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Abstract

This paper is devoted to the investigation of the practical exponential stability of impulsive stochastic functional
differential equations. The main tool used to prove the results is the Lyapunov-Razumikhin method which has proven
very useful in dealing with stability problems for differential systems when the delays involved in the equations are
not differentiable but only continuous. An illustrative example is also analyzed to show the applicability and interest

of the main results.
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1. Introduction

Impulsive differential equations are suitable for the
mathematical simulation of evolutionary processes in
which some parameters may undergo relatively long pe-
riods of smooth variation followed by a short-term rapid
change (that is, jumps) in their values. Processes of this
type are often investigated in various fields of science
and technology (see [11]).

Needless to say that, in general, the evolution of a
dynamical system may not only be determined by its
current state. It is sensible to admit that its past or his-
tory may also have some influence in its future evolu-
tion. This fact justifies the appearance of several types
of delay or memory in the models. Stochastic functional
differential equations are often used as appropriate tools
for the description and analysis of such systems, see
[16]-[17].

Nowadays, impulsive deterministic and stochastic
functional differential equations represent an emerging
field drawing attention from both theoretical and ap-
plied disciplines, and which has been successfully ap-
plied to problems in mechanics, electricity, economics,
physics and several fields in engineering (see, e.g. [S]-
[12] for more details).

Over the last decades, many interesting results con-
cerning stability of stochastic functional (and evolu-
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tion) differential equations have been obtained (see [7]-
[8], [15]-[17]). In [14], Mao developed the Razu-
mikhin method on this aspect, and established some
Razumikhin-type theorems on exponential stability of
stochastic functional differential equations for finite-
dimensional stochastic ordinary differential systems
with delays. The advantage of this method, in contrast
to the classical Lyapunov one, is that it is not necessary
to use functionals to analyze the stability. Instead, one
can consider Lyapunov functions and, additionally, the
type of delays that can be handled is more general. For
instance, if the problem contains variable delays, these
only need to be continuous while to apply the classical
Lyapunov theory (see [4]), the variable delay function is
required to be continuously differentiable. Some results
concerning stability of impulsive stochastic functional
differential equations (using the Razumikhin method)

have been proved in [5], [9]-[10], [18]-[19] and [12].
However, when the origin is not necessarily an equi-
librium point, it is still possible to analyze the asymp-
totic stability of solutions with respect to a small neigh-
borhood of the origin, which yields the concept of prac-
tical stability (see [6] and the references therein). It
is worth mentioning some previous works on practical
stability in the deterministic and stochastic frameworks
(see [1, 2, 3, 6]). In particular, we initiated very re-
cently the study of this practical stability for non-delay
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stochastic partial differential equations in [1], [2]. No-
tice that inequality (2.2) (see Section 2 below) implies
that x(¢) is ultimately bounded by a small bound r > 0,
that is, |x(¢)| is small for sufficiently large ¢. This can
be viewed as a robustness property of almost sure con-
vergence to the origin provided that f and g satisfy
f(0,7) = 0 and g(0,7) = 0, for all # > 0. In this case
the origin becomes an equilibrium point.

The content of the paper is as follows. In Section 2 we
introduce the basic notations and assumptions. Section
3 is devoted to prove some sufficient conditions ensur-
ing practical p-th moment exponential and almost sure
exponential stability of solutions to impulsive stochastic
functional differential equations. We prove a sufficient
condition ensuring the convergence of solutions to a ball
with radius > 0, even in the case that zero is not an
equilibrium point. Finally, two examples to illustrate
our abstract theory are included in Section 4.

