + w1(α− 1)1/αp
−1/α
1 .

Proof. If player 1 chooses deadline d1 = r1 + x, then his job is processed in the time interval
[r1, r1 + x] at speed w1/x. Therefore his penalty is

p1(r1 + x) + x1−αwα1 .

Differentiating this expression in x, and using the fact that the penalty is concave in x for
any x > 0 and α > 0, we have that the optimal x for the player will set the derivative to zero.
This implies the claimed deadline.

If there are at least two players however, the game does not have nice properties as we
show now.

Theorem 1. The Proportional Cost Sharing does not always admit a pure Nash equi-
librium.

The proof consists of an example consisting of two identical players with identical jobs,
say w1 = w2 = 1, r1 = r2 = 0 and p1 = p2 = 1. First we determine the best response of
player 1 as a function of player 2. Then we conclude that there is no pure Nash equilibrium.
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argument value applicable range

d11 = d2 + (α− 1)1/α g1(d2) = d2 + α (α− 1)1/α−1 d2 ≤ τ3 τ3 = (α− 1)1/α

d21 = 2
(
α−1
2

)1/α
g2(d2) = α

(
α−1
2

)1/α−1
τ1 ≤ d2 ≤ τ5 τ1 =

(
α−1
2

)1/α
, τ5 = 2τ1

d31 = d2
2 g3(d2) = d2/2 + (d2/2)1−α d2 ≤ τ6

d41 = (α− 1)1/α g4(d2) = α(α− 1)1/α−1 d2 ≥ τ6 τ6 = 2(α− 1)1/α

Table 1: The local minimum in the range of f corresponding to fi is a function of α and d2,
which we denote by di1. The value at such local minimum is again a function of α and d2,
which we denote by gi(d2). These are only conditional minima: they exist if and only if the
condition given in the last column is satisfied.

Lemma 1. Given the second player’s choice d2, the penalty of the first player as a function
of his choice d1 is given by

f(d1) =


f1(d1) = d1 + (d1 − d2)1−α if d1 ≥ 2d2

f2(d1) = d1 + (d12 )1−α if d2 ≤ d1 ≤ 2d2

f3(d1) = d1 + (d22 )1−α if d2
2 ≤ d1 ≤ d2

f4(d1) = d1 + d1−α1 if d1 ≤ d2
2 .

(1)

The local minima of f(d1) are summarized in Table 1, and the penalties corresponding to
player 1 picking these minima are illustrated in Figure 1.
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Figure 1: First player’s penalty (in bold) when choosing his best response as a function of
second player’s strategy d2, here for α = 3. As seen on the plot, τ2 (τ4), formally defined in
Lemma 2, is the argument for which g1 and g2 (g2 and g3) attain the same value.

Proof. Formula (1) follows by a straightforward case inspection. Then, to find all the local
minima of f , we first look at the behavior of each of fi, finding its local minima in their
respective intervals, and afterwards we inspect the border points of these intervals.
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Range of f1: The derivative of f1 is

f ′1(d1) = 1− (α− 1)(d1 − d2)−α, (2)

whose derivative in turn is positive for α > 1. Hence, f1 has a local minimum at d11 as
specified. The existence of this local minimum requires d21 ≥ 2d2.

Range of f2: The derivative of f2 is

f ′2(d1) = 1− α− 1

2
(d1/2)−α, (3)

whose derivative in turn is positive for α > 1. Hence, f2 has a local minimum at d21
as specified. The existence of this local minimum requires d2 ≤ d21 ≤ 2d2, which is
equivalent to d31/2 ≤ d2 ≤ d21.

Range of f3: f3 is an increasing function, and therefore it attains a minimum value only at
the lower end of its range, d21. However, if d31 is to be a local minimum of f , there can
be no local minimum of f in the range of f4 (immediately to the left), so the applicable
range of d31 is the complement of that of d41.

