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Abstract

The Dynamic Vehicle Routing Problem (DVRP) is a complex variation of
classical Vehicle Routing Problem (VRP). The aim of DVRP is to find a set
of routes to serve multiple customers at minimal total travelling cost while
the travelling time between point to point may vary during the process be-
cause of factors like traffic congestion. To effectively handle DVRP, a good
algorithm should be able to adjust itself to the changes and continuously
search for the best solution under dynamic environments. Because of this
dynamic nature of DVRP, evolutionary algorithms (EAs) appear highly ap-
propriate for DVRP as they search in a parallel manner with a population
of solutions. Solutions scattered over the search space can better capture
the dynamic changes. Solutions for new changes are not built from scratch
as they can inherit problem-specific knowledge from parent solutions. How-
ever, the performance of EA is highly dependent on the utilised configura-
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tion. To address this issue, we propose a self-adaptive EA for DVRP. The
proposed EA evolves a set of configurations including parameter values, op-
erator types, combination of operators and order of operator invocation. The
configurations are then encoded into DVRP solutions. So the search can use
different configuration during a search process to effectively handle the dy-
namic changes and guide the search process towards promising areas. Two
well known routing problems with traffic congestion, vehicle routing and the
travelling salesman, were used to evaluate the performance of the proposed
EA. The results demonstrate that under same conditions on both problems
the proposed self-adaptive EA is better than standard EA and other algo-
rithms from literature.
Keywords: dynamic optimisation, meta-heuristics, vehicle routing

1. Introduction

Vehicle routing is obviously significant in the areas of logistics, trans-
portation and related industries. Thus it has attracted a large number of
researchers and practitioners from various sectors to study it, which is often
referred as VRP (Vehicle Routing Problem). Classical VRP is a well-known
combinatorial optimization problem and has been intensively investigated
[5], [44]. VRP involves a set of customers geographically distributed at dif-
ferent locations and a fleet of vehicles. The goal is serving all customers at
minimal cost (e.g. travelling distance, time, fuel etc.) while respecting all
constraints. Due to the nature of real-world vehicle routing problems, several
variants of VRP have been formulated. Each of these VRP variant accommo-
dates certain constraints and factors to reflect one type of real-life scenarios
[44]. Well-known VRP variants include: (i) CVRP, the Capacitated Vehicle
Routing Problem which has vehicle capacity as a hard constraint [44]; (ii)
VRPTW, the Vehicle Routing Problem with Time Windows where each cus-
tomer can only accept services/deliveries during a predefined time window
[2]; (iii) VRPMT, the Vehicle Routing Problem with Multiple Trips, where
a vehicle can take more than one trip/task [46]. In these vehicle routing
scenarios, the travel time from one point to another is a constant.

Classical VRP and its variants are known as NP-hard in terms of the
problem complexity [46]. That means finding the optimal solution could
be impractical for VRP instance of reasonable size due to the prohibitive
computational resource required. Exact methods, which guarantee optimal
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solutions, are only advisable to be used on small instances [44]. In reality
small instances have little practical values as real world problems often are
large in size. Thus, meta-heuristic algorithms are better alternatives in these
scenarios, as they can often generate solutions of good quality within an
acceptable amount of time. This kind of method offers no guarantee of
optimality but high application value as the good solutions generated by
them are often not far from the optimal solutions [44]. Typical meta-heuristic
algorithms include tabu search [11], simulated annealing [30], evolutionary
algorithms [1], ant colony [10] and variable neighbourhood algorithms [15].

In reality most of logistics and transportation problems are dynamic by
nature [31]. Only limited information is available at the beginning of a trip.
New information arrives over time. For example, a new order from customer
may appear whilst vehicles are already on road serving customers [27]. An-
other important factor is traffic condition, which may vary dramatically in
different time of a same day, or a same time in different days. It is difficult to
foretell the level of traffic congestion [31]. This leads to a challenging and re-
alistic dynamic variant of the VRP, which is denoted as DVRP, referring the
vehicle routing problem with traffic congestion. Dynamic order occurs much
less often in comparison. In DVRP the exact travel time between customers
is not known in advance and subject to the level of the traffic congestion
on the path, meaning that after generating a set routing plans and after
the vehicles have left the depot to serve customers, the travel time between
customers may change. When a change occurs, the optimisation algorithm
should adapt to it and find new solutions at minimal cost. However, DVRP is
relatively unexplored despite its theoretical importance and practical values.

Similar to traditional VRP, DVRP is also anNP-hard problem [21], hence
meta-heuristic methods are suitable.An effective way for solving DVRP with
meta-heuristic algorithms is to utilise evolutionary algorithms (EAs). The
major characteristic of EAs is that they operate on a population of solutions.
Hence the search can have multiple fronts scattered over the solution space.
This is particularly beneficial in order to capture the dynamic changes in
DVRP. Another benefit of an EA is that it can transfer problem-specific
knowledge from one generation to another, which is very helpful in dealing
with cyclic dynamic environment [7]. EA has also shown a remarkable success
in solving dynamic and noisy optimisation [4],[33], [29], [45].