2. Preliminaries

For x € R”", |x| denotes the Euclidian norm of x

and [x] the biggest integer less than or equal to x. For
—00 < a < b < oo, we say that a function from [a, b] to
R” is piecewise continuous, if the function has at most
a finite number of jump discontinuities on (a, b] and is
continuous from the right for all points in [a, b). Given
7 > 0, PC([-T,0]; R") denotes the family of piecewise
continuous functions from [—7,0] to R”. A norm on
PC([-7,0];R") is defined as [l¢l| = sup_, 4 l¢(8)| for
p € PC([-T,0]; R™).
Let (Q, ¥, P) be a complete probability space with a fil-
tration {¥},>0 satisfying the usual conditions and W(¢) =
(W1 (1), Wa(2), ..., W,,(t)) be an m-dimensional standard
Wiener process defined on (€, % ,[P) and adapted to
{Fi}i>0. For p > 0and ¢ > 0, let L” ([ 7,0], R") denote
the family of all #;-measurable ?C ([-, 0]; R™)-valued
random processes ¢ = {¢(—0) : —7 < 6 < 0} such that
SUP_,<p<o Elp(O)I” < co. And let Li. (Q,R") denote the
family of all #;-measurable R"- Valued random variables
X, such that E|X|? < co. Finally, let PCP([-1,0]; R") de-
note the family of all bounded PC([-7, 0]; R")-valued
functions.

In this paper, we consider the following impulsive
stochastic functional differential equation:

t# e, t 2 1o,
Ax(ty) = Ik(x(t,:), ), keN,
= &0), 0 € [-7,0],

(2.1
PC’([-1,0]; R,
), x € LL(-t,0LR", f :

dx(t) = f(x,t)dt + g(x, HdW(1),
{ X, =¢& 1e. x(to+06)

where the initial value & €

x(t) = (x(0),...,

Lp,ﬁ([—r, 0,R") xRy — R", g : Lp,ﬁ([—r, 0, R™) x
R, — R™ [L(,) : R" xR, — R", where
Ti(x(;), ;) represents the impulsive perturbation of x at
time #;, and we suppose that there exists ¢ > #; such that
f0,1) #0,g0,1) #0and [;(0,1) #0, k e N.

The fixed moments of impulse times #; satisfy 0
to <t < ..<ty <.,tp > o (ask — ), Ax(t;)
x(t) — x(8;)-

As standing hypotheses, we assume that f(¢p, ) and
g(p, t) are continuous for almost all ¢ € [#y, o0) and are
Lipschitz in ¢ in each compact set in L ([ 7,0], R"™);
Ii(x, 1) is Lipschitz in x forall x e R, k € N
As we are interested in the asymptotic behavior of the
solutions, we assume that for any & € PCt([-7,0]; R,
there exists a unique stochastic process, denoted by
x(, 19, &), satisfying system (2.1), which is continuous
on the right-hand side and possessing limit on the left-
hand side. For some results on the existence and unique-
ness of solutions of (2.1) the reader is referred to [13].

Now we will establish the definition of p-moment and
almost sure practical stability and recall the definition of
generating operator for our equation.

I IA

Definition 2.1. For p > 0, system (2.1) is said to be p-
th moment practically exponentially stable if there exist
positive constants A, C and n such that

Elx(t, 10, OFF < ClIEIPe™) + 1, 1 > 1,
for all & € PC([-1,0]; R™).

Definition 2.2. The ball B, := {x e R" : [x| < 5}, 7 >
0, is said to be almost surely practically exponentially
stable if, for all £ € PC’([-7,0]; R") and every ¢ > 1o,

[x(t, to, ) < CllglIPe™ ) + 3, a5, (2.2)

System (2.1) is said to be almost surely practically
exponentially stable if there exists 7 > 0 such that B, is
almost surely practically exponentially stable.

Definition 2.3. Let C*'(R"” X [ty — T,00);R,) de-
note the family of all nonnegative functions V(x,?)
on R" X [fyp — T,00) that are continuously twice dif-
ferentiable in x and once in t. For a function V €
C>'(R" x [ty — T,00);R,) we define the operator
LV L%([—T, 01,R") X [ty, 00) —> R for system (2.1)
by

LV(p,1) = Vi(p(0),1) + Vi(@(0), ) f(g, 1) (2.3)
1
+§rrace[gT(so, 1Ve(g(0), Dgle, D],

where ¢ € L”TI([—T, 0], R*) and



oV av av
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If we replace ¢ in the expression (2.3) by a segment
solution x; of system (2.1), then it becomes

LV(x, ) = Vix(@),0) + Vilx(@), D f (xi, 1) (2.4)

+%trace[gT(x,, OV (x(2), 1)g(x;, 1)].

3. Main results

In this section, we first investigate the p-th moment
practical exponential stability and the almost sure prac-
tical exponential stability of system (2.1) by using the
Razumikhin method. The results show that the impul-
sive effects can produce some kind of stabilization on
the system and achieve p-th moment practical exponen-
tial stability.