Range of f4: The derivative of f4 is

f ′4(d1) = 1− (α− 1)d−α1 ,

whose derivative in turn is positive for α > 1. Therefore, f4 has a local minimum at
d41 as specified. Since we require that this local minimum is within the range where f
coincides with f4, the necessary and sufficient condition is d41 ≤ d2/2.

Now let us consider the boundaries of the ranges of each fi. Since f3 is strictly increasing,
the border point of the ranges of f3 and f2 is not a local minimum of f . This leaves only the
border point d31 = 2d2 of the ranges of f2 and f1 to consider. Clearly, d31 is a local minimum
of f if and only if f ′2(d

3
1) ≤ 0 and f ′1(d

3
1) ≥ 0. However, by (3), f ′2(d

3
1) = 2− (α− 1)d−α2 , and

by (2), f ′1(d
3
1) = 2− 2(α− 1)d−α2 < f ′2(d

3
1), so d31 is not a local minimum of f either.

Note that the range of g4 is disjoint with the ranges of g2 and g1, and with the exception
of the shared border value 2(α− 1)1/α, also with the range of g3. However, the ranges of g3,
g2 and g1 are not disjoint. Therefore, we now focus on their shared range, and determine
which of the functions gives rise to the true local minimum.

Lemma 2. The functions g2(d2) and g4(d2) are constant, the function g1(d2) is increasing
and linear, and the function g3(d2) is decreasing for d2 ≤ τ6. Moreover, there exist two unique
values τ2 and τ4 with

g1(τ2) = g2(τ2) and g2(τ4) = g3(τ4).

In addition we have
τ1 < τ2 < τ3 < τ5 < τ6

and
τ2 ≤ τ4 < τ5.
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Proof. It follows from their definitions in Table 1 that g2 and g4 are constant and g1 strictly
increasing. In order to show that the g3(d2) is decreasing in the range 0 ≤ d2 ≤ τ6, we show
that its derivative in d2 is non-positive, namely

1

2
− 2α−1(α− 1)d−α2 ≤ 0 ≡

1 ≤ 2α(α− 1)d−α2 ≡
dα2 ≤ 2α(α− 1) ≡
d2 ≤ 2(α− 1)1/α = τ6.

We define τ2 as the unique root of g1(d2) = g2(d2), namely

τ2 = α(α− 1)1/α−1(21−1/α − 1).

Now we show that there is value τ4 such that g3(τ4) = g2. This follows from the fact that
g3 is continuous and decreasing, that its limit at d2 → 0 is ∞ and that g3(τ6) = g4 < g2.

For the bounds on τ4 we need to show

g3(τ5) < g2 ≤ g3(τ2).

We start with the left inequality:

g3 (τ5) = g3

(
2

(
α− 1

2

)1/α
)

=

(
α− 1

2

)1/α(
1 +

2

α− 1

)
=

(
α− 1

2

)1/α−1 α+ 1

2

<

(
α− 1

2

)1/α−1
α.

For the right inequality, we first note that

g3 (τ2) = τ2/2 + (τ2/2)1−α

= τ2(1/2 + (τ2)
−α2α−1)

= α(α− 1)1/α−1(21−1/α − 1)

(
2α−1

(α(α− 1)1/α−1(21−1/α − 1))α
+

1

2

)
,
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hence g3 (τ2) ≥ α
(
α−1
2

)1/α−1
is equivalent to

(21−1/α − 1)

(
2α−1

αα(α− 1)1−α(21−1/α − 1)α
+

1

2

)
≥ 21−1/α ≡

(21−1/α − 1)

(
2α−1

ααα−1(α− 1)1−α(21−1/α − 1)α
− 1

2

)
≥ 1 ≡

2α−1(α− 1)α−1α1−α

α(21−1/α − 1)α
− 1

2
≥ 1

21−1/α − 1
≡

1

α

(
2− 2

α

)α−1
(21−1/α − 1)α

≥ 1

21−1/α − 1
+

1

2
≡

1

α

(
2− 2

α

)α−1(
2−21/α
21/α

)α ≥ 21−1/α + 1

2(21−1/α − 1)
≡

1

α

(
2− 2

α

)α−1
(2− 21/α)α−1(2− 21/α)

2 ≥ (2 + 21/α)2−1/α

2(2− 21/α)2−1/α
≡

1

α

(
2− 2

α

2− 21/α

)α−1
≥ 2 + 21/α

4
.

