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Abstract: Controllability properties are studied for control-affine systems de-
pending on a parameter α and with constrained control values. The uncontrolled
systems in dimension two and three are subject to a homoclinic bifurcation. This
generates two families of control sets depending on a parameter in the involved vector
fields and the size of the control range. A new parameter β given by a split function
for the homoclinic bifurcation determines the behavior of these control sets. It is
also shown that there are parameter regions where the uncontrolled equation has no
periodic orbits, while the controlled systems have periodic solutions arbitrarily close
to the homoclinic orbit.
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1. Introduction. Complete controllability is a rare occurrence for nonlinear
systems with restricted control range. Hence the (maximal) regions in the state space
where complete controllability holds, i.e., control sets, are of interest, cf. Definition
3.1. A basic reference is Colonius and Kliemann [2]. The present paper studies control
sets for parameter dependent systems in dimension two and three near a homoclinic
bifurcation.

Several results for control sets near local bifurcations are available. For transcrit-
ical and pitchfork bifurcations in the one-dimensional case and for Hopf bifurcations,
cf. [2, Section 8.3 and Section 9.3], also for applications to physically relevant systems
and further references. Lamb, Rasmussen, and Rodrigues [14] develop a topological
bifurcation theory for minimal invariant sets (which coincide with invariant control
sets) of set-valued dynamical systems. The only contribution for control sets near a
homoclinic bifurcation is due to Häckl and Schneider [10] who study systems when
the uncontrolled two-dimensional system is obtained by the universal unfolding of a
Takens-Bogdanov singularity. The relation of our results to [10] is discussed in more
detail in Remark 4.4 and Remark 4.10. Control sets near homoclinic and heteroclinic
orbits are also of relevance in the study of models for ship roll motion, cf. Gayer [6, 7]
and Colonius, Kreuzer, Marquardt, and Sichermann [3]. While in the latter references
the uncontrolled and unperturbed system is Hamiltonian, the present paper considers
non-Hamiltonian cases. We use the monograph Kuznetsov [13] as a basic reference
for homoclinic bifurcations, cp. also Guckenheimer and Holmes [8] and Wiggins [19].

We consider control-affine systems in R
d of the form

ẋ(t) = f0(α, x(t)) +

m
∑

i=1

ui(t)fi(α, x(t)), u(t) ∈ U with 0 ∈ U ⊂ R
m, (1.1)

with parameter α ∈ R. The term u(·) can be interpreted as a control or as a time-
dependent deterministic perturbation. The invariant control sets are also of relevance
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for the analysis of associated degenerate Markov diffusion processes, where u is re-
placed by a random disturbance, cf. Kliemann [12]. Furthermore, control sets are
of interest in connection with minimal data rates for control systems, since their
invariance entropy can be computed, cf. Kawan and Da Silva [11].

For the uncontrolled system ẋ = f0(α0, x) and dimension d = 2, a classical
theorem due to Andronov and Leontovich completely describes the bifurcation of an
orbit homoclinic to an hyperbolic equilibrium x0. The saddle quantity σ0 (the sum of
the eigenvalues of ∂f0

∂x
(α0, x0)) and the sign of a parameter β given by a split function

determine the direction of the bifurcation and the stability properties of the periodic
orbits. It turns out that also the properties of control sets for (1.1) are determined
by this new parameter β (instead of α). Furthermore, a main result of this paper
shows that the qualitative behavior of the control system can be different from the
behavior of the uncontrolled system: There are parameter regions where there is no
homoclinic orbit and no limit cycle for the uncontrolled systems while there exist
periodic orbits of the control system arbitrarily close to the homoclinic orbit. The
analysis of homoclinic bifurcations of systems in R

3 goes back to the work by L.P.
Shil’nikov. We will only consider the cases, where unique periodic orbits bifurcate,
the much more complicated case where, in particular, countably many periodic orbits
occur is left for future work.

The contents of this paper are as follows. In Section 2, we introduce notation
used for homoclinic bifurcations and cite relevant results in dimension two and three.
Section 3 recalls properties of control sets and their parameter dependence, when
the control range is perturbed or an external parameter occurs in the vector fields.
Section 4 starts with a discussion of the control sets near an orbit homoclinic to a
hyperbolic equilibrium in dimension d = 2. In dimension d = 3, we analyze the cases
where the equilibrium is a saddle, and a saddle-focus with saddle quantity σ0 < 0.
Section 5 presents an example including numerical results which are based on Häckl’s
algorithm (Häckl [9]). We remark that an alternative for computing control sets are
set oriented methods, cf. Szolnoki [17]. Finally, Section 6 draws some conclusions.

Notation. The Hausdorff distance between two compact subsets A,B ⊂ R
d

is dH(A,B) = max(maxa∈A min{‖a− b‖ |b ∈ B },maxb∈B min{‖a− b‖ |a ∈ A}). The
ball of radius δ > 0 around x ∈ R

d isB(x, δ) = {y ∈ R
d |‖x− y‖ < δ }. It is convenient

to write (as Kuznetsov [13]) Γ0∪x0 for the union of {x0} with an orbit Γ0 homoclinic
to x0.

2. Bifurcation of orbits homoclinic to hyperbolic equilibria. This sec-
tion introduces some notation and cites results on the bifurcation of orbits which are
homoclinic to hyperbolic equilibria. This is done for planar systems in the first sub-
section and for three-dimensional systems in the second subsection We rely on the
presentation in Kuznetsov [13, Chapter 6].

Consider a parameter dependent family of ordinary differential equations in R
d

of the form

ẋ(t) = f(α, x(t)), (2.1)

where f : R× R
d → R

d is a smooth (C∞-)function. We assume that for every α ∈ R

and every initial value x ∈ R
d there exists a unique solution ψα(t, x), t ∈ R, and that

all maps ψα(t, ·) : Rd → R
d, t ∈ R, are continuous. An orbit Γα

x0
:= {ψα(t, x) |t ∈ R}

is called homoclinic to an equilibrium point x0 (i.e., f(α, x0) = 0) if ψα(t, x) → x0 as
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t→ ±∞. Let

Wα,s(x0) = {y ∈ R
d |ψα(t, y) → x0 for t→ ∞},

Wα,u(x0) = {y ∈ R
d |ψα(t, y) → x0 for t→ −∞},

denote the stable and the unstable manifold, resp., of x0.

2.1. The planar case. In this subsection we cite a classical theorem due to An-
dronov and Leontovich on the bifurcation in the plane of orbits which are homoclinic
to hyperbolic equilibria.

Suppose that system (2.1) is planar (d = 2) having for α0 = 0 a saddle equilibrium
x0 = 0, i.e., fx(0, 0) = ∂

∂x
f(0, 0) has a positive and a negative eigenvalue, λ1(0) <

0 < λ2(0). Assume that Γ0 is an orbit which is homoclinic to x0. For α sufficiently
close to α0 = 0, the implicit function theorem implies that there are saddle equilibria
xα with eigenvalues λ1(xα) < 0 < λ2(xα) depending continuously on α.