Theorem 3.1. Assume that there exist a function V €
C>!(R" x [ty — T, ); R, and positive constants p, c, c1,
e A0y, pon,keN, 6 >0andy > 1 such that
(i) ci|xlP < V(x,t) < co|xlP + 3, Y(x, 1) € R" X [ty —
7, 00);
(ii)  EV(x+ L(x, ). ) < diEV(x, 1) + pr, Yk €
N,x € L%(Q,R”), where 0 <dy < 1,0 < pp <d

with d = sup p;. < oo.
keN

(iii) ELV(p, 1) < cEV((0),1) + ¢, YVt > to,t # 1,k €
N and ¢pe L;([—T, 0], R™), whenever
EV(p,t+0) < gEV(p(0),1) + 6, 0€[-1,0],
where g > ye'™ is a constant.

(iv) v > max{i,e(“")(“‘m)}, Ind, < —(A+ )tge1 —
),k €N, and

3y
ech < e/l‘r'

Agup = i1 —ti} < h < oo, <
sup ing{m ) 00 Jht o

Then, system (2.1) is p-th moment practically exponen-
tially stable.

Proof. Given an initial datum & € PCb([—T, 0]; R™), we
write x(t, ty, &) = x(¢) for short. Choose M > 0 such that

0 < MO0 < M < cyyel, (3.1)
Then, by condition (i), we have for 7 € [ty — 7, 1]

EV(x(0), 1) < eolléll” + ¢3 < MIEIIPe™ 7 + 7, (3.2)

where (Yh + c3)e" < r < cyye™. Next, we shall prove
that, for any k € N and ¢ € [t;_1, #),

EV(x(1), 1) < M||g]|Pe™ "% + 7. (3.3)
We proceed by induction and split our proof into several
steps.
Step 1:

Arguing by contradiction, we first prove that

EV(x(t),1) < MIEWe™ ™ + 1, 1€ [t9,11). (3:4)
Indeed, let us assume that inequality (3.4) is not
true. Then, there exists some ¢ € [fy,t;) such that
EV(x(1),1) > M||E||Pe= 170 4 .

Define 1 = inf { € [0, 11); EV(x(t), ) > M|IE|IPe™ "7 4 7},

Thanks to (i) and the Lebesgue dominated convergence
theorem, the mapping ¢ € [fo,t;) +— EV(x(r),?) is
continuous. Then

lim EV(x(0), 1)

+
f—)lo

EV(x(to), to)
M| e ) 4 .,

lim EV(x(£), )
t—)t(;

A

Therefore, t* € (¢, t;) and
EV(x(t"), ) = M|E|Pe ") + 7, 3.5)
EV(x(1),1) < M||E|IPe™ 7 4 p te[tg—1,1). (3.6)

Define ¢, = sup{r € [y, ' ; EV(x(2), ) < c2ll€llP + ¢},
then . € [#o, ") and by the continuity of EV(x(-), -),

EV(x(t.), 1) = coll€ll” + 3, (3.7

EV(x(8),1) > colléll” + ¢35, te(t.,1]. (3.8)

Consequently, for all ¢ € [z, ], we have

EV(x(t + 6), 1+ 0) < M|||[Pe 20 4

< cyyeTjg e ) - r
2 r -a
< ye " (calléllP + ;E )

< ye"EV(x(t,), 1.)
< qEV(x(t.),t.).
Then, for all 8 € [-7, 0],
EV(x(t+ 0),t + 6) < gEV(x(?),1) + 6. (3.9)
By the Razumikhin-type condition (iif),
ELV(x,, 1) < cEV(x(2), 1) + ¢,

tet,r']. (3.10)



Applying the It6 formula on [z,, ]
EV(x(t"), ")

=EV(x(t,),t.) + f ELV(x,, s)ds
<EV(x(t,),t,) + cf EV(x(s), )ds + y(t* — t,)

< EV(x(t,),t.) + cf EV(x(s), s)ds + YAgp,

and thus,

<

EV(x(r), 1) EV(x(t.), t.)