We claim that for α ≥ 2 we have

2− 2
α

2− 21/α
≥ 1

2−
√

2
. (4)

Since we have equality at α = 2, it suffices to prove that the left hand side is increasing. To
this end, we consider its derivative

2
(

2− 2
1
a − ln 2 · (1− 1

α) · 2
1
α

)
(
α(2− 2

1
α )
)2 =

4− 21+
1
α ·
(
1 + (1− 1

α) ln 2
)(

α(2− 2
1
α )
)2 ,

and note that its enumerator is increasing in α and equals 0 for α = 1. Thus (4) holds.
This permits us to define

z(α) := (2−
√

2)1−α/α,

and to upper bound

1

α

(
2− 2

α

2− 21/α

)α−1
≥ z(α).

In order to lower bound

z(α) ≥ 2 + 21/α

4

for α ≥ 2, it suffices to show that z is increasing with α, since the right hand side is decreasing
with α. Its derivative is

z′(α) = −(2−
√

2)1−α(1 + α ln(2−
√

2))

α2
.
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Observe that α ln(2−
√

2) < −1 for every α ≥ 2, and therefore z′ is positive and z is increasing
as required. This concludes the existence of τ4 with the required properties.

It remains to prove the remaining relations among τ ’s. We begin with

τ1 < τ2 ≡(
α− 1

2

)1/α

< α(α− 1)1/α−1(21−1/α − 1) ≡

2−1/α <
α

α− 1
(21−1/α − 1) ≡

1 <
α

α− 1
(2− 21/α) ≡

α− 1

α
< 2− 21/α ≡

21/α − 1/α < 1.

To prove this inequality, we note that it holds as an equality in the limit α → ∞, and that
the left hand side is increasing in α, since its derivative is

1− 21/α ln(2)

α2
,

which is positive for α ≥ 2.
Now we show

τ2 < τ3 ≡
α(α− 1)1/α−1(21−1/α − 1) < (α− 1)1/α ≡

α(21−1/α − 1) < α− 1 ≡
21−1/α − 1 < 1− 1/α ≡

21−1/α + 1/α < 2.

We observe that the left hand side has value 2 both at α = 1 and in the limit α → ∞. To
conclude that this holds for all α ∈ [1, ∞), we inspect the derivative of the left hand side
with respect to α, which is

21−1/α ln(2)− 1

α2
.

Since 21/α−1 is monotone, there is a unique value α0 = ln 2
ln 2+ln ln 2 ≈ 2.1221 such that

21/α0−1 = ln(2).

In conclusion, the derivative is negative for 1 ≤ α < α0 and then positive for α > α0, so inside
the interval the function never exceeds 2.

The inequality τ3 < τ5 follows from the equality τ5 = 21−1/ατ3, while the inequality τ5 < τ6
follows from the equality τ6 = 21/ατ5. This concludes the proof of the lemma.

With Lemma 1 and Lemma 2, whose statements are summarized in Table 1 and Figure 1,
we can finally determine what is the best response of the first player as a function of d2. The
following corollary follows from the definitions of τ2, τ4 and the inequalities on τ1, . . . , τ6.
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Figure 2: Best response of player 1 as function of d2 (dashed lines), and best response of
player 2 as function of d1 (solid lines). Here for α = 3.

Corollary 1. The best response for player 1 as function of d2 is

d11 = d2 + (α− 1)1/α if 0 < d2 ≤ τ2,

d21 = 2

(
α− 1

2

)1/α

if τ2 < d2 ≤ τ4,

d31 =
d2
2

if τ4 < d2 ≤ τ6,

d41 = (α− 1)1/α if τ6 < d2.