Let Σ be a (one-dimensional) local cross-section to the stable manifold near the
saddle. Select a coordinate ξ ∈ R along Σ such that the point of its intersection
with the stable manifold Wα0,s(x0) corresponds to ξ = 0. This coincides with the
point of intersection with the unstable manifold Wα0,u(x0) = Wα0,s(x0) = Γ0. For
all α sufficiently close to α0 = 0, Σ is also a local transversal section to the unstable
manifolds Wα,u(xα). Denote by ξu(α) the ξ-value of the intersection of Wα,u(xα)
with Σ. The scalar function α 7→ β(α) := ξu(α) which is defined on a neighborhood
of α0 = 0 is called a split function. The function β(·) is smooth and it is injective if
β′(0) 6= 0.

In the planar case considered here, the homoclinic bifurcation is characterized by
the following theorem due to Andronov and Leontovich, cf. Kuznetsov [13, Theorem
6.1]. Other references include Guckenheimer and Holmes [8, Theorem 6.1.1], Wiggins
[19, Theorem 3.2.11].

Theorem 2.1. Consider a parameter dependent two-dimensional system of the
form (2.1) having at α0 = 0 an orbit Γ0 which is homoclinic to a saddle x0 = 0 with
eigenvalues λ1(0) < 0 < λ2(0). Assume that the following conditions hold:

(H1) σ0 = λ1(0) + λ2(0) 6= 0;

(H2) β
′

(0) 6= 0, where β(α) is a split function.

Then, there exist α > 0 and a neighborhood U0 of Γ0 ∪x0 in which for all |α| < α

a unique limit cycle Lβ(α) bifurcates from Γ0. The limit cycle exists and is asymptot-
ically stable for β > 0 if σ0 < 0, and exists and is unstable for β < 0 if σ0 > 0.

(H1) is a nondegeneracy condition. Due to (H2) the split function α 7→ β(α) is
injective for |α| small enough, hence the inverse α(β) exists for β in a neighborhood of
0 and β can be considered as a new parameter. Thus the unique limit cycle Lβ exists
for sufficiently small |β|. The homoclinic orbit is called “splitting down” if β < 0 and
“splitting up” if β > 0. We remark (cf. Kuznetsov [13, formula (6.25) on p. 232])
that β

′

(0) 6= 0 is equivalent to the Melnikov condition

Mα0
(0) =

∫ +∞

−∞

exp

[

−
∫ t

0

(

∂f1

∂x1
+
∂f2

∂x2

)

dτ

] (

f1
∂f2

∂α
− f2

∂f1

∂α

)

dt 6= 0, (2.2)

where all expressions involving f(0, x1, x2) = (f1(0, x1, x2), f2(0, x1, x2))
⊤ are evalu-

ated along the homoclinic solution of (2.1) at α0 = 0. Hence (H2) is a transversality
condition for the intersection of the stable and unstable manifolds.
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2.2. The three-dimensional case. As exposed in Kuznetsov [13, Section 6.3] a
three-dimensional state space gives rise to a wider variety of homoclinic bifurcations.
We will discuss results for hyperbolic equilibria which are saddles and saddle-foci.
Taking into account also the sign of σ0 there are four main cases, cf. [13, p. 214]. We
will only treat the three simpler cases.

Consider an equation in R
3 of the form (2.1) having at α0 = 0 an orbit Γ0

homoclinic to a hyperbolic equilibrium point x0 = 0. It is also possible to define a
split function in this case, cf. [13, p. 199]. Suppose that the unstable manifold Wu of
x0 is one-dimensional, introduce a two-dimensional cross-section Σ and let the point
ξu correspond to the intersection of Wu with Σ. Then a split function β = ξu can be
defined as before in the planar case. Its zero β = 0 gives a condition for a homoclinic
bifurcation in R

3.

The case of a saddle is described in [13, Theorem 6.3 and Theorem 6.5] as follows.

Theorem 2.2. Consider system (2.1) in R
3 having at α0 = 0 an orbit Γ0

homoclinic to a saddle x0 = 0 with real eigenvalues λ1(0) > 0 > λ2(0) > λ3(0).
Assume that the following conditions hold:

(H1) Γ0 returns to x0 along the eigenspace for λ2(0);

(H2) β′(0) 6= 0, where β(α) is a split function.

(i) Suppose that σ0 = λ1(0) + λ2(0) < 0. Then, there exists a neighborhood U0 of
Γ0 ∪ x0 in which the system has a unique and asymptotically stable limit cycle Lβ for
all sufficiently small β > 0. There are no periodic orbits if β ≤ 0.

(ii) Suppose that σ0 = λ1(0)+λ2(0) > 0 and, additionally, Γ0 is simple or twisted.
Then there exists a neighborhood U0 of Γ0 ∪ x0 in which for all sufficiently small |β|
a unique saddle limit cycle Lβ bifurcates from Γ0. The cycle exists for β < 0 if Γ0 is
simple, and for β > 0 if Γ0 is twisted. In the first case there are no periodic orbits if
β ≥ 0 and in the second case there are no periodic orbits if β ≤ 0.

The assumption in (ii) needs some explanation. Here we suppose that the two-
dimensional stable manifold Wα0,s(x0) intersects itself near the saddle along the two
exceptional orbits on Wα0,s(x0) that approach the saddle along the eigenspace for
λ3(0) (this is called the strong inclination property). This yields a two-dimensional
nonsmooth submanifold which is topologically equivalent to either a simple band or a
twisted band called a Möbius band (cf. also Wiggins [18, Section 4.8A]). In the first
case, Γ0 is called simple, in the second case twisted.

The case of a saddle-focus with σ0 < 0 is described in [13, Theorem 6.4] as follows.

Theorem 2.3. Consider system (2.1) in R
3 having at α0 = 0 an orbit Γ0

homoclinic to a saddle-focus x0 = 0 with eigenvalues satisfying λ1(0) > 0 > Reλ2,3(0)
and λ2(0) 6= λ3(0). Assume that the following conditions hold:

(H1) β′(0) 6= 0, where β(α) is a split function;

(H2) σ0 = λ1(0) + Reλ2,3(0) < 0.

Then exists a neighborhood U0 of Γ0 ∪ x0 in which the system has a unique and
asymptotically stable limit cycle Lβ for all sufficiently small β > 0. There are no
periodic orbits if β ≤ 0.