1
+cf EV(x(s), s)ds + yh.
1y
By (3.1), (3.5), (3.7) and the Gronwall inequality,

EV(x(t),t") < (EV(x(t.), t.) + ,Ml)edt*ft*)
< (CAllEIP + c5 + yh)e @
< M||E|IPe 170 & (c5 + yrh)e™
< MIElre =) + r
= EV(x(r"), "),
which is a contradiction. Therefore, (3.4) holds and
(3.3) must be true for k = 1.
Step 2:

Now, we assume that (3.3) holds for all k < m, m € N*,
ie. fork=1,2,...m

EV(x(1),1) < M||E|IPe™ %0 4 r, t € [t_i,1). (3.11)
‘We will show that
EV(x(1), 1) < M|IE|IPe™ 170 4 1.t € [ty ts1). (3.12)

Suppose (3.12) does not hold true and define
£ = inf {t € [y, tws1); EV(x(2), 1) > M||E||Pe~mn1=10) 4 )
where @ = (R + yh)e" withR = r + d.
Thanks to conditions (ii), (iv) and inequality (3.11),
EV(x(tn), tn) < dnBV(x(t,), 1)) + P,
< duM|IEP e + dyyr + py,
< Ml|€_‘||pe_/l(tm_t())e_(/1+(-')(tm+l_lm) + dpl + Py
< M 1710 + dyyr + py,

< M||€:”Pe—/l(tm+1—to) +r+4d.
Thus,

EV(x(ty), ) < M||&||Pe~ =) L R, (3.13)

Now, (3.13) and the continuity of the mapping ¢ €
[ty tme1) — EV(x(¢),1) ensure the existence of 1* €
(tms tue1) Such that

EV(x(r*), 1) = M||£||Petnn710) 4 @, (3.14)

EV(x(1),1) < M||E||Pe 170 4 o, t € [t,,,1°). (3.15)
Define
t. = sup{t € [to — 7, ' [, EV(x(0), 1) < dy M||E]|P e~ 4 R},
Then ¢, € [t,,,t") and

EV(x(t.), 1.) = duMIIE|"e™ ) + R, (3.16)

EV(x(1), 1) > d,M||E||Pe™ 7 + R, t € (1,,1*]. (3.17)

Fix any ¢ € [t.,t"], and assume that t + 6 > 1, for all
6 € [, 0], then (3.14)-(3.17) imply that

EV(x(t +6),1 + 6) < M||g]|Pe "1~ + q,
< MIg|Pe 0 1 @,
< ye'du MIE|IP e + @
= e (d Mg e n0) 4 Sy,
Y
< ye"BV(x(1,), 1.),
< qEV(x(1.), 1.).
Then,

EV(x(t+6),t+0) < gEV(x(1), 1) + 6, (3.18)

for t € [t.,1t*],0 € [-1,0]. Applying again the It for-
mula on [¢,, "] and taking into account the Razumikhin-
type condition (iii), we obtain

EV(x(r),t") = EV(x(t.), t.) + f ELV(x;, s)ds,

-
< EV(x(t,),t.) + cf EV(x(s), s)ds
t
+ YAgyp.
Thus,

<

EV(x(t"),t") EV(x(t.),t.)

-
+cf EV(x(s*), s")ds + yh.
Iy
4



Condition (iv), (3.14) and (3.16) and the Gronwall in-
equality imply

EV(x(t*),t")

< (EV(x(t,), £.) + rh)e™ ™)

= (duMIIEIPe™ 70 + R + yih)e ),

< (dellfllpe—/l(l‘m—to) + R+ wh)ec(tmﬂ—zm)’

< [M|g||P e Mtm=10) g (A+eNtmar=tn) 1 R 4 yjyfy] €Ut =tm)

< M| e 4 (R + yrh)e™.

Then,

EV(x(r*), 1) < M||&||Pe~ 710 4 @, (3.19)

which is a contradiction. Therefore (3.12) must hold
true. Thus, by induction, we have obtained that (3.3)
holds for all k € N.

Step 3:

Now, we can finish our proof. Thanks to condition (i)
and inequality (3.3),

14
M€l e_/l(lk_t())+i

Elx(n)P <
C1 €1
P
< M|l o A=10) | L’ (3.20)
C1 €l

for t € [ty-1, ), k € N. Therefore, system (2.1) is p-th
moment practically exponentially stable with n = L. O
C

Now, before proving our main result on almost 1sure
practical exponential stability, we recall a result which
will be crucial for our analysis and whose proof can be
found in [16].