By the symmetry of the players, the second player’s best response is in fact an identical
function of d1 as the one stated in Corollary 1. By straightforward inspection it follows that
there is no fix point (d1, d2) to this game, which concludes the proof of Theorem 1, see Figure 2
for illustration.

4 Marginal cost sharing

In this section we propose a different cost sharing scheme, that improves on the previous one
in the sense that it admits pure Nash equilibria, but does so at the price of overcharging by
a constant factor.

Before we give the formal definition we need to introduce some notations. Let OPT(d)
be the energy minimizing schedule for the given instance, and OPT(d−i) be the energy mini-
mizing schedule for the instance where job i is removed. We denote by E(S) the energy cost
of schedule S.

In the marginal cost sharing scheme, player i pays the penalty function

pidi + E(OPT(d))− E(OPT(d−i)).

This scheme defines an exact potential game by construction [13]. Formally, let n be the
number of players, D = {d|∀j : dj > rj} be the set of action profiles (deadlines) over the
action sets Di of each player.

9



Let us denote the effective social cost corresponding to a strategy profile d by Φ(d). Then

Φ(d) =
n∑
i=1

pidi + E(OPT(d)).

Clearly, if a player i changes its strategy di and his penalty decreases by some amount ∆,
then the effective social cost decreases by the same amount ∆, because E(OPT(d−i)) remains
unchanged.

4.1 Existence of Equilibria

While the best response function is not continuous in the strategy profile, precluding the use
of Brouwer’s fixed-point theorem, existence of pure Nash equilibria can nevertheless be easily
established.

To this end, note that the global minimum of the effective social cost, if it exists, is a
pure Nash equilibrium. Its existence follows from (1) compactness of a non-empty sub-space
of strategies with bounded social cost and (2) continuity of Φ.

For (2), note that
∑

i pidi is clearly continuous in d, and hence Φ(d) is continuous if
E(OPT(d)) is. The continuity of the latter follows from the fact that E(OPT(d)) is the solu-
tion to a linear program with a convex objective function, with an optimum being continuous
in d [6].

For (1), let d′ be any (feasible) strategy profile such that d′i > ri for each player i. The
subspace of strategy profiles d such that Φ(d) ≤ Φ(d′) is clearly closed, and bounded due to
the pidi terms. Thus it is a compact subspace that contains the global minimum of Φ.

4.2 Convergence can take forever

In this game the strategy set is infinite. Moreover, the convergence time can be infinite as
we demonstrate below in Theorem 2. Note that this also proves that in general there are no
dominant strategies in this game.

Theorem 2. For the game with the marginal cost sharing mechanism, the convergence time
to reach a pure Nash equilibrium can be unbounded.

Proof. The proof is by exhibiting again the same small example, with 2 players, release times
0, unit weights, unit penalty factors, and α > 2. From the previous section, we know that
the game admits a pure Nash equilibrium, and by symmetry of the players, in fact two pure
Nash equilibria. Following [10], the first one is

d1 =

(
α− 1

2

)1/α

, d2 = d1 + (α− 1)1/α,

while the second one is symmetric for players 1 and 2.
In the remainder of the proof, we assume that player 1 chooses a deadline which is close to

the pure Nash equilibrium above. By analyzing the best responses of the players, we conclude
that after a best response of player 2, and then of player 1 again, he chooses a deadline which
is even closer to the pure Nash equilibrium above but still different from it, leading to an
infinite convergence sequence of best responses.