The remaining case of a saddle-focus with σ0 > 0 is much more complicated and
leads, among others, to infinitely many saddle limit cycles, cf. [13, Theorem 6.6].
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3. Control sets and their parameter dependence. We consider control-
affine systems in R

d of the form

ẋ(t) = f0(x(t)) +

m
∑

i=1

ui(t)fi(x(t)), (3.1)

u ∈ U := {u ∈ L∞(R,Rm) |u(t) ∈ U for almost all t ∈ R} ,

where f0, f1, . . . , fm are smooth vector fields on R
d and the control range U ⊂ R

m is
compact and convex with 0 ∈ intU . We assume that for every initial state x ∈ R

d

and every control function u ∈ U there exists a unique solution ϕ(t, x, u), t ∈ R, with
ϕ(0, x, u) = x of (3.1) depending continuously on x. The system with u ≡ 0 given by

ẋ(t) = f0(x(t)) (3.2)

is called the uncontrolled system. It generates a continuous flow ψ(t, ·), t ∈ R, on R
d.

The set of points reachable from x ∈ R
d and controllable to x ∈ R

d up to time
T > 0 are defined by

O+
≤T (x) := {y ∈ R

d | there are 0 ≤ t ≤ T and u ∈ U with y = ϕ(t, x, u)},
O−

≤T (x) := {y ∈ R
d | there are 0 ≤ t ≤ T and u ∈ U with x = ϕ(t, y, u)},

resp. Furthermore, the reachable set (or positive orbit) from x and the set controllable
to x (or negative orbit of x) are

O+(x) =
⋃

T>0
O+

≤T (x), O−(x) =
⋃

T>0
O−

≤T (x),

resp. The system is called locally accessible in x, if O+
≤T (x) and O−

≤T (x) have nonvoid
interior for all T > 0. This is guaranteed by the accessibility rank condition

dimLA{f0, f1, . . . , fm} (x) = d for all x ∈ R
d, (3.3)

where the left hand side denotes the dimension of the subspace of Rd corresponding
to the vector fields evaluated in x in the Lie algebra LA{f0, f1, . . . , fm} generated by
the vector fields f0, f1, . . . , fm (cf. Sontag [16, Theorem 9, p. 156]).

The following definition introduces subsets of complete approximate controllabil-
ity which are of primary interest in the present paper.

Definition 3.1. A set D ⊂ R
d is called a control set of system (3.1) if it has

the following properties: (i) for all x ∈ D there is a control function u ∈ U such that
ϕ(t, x, u) ∈ D for all t ≥ 0, (ii) for all x ∈ D one has D ⊂ clO+(x), and (iii) D is
maximal with these properties, that is, if D′ ⊃ D satisfies conditions (i) and (ii), then
D

′

= D.
A control set D ⊂ R

d is called an invariant control set if clD = clO+(x) for all
x ∈ D. All other control sets are called variant.

If the intersection of two control sets is nonvoid, the maximality property (iii)
implies that they coincide. If the system is locally accessible in all y ∈ intD, then
intD ⊂ O+(x) for all x ∈ D and D = clO+(x) ∩ O−(y) for all x, y ∈ intD. For these
properties and further discussion of control sets, we refer to Colonius and Kliemann
[2, Chapters 3 and 4].

Next we will discuss the dependence of control sets on parameters. The parame-
ters change the size of the control range or the involved vector fields. First we analyze
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families of control systems of the form

ẋ(t) = f0(x(t)) +

m
∑

i=1

ui(t)fi(x(t)), u(t) ∈ Uρ := ρU, (3.4)

where ρ > 0 and u ∈ Uρ := {u ∈ L∞(R,Rm) |u(t) ∈ Uρ for almost all t ∈ R}. We
suppose that the assumptions on (3.1) are satisfied. Obviously, the accessibility rank
condition (3.3) is independent of ρ > 0.

A subset K ⊂ R
d is called invariant for the uncontrolled system (3.2) if ψ(t, x) ∈

K for all x ∈ K and t ∈ R. An invariant set K ⊂ R
d is called chain transitive if for all

x, y ∈ K and every ε > 0 and T > 0, there exist n ∈ N, points x = x0, x1, . . . , xn =
y ∈ K and times t0, . . . , tn−1 > T such that d(ψ(ti, xi), xi+1) < ε for i = 0, . . . , n− 1.
It is easy to show that an equilibrium, a limit cycle, and an orbit homoclinic to an
equilibrium x0 together with x0 are compact chain transitive sets, but they need not
be maximal (with respect to inclusion).

The following result describes the behavior of control sets for small control ranges.
Theorem 3.2. Consider a family of control-affine systems of the form (3.4). Let

K ⊂ R
d be a compact maximal chain transitive set for the flow of the uncontrolled

system (3.2), assume that the accessibility rank condition (3.3) holds, and the following
inner pair condition holds for all (x, 0) ∈ K × U : there is T > 0 with ψ(T, x) =
ϕ(T, x, 0) ∈ intO+(x). Then there is an increasing family of control sets Dρ of (3.4)
with parameter ρ > 0 such that

K ⊂ intDρ and K =
⋂

ρ>0
Dρ.

If K is an asymptotically stable equilibrium or periodic orbit, then the control sets are
invariant for ρ > 0, small enough.

Proof. The first assertion is proved in Colonius and Kliemann [2, Corollary 4.7.2].
The invariance of the control sets follows from [2, Corollary 4.1.13].

By [2, Proposition 4.5.19], the inner pair condition in (x, 0) is satisfied, if for some
T > 0 the following condition holds in y = ϕ(T, x, 0):

span{f0(y), adkf0fi(y) |i = 1, . . . ,m, k = 0, 1, . . .} = R
d. (3.5)

Here the ad-operator is given by iterated Lie brackets, ad0f0fi = fi and adk+1
f0

fi =

[f0, ad
k
f0
fi] for k ≥ 0.

Further results on the dependence of control sets, in particular, their boundaries,
on the parameter ρ are given in Gayer [6].

Next we analyze the behavior of control sets under changes of an external param-
eter α. Consider the following family of control systems on R

d with α ∈ A ⊂ R
k,

ẋ(t) = f0(α, x(t)) +

m
∑

i=1

ui(t)fi(α, x(t)), u ∈ U , (3.6)

with smooth maps fi : R
k × R

d → R
d, i ∈ {0, 1, . . . ,m}. We assume that for every

α ∈ A the system satisfies the assumptions on (3.1). For x ∈ R
d and u ∈ U the

solutions are denoted by ϕα(t, x, u), t ∈ R.
The following theorem describes how the control sets change under parameter

variation. Recall that a set-valued map x 7→ F (x) between metric spaces is lower
semicontinuous at a point x0 if for every open set O with F (x0) ∩ O 6= ∅ it follows
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that F (x) ∩ O 6= ∅ for all x in a neighborhood of x0; cf. Aubin and Frankowska [1,
Definition 1.4.2].

Theorem 3.3. For the family of systems (3.6) fix a parameter value α0 ∈ intA.
Assume that with α0 the accessibility rank condition (3.3) is fulfilled and consider a
control set Dα0 .