Lemma 3.2. Let g = (g1,...,8m) € LZ(RJr,R’”), and let
T, a, B be positive numbers. Then

3 a !

P( sup [ f §()dW, = f ()P ds] > B) < exp(-ap).
0<i<T  JoO 0

Theorem 3.3. Assume conditions of Theorem 3.1 with

P =1, Awp = Suppen {tk — tim1} < h < o0 and Ais =

infey {lk - tk—l} > 0.

Assume that there exist positive constants 3, Land u > 1

such that, for all (¢,1) € L%([—T, 01, R") X [tg, 00),

E(f(p, 0l +1g(p, DI") < L sup Elp(®))" +. (3.21)

—7<6<

Then (3.20) implies
Ix(t, t0, &) < CIEP) s, Vi > 1, as. (3.22)

In other words, the p-th moment practical exponential
stability implies the almost sure practical exponential
stability.

Proof. Take 0 < 6 < Ay, sufficiently small. For such a
I — tr—

fixed 6 > 0, set ks = [%] € N. Then ks < [%] <

oo and for any t € [f—1, 1), there exists some i with

1 <i<ks+1suchthattu_; +(—1)0 <t<t_; +i0.

Thus, for any ¢ € [t—1, #), k € N, one has

ks+1
E| sup [|x(0)P|< E sup lx(DIP|.
[tk—ISt<tk ] ; [zk,1+(i—l)ag<rk,1+ia‘ ]
(3.23)

From [16, page 178] we have for any a, b, ¢ > 0,
(@a+b+c) <3°(a’ +b* +cP).

For each i satisfying 1 <i<ks+1,keN,

' [
f dx(s) = f Fx,, 9)ds
ti-1+(@i—1)0 ti-1+(i-1)8

!
+f g(xg, )AW(s).
tr_1+(—1)6
Thus,
13
x(t) = x(to+ (10— 1)6)+f f(xs, 8)ds
teo1 +Gi-1)6
!
+ f 8(xs, $)AW(s),
t—1+(i—1)6
and
tx—1+i0
XDl < |x(fi +(i—1)5)|+f |f (x5, $)lds
t—1+(i—1)6
!
+‘f g(xx,s)dW(s)’.
teo1+(i-1)8
Then,
X < 3Plx(ti-1 + (@ — DO)IP
fr—1 +i0 p
+37( f £ (x5, 5)lds)
ti—1+(i—1)6
! p
+3P' f g(xs,s)dW(s)‘ .
fee1+(i=1)8
Therefore,

sup [x(OIP < 3P|x(tr—y + (i — 1)O)|P (3.24)

ti—1 +(—1)0<t<tr_1+id

ti—1 +i0 »
e3( [ i)
ti—1 +(i—=1)6

f g(xy, $)AW(s) p.

+(i-1)8

+ 37 sup
te—1 +(i—1)0<t<ty_, +i6




Taking expectation in (3.24),

]E[ sup

te—1 +(i—=1)0<t<ty_ +id

< 3PE(|x(try + (i — D)S)P)
i1 +i0
n 3pE(f |f(xs,s)|ds)p

_1+({=1)0
!
B s [ gawe)|)
t—1+(i-1)6

te—1 +(i—1)0<t<ty_| +i6

In view of (3.20), we have

M p
Elx(te-1 + (i = D) < @e*“k-'*fo) - Ci (3.26)
1 1

Thanks now to (3.25), (3.26), (5.1)-(5.2), we deduce

E| sup (o) ] (3.27)

te—1 +(i—=1)0<t<ty_ +id

L MIENP a1 -
< 3P[(6” + Cp6% ) Le'™ + 1| —2—e 170,
<37|( »02)Le'™ + 1] —

P L P
437 L+ B67 + C 5% + —(Cy6% +67).
1 C1
Then, from (3.23) and (3.27),
E[ sup |x(t)l"]

ti—1 St<ty

» Mgl
< 3P(ks + 1)[(5!’ +Cpo2)Le' + 1]ﬂe—“’w’°>,
C1
p L p
+3P(ks + 1)[ci +BSP + CoB67 + C—r(C,,é% +67)]
1 1

Therefore,

E[ sup (O] < D7llelPe ) 4 p (328)

ti— St<ty

where
h M
DP =37(< + 1)—[(6” + C,67 )Le'™ + 1],
0 C1
and

h P L P
=30 + D[ + 5"+ C,B8% + =(C,0% +67)].
0 C1 C1

. r . .
We will assume that 37 — > 1. Notice that this assump-
C1
tion guarantees that ¢ > 1.