Now suppose that d1 = δ
(
α−1
2

)1/α
for some 1 < δ < 21/α. What is the best response for

player 2?
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Lemma 3. Given the first player’s choice d1, the penalty of the second player as a function
of his choice d2 is given by

h(d2, d1) =


h1(d2, d1) = d2 + d1−α2 + (d1 − d2)1−α − d1−α1 if d2 ≤ d1

2

h2(d2, d1) = d2 + (2α − 1)d1−α1 if d1
2 ≤ d2 ≤ d1

h3(d2, d1) = d2 + 2αd1−α2 − d1−α1 if d1 ≤ d2 ≤ 2d1

h4(d2, d1) = d2 + (d2 − d1)1−α if d2 ≥ 2d1,

and the best response for player 2 as function of d1 is

d1 + (α− 1)1/α = (α− 1)1/α(1 + 2−1/αδ) (5)

Proof. We first analyze the behavior of each of hi, finding their local minima in the respective
intervals, and afterwards we show that the equation (5) defines the best response for player
2 as function of d1. For convenience we omit parameter d1 in each function hi. Figure 3
illustrate the best response for player 2 when player 1 chooses d1 = (α−12 )1/αδ for some δ > 1.

Range of h4: The derivative of h4 in d2 is

1− (α− 1)(d2 − d1)−α,

which is zero exactly for the value

d1 + (α− 1)1/α.

As the second derivative h′′1(d2) = α(α − 1)(d2 − d1)−α−1 is positive, the choice d2 =
d1 + (α − 1)1/α minimizes the penalty among d2 ≥ 2d1. Therefore, h1 has a local
minimum if

(α− 1)1/α ≥ d1 = δ

(
α− 1

2

)1/α

,

which holds by assumption δ < 21/α.

1

d1 d1d2 d2 d1 d2

1 2

d1 d2

d1/2 2d1

2
1 2 1

d1 = δ
(
α−1
2

)1/α
(α− 1)1/α(1 + δ/21/α)
best response

0

2

Figure 3: Best response for player 2.

In that case the penalty would be

d1 + (α− 1)
1−α
α + (α− 1)1/α = (α− 1)1/α(1 + δ/21/α + 1/(α− 1)). (6)

By comparing (6) with the remaining case, we show that it is indeed the best choice for
player 2.
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Range of h3: The derivative of h3 in d2 is

1− 2α(α− 1)d−α2 ,

which is zero for d2 = 2(α− 1)1/α and negative for d2 < 2(α− 1)1/α. As

2(α− 1)1/α > 2δ

(
α− 1

2

)1/α

= 2d1,

the minimum penalty in this range is attained at the right boundary of the interval,

i.e., for d2 = 2d1 = 2δ
(
α−1
2

)1/α
. But at this point the function h, which is continuous,

coincides with h4, which is decreasing in
(
2d1, d1 + (α− 1)1/α

)
. Hence 2d1 is not a local

minimum of h.

Range of h2: h2 is an increasing function, and therefore it attains a minimum value only at
the lower end of its range, which is d1/2 in this case. Clearly, d1/2 is a local minimum
of h if and only if h′1(d1/2) ≤ 0 and h′2(d1/2) ≥ 0. However, we have h′2(d1/2) =
h′1(d1/2) = 1, so d2 = d1/2 is not a local minimum of h either.

Range of h1: We will show that h1 is strictly larger than (6).

Since δ < 21/α, (6) is at most

(α− 1)1/α(2 + 1/(α− 1)) = (α− 1)1/α−1(2α− 1).

To lower bound h1 we use the strict convexity of the function x 7→ x1−α, which implies

2

(
d1−α2

2
+

(d1 − d2)1−α

2

)
> 2

(
d1
2

+
d1 − d2

2

)1−α
= 2αd1−α1 .

Note that d1 < (α−1)1/α implies d1−α1 > (α−1)1/α−1. Combining these, we can finally
strictly lower bound the difference between h1 and the value in (6) by

d2 + (2α − 1)d1−α1 − (α− 1)1/α−1(2α− 1)

> d2 + (2α − 1)(α− 1)1/α−1 − (α− 1)1/α−1(2α− 1)

= d2 + (α− 1)1/α−1(2α − 2α),

which is non-negative since 2α ≥ 2α whenever α ≥ 2.