(i) Let K ⊂ intDα0 be a compact set. Then there is δK > 0 such that for all α
with ‖α− α0‖ < δK there is a unique control set Dα

K with K ⊂ intDα
K for system

(3.6) with parameter value α.
(ii) There are δ0 > 0 and a unique family of control sets Dα for all α with

‖α− α0‖ < δ0 with the following property: For every compact set K ⊂ intDα0 there
is a δK ∈ (0, δ0) so that K ⊂ intDα for every α with ‖α− α0‖ < δK . The set-valued
maps α 7→ Dα and α 7→ clDα are lower semicontinuous at α = α0.

This is a special case of Colonius and Lettau [4, Theorem 3.6] (in our case, the
“worlds” Wα = R

d).

Remark 3.4. The proof of Theorem 3.3(i) provides the following more precise
information. Let ϕα0(T, x, u) = y for x, y ∈ K. Then for every ε > 0 the trajec-
tories of the system with parameter α satisfying ϕα(Tα, x, uα) = y may be chosen
with Hausdorff distance dH({ϕα(t, x, uα) |t ∈ [0, Tα]}, {ϕα0(t, x, u) |t ∈ [0, T ]}) < ε

for ‖α− α0‖ < δ. Here δ may be chosen independently of x, y ∈ K.
The following definition of local control sets replaces the global maximality prop-

erty of control sets by a local property, cf. Colonius and Spadini [5, Definition 2.2]
slightly generalized here.

Definition 3.5. A bounded set Dloc ⊂ R
d is called a local control set of system

(3.1) if there exists a neighborhood V of clDloc with the following properties: (i) for
all x ∈ Dloc there is a control u ∈ U such that ϕ(t, x, u) ∈ Dloc for all t ≥ 0, (ii)
for all x, y ∈ Dloc there exist T > 0 and a control u such that ϕ(t, x, u) ∈ V for all
t ∈ [0, T ] and d(ϕ(T, x, u), y) < ε, and (iii) Dloc is maximal with these properties.

The results above for control sets remain valid for local control sets. In the proofs,
one simply has to restrict the attention to the isolating neighborhood V of clDloc.

The linearization of (3.4) in an equilibrium (x0, 0) ∈ R
d × R

m with 0 = f0(x0) is
the control system

ẏ(t) = Ay(t) +Bv(t) with A :=
df0(x0)

dx
, B := [f1(x0), . . . , fm(x0)] . (3.7)

This system is controllable if and only if rank[B AB . . . Ad−1B] = d.

Local control sets with small control ranges satisfy the following uniqueness prop-
erty, cf. [5, Theorem 5.1].

Theorem 3.6. Consider for a family of control-affine systems of the form (3.4) a
hyperbolic equilibrium x0 of the uncontrolled system (3.2) and assume that the system
linearized in (x0, 0) ∈ R

d × R
m is controllable. Then there exist ρ0 > 0 and δ0 > 0

such that for all ρ ∈ (0, ρ0) the ball B(x0, δ0) contains exactly one local control set
D

ρ
loc with nonvoid interior.

4. Controllability near homoclinic bifurcations. In this section we analyze
the control sets that occur near a homoclinic bifurcation of the uncontrolled system.
We consider control-affine systems in R

2 and R
3 of the form

ẋ(t) = f0(α, x(t)) +

m
∑

i=1

ui(t)fi(α, x(t)), u(t) ∈ Uρ := ρU, (4.1)

7



where α ∈ A ⊂ R, 0 ∈ intU with U ⊂ R
m compact and convex, and ρ > 0. We

assume that for every α ∈ A the system satisfies the assumptions on (3.1).
These systems depend on the two parameters (α, ρ) ∈ A × (0,∞). The corre-

sponding control sets will be denoted by Dα,ρ and an analogous notion is used for
all other objects. The dependence of control sets on the parameter α is described in
Theorem 3.3 and the dependence on ρ is described in Theorem 3.2. Throughout this
section, the nominal parameter value α0 will be taken as α0 = 0.

4.1. The planar case. The following theorem analyzes the control sets when
the uncontrolled planar system undergoes a homoclinic bifurcation in the sense of
Theorem 2.1, and hence for α0 = 0 it has an orbit Γ0 homoclinic to a saddle equilib-
rium point x0 = 0 with saddle quantity σ0 = λ1(0) + λ2(0) 6= 0, a split function β(α)
with β′(0) 6= 0, and bifurcating limit cycles Lβ . Recall that we may write α = α(β)
for |β| small enough and α(0) = 0. We use the notation from Theorem 2.1 and, more
explicitly, we assume that the limit cycle Lβ exists for 0 < |β| < β or, equivalently, for
0 < |α| < α := α(β). The following theorem shows that here two families of control
sets are generated depending on the two parameters ρ and β.

Theorem 4.1. Consider a two-parameter family of control-affine systems in R
2

of the form (4.1). Suppose that the uncontrolled and unperturbed system ẋ = f0(0, x)
satisfies the assumptions of Theorem 2.1 and Γ0 ∪ x0 is a maximal chain transitive
set. Furthermore, assume that the accessibility rank condition (3.3) holds for α0 = 0
and the following inner pair condition holds for all β with 0 < |β| < β and all x ∈ R

2:

For all ρ > 0 there is T > 0 such that ϕα(β)(T, x, 0) ∈ intOα(β),ρ,+(x). (4.2)

(i) Then there is a family of control sets D
α(β),ρ
0 , defined for ρ > 0 and β ∈

(−β0(ρ), β0(ρ)) with β0(ρ) ∈ (0, β), satisfying for all ρ and β

Γ0 ∪ x0 ⊂ intD
α(β),ρ
0 and Γ0 ∪ x0 =

⋂

ρ>0
D

0,ρ
0 . (4.3)

(ii) If σ0 < 0 there is a family of control sets D
α(β),ρ
1 , defined for ρ > 0 and

β ∈ (0, β), satisfying for all ρ and β

Lβ ⊂ intD
α(β),ρ
1 and Lβ =

⋂

ρ>0
D

α(β),ρ
1 . (4.4)

(iii) If σ0 > 0 there is family of control sets D
α(β),ρ
1 defined for ρ > 0 and

β ∈ (−β, 0), such that (4.4) holds for all ρ and β.
Proof. (i): Since the set Γ0 ∪ x0 is a maximal chain transitive set and the inner

pair condition (4.2) holds, Theorem 3.2 shows that there is an increasing family of
control sets D0,ρ

0 , ρ > 0, of (4.1) with α0 = 0 such that

Γ0 ∪ x0 ⊂ intD0,ρ
0 and Γ0 ∪ x0 =

⋂

ρ>0
D

0,ρ
0 .

Since the accessibility rank condition (3.3) holds for α0 = 0, Theorem 3.3 shows that
for every ρ > 0 and some α0(ρ) > 0 there is a unique lower semicontinuous family
of control sets Dα,ρ

0 with parameters |α| < α0(ρ) containing Γ0 ∪ x0 in the interior.
With β0(ρ) = β(α0(ρ)) assertion (i) follows.