Let € € (0, 2) be arbitrary. Then Lemma 3.2 yields

I[D{ sup |x(D)P > DP”é:”Pe—(/i—f)(lkq—lo)} < o €lt-1=10).

T St<ty
By the Borel-Cantelli lemma we obtain

sup |x(t)|‘” < D[’l|$||[’e’(/1*5)(tk—l*t0)

tg— <t<ty

IA

DP”é‘:”Pe_(/l_f)(fkfl_fO) + U, as.,

which implies
Ix(D)|P < DP||g|Pe” 9010 4y s,

for t € [#-1,1), kK € N. Letting € — 0 we deduce that,
forany € [ty_1, 1), k€ N,

(O = p < DP|EIPe 7, as.

We know that
1 L _p el
O = = (@] = 7)Y O "
n=1

Thanks to condition u > 1,

O == (6] - 7).
Then,
(D) — 7 < DPJEPe N, Vi1, as.
It thus follows
Ix(t)] < DPEPe™™ ) 4 ur, V>t as. (3.29)

Therefore, system (2.1) is almost surely practically ex-
1
ponentially stable with = . O

Remark 3.4. Observe that theorems 3.1 and 3.3 pro-
vide sufficient conditions for the practical stability of
solutions both in the pth-moment and pathwise. These
can be interpreted as some kind of stabilization results
because the problem without impulses may be unstable
while the impulsive one may become practically stable.
Also, when the problem is already practically stable be-
fore the impulses are taken into account, the precedent
results provide sufficient conditions for the system to
remain practically stable, which is a proof for the ro-
bustness of the problem.

4. An application examples
Example 4.1. Consider a scalar ISDDS of the form:

dx(t) = x(t)dt + a(x@), x(t = 0.1),)dW(t), t # t;,t > 0,
{ Ax(t) =-0.5x(r), keN,
4.1
Then,
FOx, 1) = x(0),
8(xs, 1) = a(x,(0), x,(=0.1), 1) = a(x(7), x(r - 0.1), 1),

We assume that there exists o > 0 such that
la(x,y, )| < o. Then

E|f(x 0] + ElgCx 0] < E|xo]” + o,



Thus, condition (3.21) holds for system (4.1) with L = 1
and B = oP. Let p = 2 and V(x,t) = x*. Therefore,
the constants in Theorem 3.1 are ¢y = ¢, = 1, ¢c3 = 0.1,
q=596=0.

Then, we have

EV(x(t,) + L(x(t), tr), ) < 0.45EV(x(t,), ) + 0.1

and
ELV(x,1) < 2E[x(0)| + o>.

Thus, ¢ =2, d;, = 0.45,d = 0.1 = p; and = o>. We
choose ty —ti1 = h=0.2,14=0.01 andy = 2.5. Then,

cwe’“ =0.25,
and we choose y = 0> = 0.3,
(Yh + c3)e™ = 0.238.

Thus, we can pick r = 0.24.

Then, all assumptions in the previous two theorems are
fulfilled. Therefore, system (4.1) is mean square (i.e.
second moment) practically exponentially stable with

n=— =024,
¢

Now, we exhibit the following numerical example

Example 4.2. Consider the linear impulsive stochastic
delay system

+Dx(t — 1))dW(1), t # t,t 20, (4.2)

dx(t) = (Ax(®) + Bx(t — 1))dt + (Cx(z)
{ k € N*,

Ax(ty) = —0.4x(t;),

-04 0 10

0 —0.4)’32 (0 1)’C:
(% 50} = (4 8 0 - tonor
Then, f(x(), x(t=1),1) = (Ax(t)+ Bx(t- 1)), g(x(t), x(t—
1), 1) = (Cx(t) + Dx(t = 1) and I(x(t;), 1) = =0.4x(z}).