From now on we assume that player 2 chooses d2 = d1+(α−1)1/α = (α−1)1/α(1+2−1/αδ).
What is the best response for player 1?

Lemma 4. Given the second player’s choice d2, the penalty of the first player as a function
of his choice d1 is given by h(d1, d2) and the best response for player 1 is

d1 = δ′
(
α− 1

2

)1/α

,

for some δ′ ∈ (1, δ).

12



2

0

1
2 1 2

1

d1d2d1d1 d2 d2

d2 = (α− 1)1/α(1 + δ/21/α)d2/2
2d2

best response

d1 = δ′
(
α−1
2

)1/α

(
α−1
2

)1/α
δ
(
α−1
2

)1/α

2 1

d2 d1

Figure 4: Best response for player 1.

Proof. Again player 1 best response is analyzed through a case analysis, similar to the previous
one. Figure 4 illustrates the best response for player 1 when player 2 chose d2 = (α−1)1/α(1+
2−1/αδ) for some δ > 1. As in the previous proof, for convenience we omit parameter d2 in
each function hi.

Range of h1: The first derivative of h1 in d1 is

h′1(d1) = 1 + (α− 1)((d2 − d1)−α − d−α1 )

And the second derivative is

h′′1(d1) = α(α− 1)((d2 − d1)−α−1 + d−α−11 )

which is positive, implying that the penalty is convex in d1.

Now, we show that we have a local minimum for some 1 < δ′ < δ at some value

δ′
(
α− 1

2

)1/α

.

For this purpose we analyze the interval(
α− 1

2

)1/α

≤ d1 ≤ δ
(
α− 1

2

)1/α

.

First we evaluate h′1 at the lower end d1 =
(
α−1
2

)1/α
. In this case

d2 − d1 =

(
α− 1

2

)1/α

(21/α + δ − 1).

This means that

h′1(d1) = 1 + (α− 1)
2

α− 1
(21/α + δ − 1)−α − (α− 1)

2

α− 1

= 2(21/α + δ − 1)−α − 1 < 0 ,

13



as δ > 1 and α > 1.

Secondly, we evaluate the h′1 at the upper end

d1 = δ

(
α− 1

2

)1/α

, (7)

then by d2 − d1 = (α− 1)1/α we obtain

1 + (α− 1)
1

α− 1
− (α− 1)

2

α− 1
δ−α = 2− 2/δα > 0 ,

as δ < 21/α and α > 1. Together with the continuity of the penalty function, it implies
that there is a value 1 < δ′ < δ such that

d1 = δ′
(
α− 1

2

)1/α

is a local minimum.

To conclude we compare this local minimum with the remaining cases, showing the
dominance of this value.

Range of h2: h2 is an increasing function and therefore is minimum at d1 = d2/2. Again,
d1/2 is a local minimum of h if and only if h′1(d2/2) ≤ 0 and h′2(d2/2) ≥ 0. However,
we have h′2(d2/2) = h′1(d2/2) = 1, so d1 = d2/2 is not a local minimum of h either.

Range of h3: In this case, the derivative of the penalty function is

1− (α− 1)2αd−α1

which is zero at
d1 = 2(α− 1)1/α. (8)

Note that the second derivative

h′′3(d1) = α(α− 1)2αd−α−11 > 0

for α > 1, so the penalty is convex, and (8) is a local minimum. It is greater than d2
by δ < 21/α and smaller than 2d2 by δ > 0. Therefore the local minimum belongs to
the range considered in this case.

The penalty at d1 = 2(α− 1)1/α is

2(α− 1)1/α + 2α · 21−α(α− 1)1/α−1 − (α− 1)1/α−1(1 + δ/21/α)1−α

= (α− 1)1/α−1
(

2α− (1− δ/21/α)1−α
)
.