(ii) and (iii): By Theorem 2.1 there is a neighborhood U0 of Γ0 ∪ x0 in which
a unique limit cycle Lβ, |β| ∈ (0, β), bifurcates from Γ0. If σ0 < 0 the limit cycle
exists and is asymptotically stable for β > 0, and if σ0 > 0 it exists and is unstable
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for β < 0. The limit cycle Lβ is a maximal chain transitive set for the uncontrolled
equation ẋ = f0(α(β), x), hence Theorem 3.2 shows that for every limit cycle Lβ there

is an increasing family of control sets D
α(β),ρ
1 , ρ > 0, of (4.1) with (4.4).

Remark 4.2. Theorem 2.1 does not yield any information about the behavior of
the uncontrolled system outside of some neighborhood of the homoclinic orbit. Hence
Γ0 ∪ x0 may be a maximal chain transitive set only in an isolating neighborhood. In

that case, the sets D
α(β),ρ
0 will only be local control sets, cf. Definition 3.5.

Remark 4.3. Theorem 4.1 shows that we may consider (β, ρ) as the parameters
which determine the behavior of the control sets. In assertions (i)-(iii), for i = 1, 2

the maps ρ 7→ D
α(β),ρ
i are increasing for every β and by Theorem 3.3 the maps

β 7→ D
α(β),ρ
i are lower semicontinuous for every ρ.

Remark 4.4. Häckl and Schneider [10] consider control sets near a Takens-
Bogdanov singularity, analytically and numerically, for

ẋ = y, ẏ = λ1 + λ2x+ x2 + xy + u(t), u(t) ∈ [−ρ, ρ].

Here for all parameters (λ1, λ2) ∈ R
2 the bifurcation behavior of the uncontrolled equa-

tion is known. For parameters (λ1, λ2) in a subset kS ⊂ R
2 a homoclinic bifurcation

occurs and one obtains a control set containing the homoclinic orbit, cf. [10, Figure
4] (and an invariant control set around the asymptotically stable focus surrounded by
the homoclinic orbit). For (λ1, λ2) in C ⊂ R

2 an unstable periodic orbit has bifurcated
from the homoclinic orbit. It is contained in a variant control set, cf. [10, Figure 2].

Remark 4.5. While in Theorem 4.1 the homoclinic orbit vanishes for β 6= 0,
the implicit function theorem implies that there are hyperbolic equilibria xα(β) for the
uncontrolled system which depend continuously on β. The local behavior near these
equilibria will play a certain role in the proof of Theorem 4.9.

Remark 4.6. The Index Theorem (see Wiggins [18, Corollary 6.0.2]) implies
that inside any limit cycle Lβ of the uncontrolled system there is at least one fixed

point x
α(β)
2 . Under the inner pair condition, one finds by Theorem 3.2 control sets

with x
α(β)
2 ∈ intD

α(β),ρ
2 .

Theorem 4.1 does not answer the question, when the control sets D
α(β),ρ
0 and

D
α(β),ρ
1 coincide, in their common range of definition. The following corollary shows,

in particular, how this equality depends on the relation between the parameters β

and ρ. For simplicity we suppose that σ0 < 0. Thus both control sets D
α(β),ρ
0 and

D
α(β),ρ
1 exist for ρ > 0 and β ∈ (0, β0(ρ)).

Corollary 4.7. Let the assumptions of Theorem 4.1 be satisfied and assume
that σ0 < 0.

(i) For every β ∈ (0, β) there is ρ1(β) > 0 such that for all ρ ∈ (0, ρ1(β)] the set

D
α(β),ρ
1 is an invariant control set.
(ii) For every ρ > 0 there is β(ρ) > 0 such that for all β ∈ (0, β(ρ)) the control

sets coincide, D
α(β),ρ
0 = D

α(β),ρ
1 .

(iii) If D
α(β),ρ
0 is a variant control set for some β ∈ (0, β), ρ ∈ (0, ρ1(β)], then

D
α(β),ρ
0 6= D

α(β),ρ
1 .

Proof. (i) This follows from Theorem 3.2, since the periodic orbits Lβ are asymp-
totically stable.

(ii) Fix ρ > 0. Since Γ0∪x0 ⊂ intD0,ρ
0 and the periodic orbits Lβ, β > 0, bifurcate

from this homoclinic orbit, it follows that there is β′(ρ) > 0 such that Lβ ⊂ intD0,ρ
0

9



for all β ∈ (0, β′(ρ)]. Define a compact set K ⊂ D
0,ρ
0 by

K := (Γ0 ∪ x0) ∪
⋃

β∈(0,β′(ρ)]
Lβ.

By Theorem 3.3 it follows that there is β′′(ρ) ∈ (0, β0(ρ)) such that for all β ∈
(0, β′′(ρ)) the inclusion K ⊂ intD

α(β),ρ
0 holds. Thus for β(ρ) := min {β′(ρ), β′′(ρ)} it

follows that

Lβ ⊂ intD
α(β),ρ
0 and hence D

α(β),ρ
0 = D

α(β),ρ
1 for all β ∈ (0, β(ρ)).

(iii) By assertion (i) D
α(β),ρ
1 is an invariant control set, hence it cannot coincide

with the variant control set D
α(β),ρ
0 .

Remark 4.8. Corollary 4.7 reveals the subtle relation between the size of the
control range determined by ρ and the bifurcation parameter β. In assertion (i), the

control set D
α(β),ρ
1 around the asymptotically stable periodic orbit Lβ is invariant for

small ρ > 0; here one will expect ρ1(β) → 0 for β → 0. In assertion (ii), ρ > 0
is fixed and the homoclinic orbit is contained in the interior of the control set D0,ρ

0 .
Since Lβ → Γ0 ∪ x0 for β → 0, it follows that Lβ ⊂ D

0,ρ
0 for β small enough; here

β(ρ) → 0 for ρ → 0. In assertion (iii), β ∈ (0, β), ρ ∈ (0, ρ1(β)] is small enough to

guarantee by (i) that D
α(β),ρ
1 is invariant. If D

α(β),ρ
0 is variant, this implies that the

control sets cannot coincide. In view of (ii), this can only happen if β ≥ β(ρ), hence

ρ must be small enough. The assumption that D
α(β),ρ
0 is variant appears to be mild,

since the hyperbolic equilibrium satisfies x0 ∈ intD
α(β),ρ
0 for ρ > 0 and β ∈ [0, β0(ρ)),

and hence all points on the unstable manifold of x0 can be reached from D
α(β),ρ
0 . See

the example in Section 5 for an illustration.
The next theorem shows that the qualitative behavior of the control system can

be different from the behavior of the uncontrolled system. More precisely, we find
parameter regions where there is no homoclinic orbit and no limit cycle for the un-
controlled system while there exist periodic orbits of the control system which are
arbitrarily close to the homoclinic orbit.

Theorem 4.9. Let the assumptions of Theorem 4.1 be satisfied and assume,
additionally, that the system with α0 = 0 linearized in (0, 0) ∈ R

d×R
m is controllable.