We assume that ||A|| = \Amax(ATA) for all A € My(R).
Let p =2 and V(x,1) = |x|%. Then,

where A = (

E|f(x(0), x(t = 1), )| + E|g(x(t), xt = 1), 0)[*

< 2(IAIP + IICIP)E[)|” + 2(1BIP + IDIP)Ex(c - D,
< LTE|x(r)[ + 4E|x(t - D[ + 04,

< 4(EJx|” + Efxt - D[*) + 0.4.

Therefore, condition (3.21) holds for system (4.1) with

L=4andB =04. Let p =2 and V(x,t) = |x[2. Then,
the constants in Theorem 3.1 are ¢y = ¢, = 1, ¢c3 = 0.3,

qg=06.12,6=0.
Consequently,

EV(x(t,) + I(x(t;), tr), ) < 0.6EV(x(z;,), ) + 0.3
and

ELV(x, 1)
< 2E(x(t) f(x(0), x(t — 1),1)) + Elg(xt), x(t = 1), )",

< 2E(x()" Ax(t)) + 2E(x(t)" Bx(t — 1)) + E|g(x(0), x(t — 1), t)|2,

2 2
< 2E[x["(IAI* + 1BI?) + 4E|x|",
< 6.08E(V(x,1) +0.5.

Thus, ¢ = 6.08, d, = 0.6, d = 0.5 = py and y = 0.5. We
choose ty, —tr-1 = h=0.2, 1 = 0.02 and y = 6. Then,

6376‘/“ = 1.83,

and
(Yh + c3)e™ = 1.348.

Thus, we can choose r = 1.35.
Then, all the assumptions of the previous two theorems
are fulfilled. Therefore, system (4.2) is mean square

practically exponentially stable with n = L 1.35.
C]

5. Appendix

Lemma 5.1. Under conditions in Theorem 3.1 and The-
orem 3.3, we define

tx—1+i0 p
n=B( [ ifsas)
7

—_1+(=1)d

Jr=E sup

te—1 +(i—1)0<t<ty_, +i6

f C naw))

4G-1)8

Then
M| |E|\P L
Ji < LsPel™ ”6” e—/l(fk—l_t(]) + 5p(ﬁ + _r), (5.1
C1 Cl

and

> P > >
Jr < LCy6* Me“e‘“k*"o) +C,B5% + L—rc,,(s’f.
] 1

5.2)



Proof. By (3.20), (3.21) and the Holder inequality,

i1 +10 -1 ti—1+i0 .
neEl( [ a) ([ ieoras)
k-1 +i0
< 6" 'E( f |£(x. )I"ds),
tee1 +(i—1)8

fr—1+i0
<! f (L sup Elx(s + O +p)ds,
tr—1+(—1)6

-7<6<0

ty—1+i0
< LoP! f sup Elx(s + 0)|Pds + 55”,
t— +(i—1)6 —7<0<0

p tx—1+i0
< L(sp,l M”f” fk : e—/l(s—‘rfto)ds +B6[7 + 25[77
c f+(i=1)5 2
< 1P MU s +-o-r-10) |, 5P(B + L_r)
C1 €

Then,

P
5 < 157 MW o
C1

+67°(B+ E) (5.3)
1

On the other hand, by the Burkholder-Davis-Gundy in-
equality and Holder inequality, we have

fr—1+i0 P
Lo CE( f lg(x,. $)Pds)’
ti_1+(i—1)0
» ty—1+i0
< Gt E( f g, $)IPds),  (5.4)
ti—1+(—1)0

where C,, > 0 is a constant which only depends on p.
From (3.21), for all (¢,7) € L"T/([—T, 01, R™) X [tg, o),
we have

Elg(e, 0" < L sup Elp(®)” +p.

-7<6<0

By inequality (5.4),

» tx—1+i0
Jy < Cpo27! f (L sup Elx(s + )" +B)ds,
t-1+(i—1)6

—-7<6<0
» fio1+i5 ,,
< LC,,(STI f sup Elx(s + 6)Pds + C,B5°.
fr1+(i—1)6 —7<6<0

Thus,

P M P P L r
Jy < LCp62 %ehe”l(”“"")) +C,B57 + C—lrc,,af.
(5.5)
a
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