We claim that this penalty is larger than h1 evaluated at (7), eliminating 2(α − 1)1/α

for a best response. For this purpose we need to show

h1

(
δ

(
α− 1

2

)1/α
)

< h3(2(α− 1)1/α)

⇔ δ(α− 1)

21/α
+

21−1/α

δα−1
+ 1 < 2α

⇔ δα(α− 1) + 2 < (2α− 1)21/αδα−1.

14



This holds since

δα−1(2α− 1)21/α − δα(α− 1) = δα−1
(

21/α(2α− 1)− δ(α− 1)
)

> 21/α(2α− 1)− δ(α− 1) > 21/αα > 2,

for any α > 1 because 21/αα increases with α > ln 2 and equals 2 when α = 1.

Range of h4: The derivative of h4 in d2 is

1− (α− 1)(d1 − d2)−α,

which is zero exactly for the value

d2 + (α− 1)1/α.

As the second derivative h′′1(d1) = α(α − 1)(d1 − d2)−α−1 is positive, the choice d1 =
d2+(α−1)1/α minimizes the penalty among d2 ≥ 2d1. However, h1 has a local minimum
if

(α− 1)1/α ≥ d2 = (α− 1)1/α(1 + 2−1/αδ),

which is a contradiction by δ2−1/α > 0

This concludes the proof of Theorem 2.

4.3 Bounding total charge

In this section we bound the total cost share for the Marginal Cost Sharing Scheme,
by showing that it is at least E(OPT(d)) and at most α times this value. In fact we show a
stronger claim for individual cost shares.

Theorem 3. For every player i, its marginal costshare is at least its proportional costshare
and at most α times the proportional costshare.

Proof. Fix a player i, and denote by S−i the schedule obtained from OPT(d) when all exe-
cutions of i are replaced by idle times. Clearly we have the following inequalities.

E(OPT(d−i)) ≤ E(S−i) ≤ E(OPT(d))

Then the marginal cost share of player i can be lower bounded by

E(OPT(d))− E(OPT(d−i)) ≥ E(OPT(d))− E(S−i).

According to [16] the schedule OPT can be obtained by the following iterative procedure.
Let P be the support of a partial schedule. For every interval [t, t′) we define its domain
It,t′ := [t, t′)\P , the set of included jobs Jt,t′ := {j : [rj , dj) ⊆ [t, t′)}, and the density
σt,t′ :=

∑
j∈Jt,t′

wj/|It,t′ |. The procedure starts with P = ∅, and while not all jobs are

scheduled, selects an interval [t, t′) with maximal density, and schedules all jobs from Jt,t′ in
earliest deadline order in It,t′ at speed σt,t′ , then adds It,t′ to P .

15



For the upper bound, let t1 < t2 < . . . < t` be the sequence of all release times and
deadlines for some ` ≤ 2n. For convenience, we denote S = OPT(d) and S′ = OPT(d−i).
Clearly both schedules run at uniform speed in every interval [tk−1, tk). For every 1 ≤ k ≤ n
let sk be the speed of S in [tk−1, tk), and s′k the speed of S′ in the same interval.

From the iterative procedure described above it follows that every job is scheduled at
constant speed. Let s0 be the speed at which job i is scheduled in S. It also follows that if
sk > s0, then s′k = sk, and if sk ≤ s0, then s′k ≤ sk.

We establish the following upper bound.

E(OPT(d))− E(OPT(d−i)) =
∑̀
k=1

sαk (tk − tk−1)− s′αk (tk − tk−1)

=
∑̀
k=1

(tk − tk−1)(sαk − (sk − (sk − s′k))α)

=
∑̀
k=1

(tk − tk−1)sαk
(

1−
(

1−
sk − s′k
sk

)α)

≤
∑̀
k=1

(tk − tk−1)sαk
(

1−
(

1− α
sk − s′k
sk

))

=
∑̀
k=1

(tk − tk−1)αsα−1k (sk − s′k)

≤ αsα−1a

∑̀
k=1

(tk − tk−1)(sk − s′k)

= αsα−1a wi

= α(E(OPT(d))− E(S−i)).