Then there is a neighborhood U1 of the homoclinic orbit Γ0 ∪ x0 such that for every
δ > 0 there are a nonvoid parameter region A ⊂ R and ρ0 > 0 such that

(i) for α ∈ A and ρ ∈ (0, ρ0) there are periodic orbits ϕα(·, y, u) ⊂ D
α,ρ
0 , u ∈ Uρ,

with Hausdorff distance dH(ϕα(·, y, u),Γ0 ∪ x0) < δ;
(ii) for α ∈ A the uncontrolled system ẋ = f0(α, x) has no homoclinic orbit or

periodic solution in U1 except for the hyperbolic equilibrium xα.
Proof. Recall that the hyperbolic equilibrium x0 yields for α near 0 hyperbolic

equilibria xα which depend continuously on α. Suppose first that σ0 < 0. Theorem
2.1 shows that in a neighborhood U0 of Γ0 ∪ x0 for |α| small enough a unique limit
cycle Lβ(α) bifurcates from Γ0. It exists if and only if β(α) > 0. We will consider
α with β(α) < 0, hence the uncontrolled equation ẋ = f0(α, x) has no periodic
solution except for the equilibrium xα and assertion (ii) holds. For the proof of (i) it
is convenient to suppose that α(β) > 0 for β < 0 (otherwise, we replace α by −α).

By Theorem 4.1(i) with β = 0 there is for ρ > 0 a control set D0,ρ
0 satisfying

Γ0 ∪ x0 ⊂ intD0,ρ
0 and Γ0 ∪ x0 =

⋂

ρ>0
D

0,ρ
0 .
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By Theorem 3.6 there are unique local control sets D0,ρ
loc such that the equilibrium x0

of the uncontrolled system satisfies

x0 ∈ intD0,ρ
loc and {x0} =

⋂

ρ>0
D

0,ρ
loc .

We can choose ρ > 0 so small that

sup
{

‖z − x0‖
∣

∣

∣
z ∈ D

0,ρ
loc

}

< δ. (4.5)

Since D0,ρ
loc ∩ D

0,ρ
0 6= ∅, it follows that D0,ρ

loc ⊂ D
0,ρ
0 and for δ > 0, small enough,

D
0,ρ
loc 6= D

0,ρ
0 .

Let y ∈ Γ0 ∩ intD0,ρ
loc . Since ϕ0(t, y, 0) → x0 ∈ intD0,ρ

loc for t → ±∞, there is

T > 0 such that the homoclinic trajectory satisfies ϕ0(t, y, 0) ∈ intD0,ρ
loc for all |t| ≥ T

and ϕ0(τ, y, 0) is not in the isolating neighborhood of D0,ρ
loc for some τ ∈ (0, T ). By

continuous dependence of the solution on the parameter α, there is α0(ρ) > 0 such
that ϕα(T, y, 0) ∈ intD0,ρ

loc for all α ∈ (0, α0(ρ)]. Choose α0(ρ) small enough such that
the Hausdorff distance

dH ({ϕα(t, y, 0) |t ∈ [0, T ]},Γ0 ∪ x0) < δ for α ∈ (0, α0(ρ)], (4.6)

where we use
{

ϕ0(t, y, 0) |t ∈ R
}

= Γ0. The compact set

K := {y} ∪ {ϕα(T, y, 0) |α ∈ [0, α0(ρ)]}

is contained in intD0,ρ
loc . Theorem 3.3 applied to local control sets implies that there

is α1(ρ) ∈ (0, α0(ρ)] such that for all α ∈ [0, α1(ρ)]

{y} ∪ {ϕα(T, y, 0) |α ∈ [0, α1(ρ)]} ⊂ K ⊂ intDα,ρ
loc .

There are a control u0 ∈ Uρ and a time T 0 > 0 such that ϕ0(T 0, ϕα(T, y, 0), u0) = y.
Then Remark 3.4 implies that one may choose α2(ρ) ∈ (0, α1(ρ)] such that for all
α ∈ (0, α2(ρ)) there are u

α ∈ Uρ and Tα > 0 with ϕα(Tα, ϕα(T, y, 0), uα) = y and tra-
jectories ϕα(t, ϕα(T, y, 0), uα), t ∈ [0, Tα], arbitrarily close to ϕ0(t, ϕα(T, y, 0), u0), t ∈
[0, T 0], hence contained in D

0,ρ
loc . By (4.5) and (4.6) this implies that the Hausdorff

distance of the resulting controlled periodic orbit to Γ0 ∪ x0 is smaller than δ, hence
assertion (i) holds in the case σ0 < 0..

For σ0 > 0 consider α with β(α) > 0, where the uncontrolled equation ẋ =
f0(α, x) has no periodic solution except for the equilibrium xα. Then the assertion is
proved analogously.

Remark 4.10. In their analysis of the Takens-Bogdanov equation, Häckl and
Schneider [10, Theorem 4.7] prove that there exist parameter values and control ranges
such that the control system has an at least doubly connected control set while for all
constant controls only equilibrium points exist as limit sets. Here they use that the
control directly affects the bifurcation parameter λ1.

4.2. The three-dimensional case. The following theorems analyze the control
sets in R

3 when the uncontrolled system undergoes a homoclinic bifurcation in the
situation of Theorem 2.2 and Theorem 2.3.

If the uncontrolled system ẋ = f0(0, x) satisfies the hypotheses of Theorem 2.2(i),
it has an orbit Γ0 homoclinic to a saddle equilibrium point x0 = 0, and ẋ = f0(α, x)
undergoes a homoclinic bifurcation with saddle quantity σ0 = λ1(0) + λ2(0) < 0, a
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split function β(α) with β′(0) 6= 0, and bifurcating unique and asymptotically stable
limit cycles Lβ defined for 0 < |β| < β and we may write α = α(β). We use the
notation from Theorem 2.2.

Theorem 4.11. Consider a family of control-affine systems in R
3 of the form

(4.1) and suppose that the accessibility rank condition (3.3) holds for α0 = 0 and that
the control system satisfies the inner pair condition (4.2) for all x ∈ R

3. Assume that
the uncontrolled system ẋ = f0(0, x) has an orbit Γ0 homoclinic to a saddle x0 = 0
with real eigenvalues λ1(0) > 0 > λ2(0) > λ3(0), that Γ0 ∪ x0 is a maximal chain
transitive set and the assumptions of Theorem 2.2(i) are satisfied.

(i) Then there is a family of control sets D
α(β),ρ
0 , defined for ρ > 0 and β ∈

(−β0(ρ), β0(ρ)) with β0(ρ) ∈ (0, β), satisfying for all ρ and β

Γ0 ∪ x0 ⊂ intD
α(β),ρ
0 and Γ0 ∪ x0 =

⋂

ρ>0
D

0,ρ
0 . (4.7)

(ii) There is a family of control sets D
α(β),ρ
1 , defined for ρ > 0 and β ∈ (0, β),

satisfying for all ρ and β

Lβ ⊂ intD
α(β),ρ
1 and Lβ =

⋂

ρ>0
D

α(β),ρ
1 . (4.8)

Furthermore, for every β ∈ (0, β) there is ρ1(β) such that for every ρ ∈ (0, ρ1(β)] the

set D
α(β),ρ
1 is an invariant control set.

Proof. (i) The set Γ0 ∪ x0 is a maximal chain transitive set for the uncontrolled
equation ẋ = f0(0, x). Theorem 3.2 shows that there is an increasing family of control
sets D0,ρ

0 , ρ > 0, of (4.1) with α0 = 0 such that

Γ0 ∪ x0 ⊂ intD0,ρ
0 and Γ0 ∪ x0 =

⋂

ρ>0
D

0,ρ
0 .

Theorem 3.3 shows that for every ρ > 0 and some α0(ρ) > 0 there is a unique lower
semicontinuous family of control sets Dα,ρ

0 with parameters |α| < α0(ρ) containing
Γ0 ∪ x0 in the interior. With β0(ρ) = β(α0(ρ)) assertion (i) follows.

(ii) By Theorem 2.2(i) there is a neighborhood U0 of Γ0∪x0 in which a unique and
asymptotically stable limit cycle Lβ, β ∈ (0, β), bifurcates from Γ0. The limit cycle
Lβ is a maximal chain transitive set for the uncontrolled equation ẋ = f0(α(β), x),
hence Theorem 3.2 shows that for every limit cycle Lβ there is an increasing family

of control sets D
α(β),ρ
1 , ρ > 0, of (4.1) with

Lβ ⊂ intD
α(β),ρ
1 and Lβ =

⋂

ρ>0
D

α(β),ρ
1 .

Theorem 3.2 shows that the control sets D
α(β),ρ
1 containing the asymptotically stable

limit cycle Lβ are invariant for ρ > 0, small enough.
Similarly one obtains the following result if the assumptions of Theorem 2.2(ii),

in particular, σ0 > 0, are satisfied, and hence a unique saddle limit cycle Lβ bifurcates
from the homoclinic orbit Γ0 in a neighborhood U0 of Γ0 ∪ x0.

Theorem 4.12. In the situation of Theorem 4.11 suppose that the uncontrolled
system ẋ = f0(0, x) satisfies the assumptions of Theorem 2.2(ii).

(i) Then there is a family of control sets D
α(β),ρ
0 defined for ρ > 0 and β ∈

(−β0(ρ), β0(ρ)) with β0(ρ) ∈ (0, β) such that (4.7) holds for all ρ and β.

(ii) If Γ0 is simple, there is a family of control sets D
α(β),ρ
1 defined for ρ > 0 and

β ∈ (−β, 0) such that (4.8) holds for all ρ and β.
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(iii) If Γ0 is twisted, there is a family of control sets D
α(β),ρ
1 defined for ρ > 0

and β ∈ (0, β) such that (4.8) holds for all ρ and β.

Proof. The proof of this theorem follows the same steps as the proof of Theorem
4.11. One has to use that for simple Γ0 the bifurcating limit cycles Lβ exist for β < 0
and for twisted Γ0 they exist for β > 0.

The remarkable result here is that the direction of bifurcation for the control sets
D

α(β),ρ
1 depends on topological property if the stable manifold W s of x0 is simple or

twisted.

Finally, we obtain the following result for a homoclinic bifurcation of a saddle-
focus with σ0 < 0 as described in Theorem 2.3.

Theorem 4.13. Consider a family of control-affine systems in R
3 of the form

(4.1) and suppose that the accessibility rank condition (3.3) holds for α0 = 0 and that
the control system satisfies the inner pair condition (4.2) for all x ∈ R

3. Assume
that the uncontrolled system ẋ = f0(0, x) has an orbit Γ0 homoclinic to a saddle-focus
x0 = 0 satisfying the assumptions of Theorem 2.3, and Γ0 ∪ x0 is a maximal chain
transitive set.

(i) Then there is a family of control sets D
α(β),ρ
0 defined for ρ > 0 and β ∈

(−β0(ρ), β0(ρ)) with β0(ρ) ∈ (0, β) such that (4.7) holds for all ρ and β.

(ii) There is a family of control sets D
α(β),ρ
1 defined for ρ > 0 and β ∈ (0, β) such

that (4.8) holds for all ρ and β. Furthermore, for every β ∈ (0, β) there is ρ1(β) such

that for every ρ ∈ (0, ρ1(β)] the set D
α(β),ρ
1 is an invariant control set.

Proof. The proof of this theorem follows the same steps as the proof of Theorem
4.11.One also has to use that the bifurcating limit cycles Lβ , β < 0, are asymptotically
stable, hence in assertion (ii) one obtains invariant control sets.

Remark 4.14. In all situations analyzed in Theorems 4.11, Theorem 4.12, and
Theorem 4.13, one can obtain results analogous to Corollary 4.7, and to Theorem 4.9
on the existence of controlled homoclinic orbits in parameter regions where no periodic
solutions exist for the uncontrolled system. This holds, since the corresponding proofs
do not use that the dimension of the state space is two.

5. An example. Consider the following planar control system

ẋ = −x+ 2y + x2 (5.1)

ẏ = (2− α)x − y − 3x2 +
3

2
xy + u(t)

with u(t) ∈ U = [−ρ, ρ], ρ > 0. This is a special case of (4.1) with

f0(α, x, y) =

[

−x+ 2y + x2

(2− α)x − y − 3x2 + 3
2xy

]

, f1(x, y) =

[

0
1

]

.

For u = 0 one obtains Sandstede’s example of a homoclinic bifurcation, cf. Sandstede
[15], Kuznetsov [13, Example 6.1]. For an application of Theorem 4.1, we first check
that this uncontrolled system suffers a homoclinic bifurcation according to Theorem
2.1.

The origin (x0, y0) = (0, 0) is an equilibrium for all α and it is a saddle for
sufficiently small |α|. For α0 = 0 one obtains σ0 = λ1(0) + λ2(0) = 1 − 3 = −2 < 0.
One can show that there is a homoclinic orbit contained in the set of all (x, y) with

x2(1− x)− y2 = 0,
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hence y = ±x
√
1− x for all points (x, y) on the homoclinic orbit. As noted above,

the condition β′(0) 6= 0 is equivalent to the Melnikov condition (2.2), which here has
the form

Mα0
(0) = −

∫ ∞

−∞

exp

[

−
∫ t

0

(

−2 +
7

2
x

)

dτ

]

xẋdt.

Write the first component of the homoclinic trajectory for y > 0 as x(t) = x+(t) and
for y < 0 as x(t) = x−(t). Thus the equation for x(·) can be written as

ẋ+ = x(x− 1 + 2
√
1− x) > 0, ẋ− = −x(x− 1− 2

√
1− x) < 0.