The first inequality uses the generalized Bernoulli inequality, and the last one the fact
that for all k with sk 6= s′k we have sk ≤ sa.

The theorem follows from the fact that sα−1a wi is precisely the proportional cost share of
job i in OPT(d).

A tight example is given by n jobs, each with workload 1/n, release time 0 and deadline
1. Clearly the optimal energy consumption is 1 for this instance. The marginal cost share for
each player is 1− (1− 1/n)α. Finally we observe that the total marginal cost share tends to
α, i.e.

lim
n→+∞

n− n(1− 1/n)α = α.

5 Final remarks

5.1 Cross-monotonicity

The cross-monotonicity is a property of cost sharing games, stating that whenever new players
enter the game, the cost share of any fixed player does not increase. This property is useful
for stability in the game, and is the key to the Moulin carving algorithm [14], which selects a
set of players to be served for specific games.
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In the game that we consider, the minimum energy of an optimal schedule for a set S
of jobs contrasts with many studied games, where serving more players becomes more cost
effective, because the considered equipment is better used.

Consider a very simple example of two identical players, submitting their respective jobs
with the same deadline 1. Suppose the workload of each job is w, then the minimum energy
necessary to schedule one job is wα, while the cost to serve both jobs is (2w)α, meaning that
the cost share increase whenever a second player enters the game. Therefore the marginal
cost sharing scheme is not cross-monotonic.

5.2 Uniqueness of Nash equilibria

In this paper we showed that the deadline game with the marginal cost sharing mechanism
always admits a pure Nash equilibrium. However the Nash equilibrium may not be unique.
Here, a simple example is an instance with n identical players where n! Nash symmetric
equilibria are admitted. For arbitrary instances, the uniqueness of Nash Equilibrium raises
two questions. The first question concerns the comparison of different Nash equilibria in
terms of social cost. If the divergence is significant, then it means that the outcome of the
game can be arbitrary, and may indicate the need for another mechanism, which smooths the
possible resulting Nash equilibria. The second question concerns the characterization of job
sets which lead to a unique Nash equilibrium.

We are interested in this last question, already in the 2 player setting. Here we fixed
normalized quantities p1 = 1, w1 = 1 for the first player, and leave the quantities of the
second player variable. Which points (p2, w2) do admit a unique Nash equilibrium?

The 2 potential Nash equilibria are the following strategy profiles

S21 d2 = `∗2, d1 = `∗2 + `∗1

S12 d1 = `1, d2 = `1 + `2,

where the lengths `1, `2, `
∗
1, `
∗
2 are defined as follows.

`∗2 = w2
(α− 1)1/α

(p1 + p2)1/α
`∗1 = w1

(α− 1)1/α

(p1)1/α
(9)

`1 = w1
(α− 1)1/α

(p1 + p2)1/α
`2 = w2

(α− 1)1/α

(p2)1/α
. (10)

To break the symmetry we consider only points where the social cost of S21 is minimal
among the two profiles. In [10] we showed that these are precisely the points that satisfy

w2 ≤ w1
(p1 + p2)

(α−1)/α − p(α−1)/α1

(p1 + p2)(α−1)/α − p(α−1)/α2

.

For such points, we ask whether one of the players wants to deviate from S12, i.e., the other
potential equilibrium, with larger social cost. Our experiments indicate that, for each player
j ∈ {1, 2}, there is a threshold tj , which depends on p2, such that player j wants to deviate
if and only if w2 ≤ tj . Figure 5 depicts the plots of these threshold functions, determined
numerically. We were unable to rigorously prove their existence, obtain their closed forms, or
relate them to functions studied in [5]. However by choosing α = 2, p1 = w1 = 1 and (p2, w2)
inside the shaded region of Figure 5, one can easily verify that S21 is a unique pure Nash
equilibrium.
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Figure 5: Experimental results for α = 2. Horizontal axis is p2, and vertical axis is w2.
Depicted are the upper bound for w2 and the thresholds t1, t2.
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