Observe that (x1, y1) = (1, 0) is on the homoclinic orbit and we may suppose that the

homoclinic solution satisfies x(0) = x1 = 1. Define h(t) = exp
[

−
∫ t

0

(

−2 + 7
2x

)

dτ
]

,

t ∈ R. Then the integral for Mα(0) can be written as

∫ 0

−∞

h(t)xẋdt+

∫ ∞

0

h(t)xẋdt =

∫ 1

0

h(t+(x+))x+dx+ +

∫ 1

0

h(t−(x−))x−dx− > 0,

showing that Mα(0) 6= 0. Hence Theorem 2.1 implies that the uncontrolled equation
has an asymptotically stable limit cycle for α > 0.

Next we check the assumptions of Theorem 4.1. One computes for α0 = 0

adf0f1(x, y) = [f0, f1](x, y) = −
[

∂f01
∂x

∂f01
∂y

∂f02
∂x

∂f02
∂y

]

[

0
1

]

= −
[

2
−1 + 3

2x

]

,

where f0 = (f01, f02)
⊤. One finds that f1(x, y) = (0, 1)⊤ and adf0f1(x, y) are linearly

independent for all α. Thus condition (3.5) holds implying the inner pair condition
(4.2) and the accessibility rank condition (3.3) for all (x, y) ∈ R

2. Furthermore,
also the controllability condition in Theorem 4.9 holds, since the control system with
α0 = 0 linearized in (x, y) = (0, 0), u = 0 is controllable,

A :=

[

∂f0(α0, 0, 0)

∂x
,
∂f0(α0, 0, 0)

∂y

]

=

[

−1 2
2 −1

]

, B := f1(0, 0) =

[

0
1

]

,

hence rank[B,AB] = rank

[

0 2
1 −1

]

= 2.

Theorem 4.1 implies that for ρ > 0 there is β0(ρ) > 0 such that there is a family

of control sets D
α(β),ρ
0 satisfying for all ρ > 0 and β ∈ (−β0(ρ), β0(ρ)) assertion (4.3).

Since σ0 < 0 it also follows that there is a family of control sets D
α(β),ρ
1 such that

for all ρ > 0 and β ∈ (0, β) assertion (4.4) holds. Corollary 4.7 shows that for every

β ∈ (0, β) there is ρ1(β) such that D
α(β),ρ
1 is an invariant control set for ρ ∈ (0, ρ1(β)].

For α0 = 0, u = 0 one finds the unique equilibrium (x̄, ȳ) = (23 ,
1
9 ) in the interior of

the region bounded by the homoclinic orbit, cf. Remark 4.6. It is an unstable focus,
which for ρ > 0 small enough is contained in the interior of an open control set, since
one can check the inner pair condition (4.2).

Figures 1 – 5 indicate phase portraits of the uncontrolled systems and present
numerical approximations of the control sets. These results are based on Häckl’s al-
gorithm for the computation of reachable and controllable sets, cf. Häckl [9], Colonius
and Kliemann [2, Appendix C]. A reachable set is the union of all solutions from an
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initial state corresponding to admissible control functions. The solutions are approx-
imated via discrete-time systems (obtained here by a Runge-Kutta method RK5(4)).
A space discretization via a grid (here of size 150×150 cells) allows us to keep track of
those cells that have already been reached by some computed solution. The control-
lable sets are obtained via time reversal. The implementation of Häckl’s algorithm is
based on MATLAB.

For the parameter values α0 = 0 and ρ = 0.01, Figure 1 shows approximations of
the control sets Dα0,ρ

0 around the homoclinic orbit Γ0 and Dα0,ρ
2 around the unstable

focus. The control set Dα0,ρ
0 is obtained by the intersection of the reachable and

controllable sets,

D
α0,ρ
0 = clO+(x1, y1) ∩ O−(x2, y2) for any (x1, y1), (x2, y2) ∈ Γ0 ⊂ intDα0,ρ

1 .

Hence an approximation of Dα,ρ
0 is obtained by the intersection of numerical approx-

imations for the reachable and controllable sets. The control set Dα0,ρ
2 around the

unstable focus (x̄, ȳ) is computed as the controllable set O−(x̄, ȳ).
For α = −0.017241, ρ = 0.01, Figure 2 shows the control set Dα,ρ

0 around Γ0 and
the control set Dα,ρ

2 around the unstable focus. For this negative α-value, no periodic
orbit has bifurcated from the homoclinic orbit of the uncontrolled equation. This
illustrates Theorem 4.9. For α = 0.01, ρ = 0.01, Figure 3 shows the control set Dα,ρ

2

around the unstable focus, and the control set Dα,ρ
0 = D

α,ρ
1 containing the homoclinic

orbit Γ0 and the periodic orbit Lβ(α), cf. Corollary 4.7(ii). For α = 0.03, ρ = 0.01
Figure 4 shows the control set Dα,ρ

2 around the unstable focus, the control set Dα,ρ
0

containing Γ0, and the invariant control set Dα,ρ
1 containing the stable periodic orbit

Lβ(α) computed as the reachable set. This illustrates Corollary 4.7(iii). Finally, for
α = 0.07, ρ = 0.01, Figure 5 shows the invariant control set Dα,ρ

1 around the stable
periodic orbit Lβ(α), the control set Dα,ρ

2 around the unstable focus, and the control
set Dα,ρ

0 which has collapsed to a control set around the saddle close to the local
control sets D0,ρ

loc used in the proof of Theorem 4.9.

6. Conclusions and open problems. Our results show, in particular, that
sometimes a homoclinic bifurcation may lead to invariant control sets (for d = 2 this is
the case in Corollary 4.7 and for d = 3 in Theorem 4.11 and Theorem 4.13). Invariant
control sets are also of interest beyond control and deterministic perturbations, since
they are the supports of invariant densities for associated Markov diffusion processes
(cf. Kliemann [12]). We did not include the case of a bifurcation in R

3 for an orbit
homoclinic to a saddle-focus with saddle quantity σ0 > 0. This bifurcation results in
an infinite number of saddle limit cycles, cf. Kuznetsov [13, Theorem 6.6]. It certainly
would be of great interest to study the controllability properties in this situation and
also for general system in R

d.
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Fig. 1: Phase portrait and control sets D0 around the homoclinic orbit
Γ0 and D2 around the unstable focus for α0 = 0.0 and ρ = 0.01

Fig. 2: Phase portrait and control sets D0 around the homoclinic orbit
Γ0 and D2 around the unstable focus for α = −0.017241, ρ = 0.01
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Fig. 3: Phase portrait and control sets D0 = D1 around Γ0 and the
periodic orbit, and D2 around the unstable focus for α = 0.01, ρ = 0.01

Fig. 4: Phase portrait and control sets D0 around Γ0, D1 around the
periodic orbit, and D2 around the unstable focus for α = 0.03, ρ = 0.01
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Fig. 5: Phase portrait and control sets D0 around the saddle, D1 around
the periodic orbit, and D2 around the unstable focus for

α = 0.07, ρ = 0.01
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