However, the performance of an EA is highly dependent on the config-
uration including the parameter settings and the utilised operators [6]. A
fixed configuration may lead to a bias towards a certain area of the search

3



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

space resulting in sub-optimal results, especially for dynamic problems such
as DVRP. Over the years, several attempts have been made on controlling
and adapting EA configurations such as parameter control, operator selection
and self-adaptive methods. Parameter control methods seek for the appro-
priate values in off-line manner or during the course of evolutionary search
[40],[6]. Operator selection methods seek for the suitable operators such as
mutation and crossover on the fly [9]. Self-adaptive methods encode EA
configuration, including parameters or operators, along with the solutions.
So the search is on the solution as well as on the best configuration during
the entire process [41]. These existing adaptive configuration methods have
shown improvement compared to fixed configuration approaches. However
they focus on one or a few parameters or operators hence are not suitable for
tuning a large set of operators and parameters. In addition these methods
do not consider complex configurations such as combining parameters and
operators.

Therefore we propose a self-adaptive EA in this work to handle DVRP
more effectively. In addition to the aforementioned limitations of the existing
adaptive EAs such as [40], [41] , the sequence of applying operators is also not
considered in these methods. Furthermore solutions of the same population
in these methods have identical configurations which is not necessarily the
best strategy. In DVRP, it is not known in advance which operator should
be applied first on which solution. The utilisation of operators including the
sequence should be adaptive to the search to escape from local optima and
to find high quality solutions more effectively. For example the mutation
operator should be applied before crossover operator. But in another case
the order should be reversed. So the convergence and diversity, which are
the two critical factors in any evolutionary search process, can be better
maintained.

Our proposed algorithm is designed for complex configurations including
the proper parameter values, the choice of operators, the combination of op-
erators and parameters, and the sequence of applying these operators. The
configurations are encoded as a part of an individual solution and partici-
pate the evolutionary search process. It should be noted that the proposed
algorithm falls under the definition of memetic computing paradigm [28],
[35],[37], [38], [39].

The study uses the DVRP benchmark released by Mavrovouniotis and
Yang [22]. Traffic factors are introduced in this benchmark. The travel
times between all customers is affected by this traffic factors, which change
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constantly depending on the time and the day. Along with the benchmark
Mavrovouniotis and Yang proposed several variants of ant colony optimiza-
tion algorithms for solving DVRP. Various memory schemes are integrated
in their algorithms. Their study shows that the diversity of solutions plays a
big role in guiding the search to adapt dynamic changes. On the other hand
their study shows that the performance of ant colony algorithms was highly
dependent on settings such as these memory schemes. This highlights the
need for our study on self-adaptive method.

The main contributions of this work can be summarised as follows:

• an evolutionary algorithm that uses variable parameter values and cus-
tomised operators is proposed to solve DVRP more effectively.

• a self-adaptive evolutionary algorithm that evolves various configura-
tions of operators and parameters.

• a self-adaptive mechanism is presented which is capable of discovering
good combinations of parameters and operators.

• a self-adaptive evolutionary algorithm that searches for the proper pa-
rameter values, operator types, combination of operators and operators
application sequence.

• a set of methods have been evaluated on benchmark datasets and com-
pared with state-of-the-art methods from the literature. Good perfor-
mance has been demonstrated.

The rest of the paper is organised as follows. Section 2 describes the
classical VRP and DVRP. The proposed algorithm for DVRP is presented in
Section 3. Section 4 shows the experimental setup, including the benchmark
instances, the preparation and the performance evaluation. The experimen-
tal results are presented and discussed in Section 5, including effectiveness
evaluation and comparisons with results from the literature. The conclusions
is given at Section 6.

2. Problem description

In this section, we first formally describe the classical VRP, then the
dynamic VRP variant.
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2.1. Classical Vehicle Routing Problems
In classical VRP, there is a set of geographically spreaded customers with

known demands and a fleet of vehicles of fixed capacity. VRP can be for-
mulated as a mathematical model as follows. Let G(V,E) be a complete
directed graph where V = {v0, v1, . . . , vn} is a set of nodes. Node v0 is the
depot which has m vehicles and nodes v1. . . . , vn represent a set of customers.
Vehicles have identical capacity, Q = Q1, . . . , Qm. E represents a set of edges
connecting customers vi and vj, Eij = {(vi, vj) : vi, vj ∈ V , i < j}. Each edge
Eij has a non-negative value which is the cost e.g. the travel time between
vi and vj. The cost is defined by a matrix C = (cij). An entry cij of the
matrix C represents the cost between customers vi and vj. Each customer vi
is associated with a non-negative value representing qi goods to be delivered
or picked at this customer. Each delivery has a service time δi. The goal of
DVRP optimisation is to find a set of vehicle routes to serve all customers
at minimal cost while satisfying the following constraints:

• All vehicles must start and end their routes, R1, . . . , Rm, at the depot
v0.

• The total demand assigned for each vehicle should not exceed the ve-
hicle capacity.

• Each customer is visited only once in the delivery plan.

• The total duration of each route should not exceed the given global
upper bound.

The cost, C, of each route Ri = {vπ,i(0), vπ,i(1), . . . , vπ,i(n+1)} of vehicle i
is calculated as follows:

C(Ri) =
ni∑
j=0

cπ(j),π(j+1) (1)

where vπ(j) ∈ V (j ∈ [0; ni+1]), vπ(0) and vπ(ni+1) =0 (representing the
depot) and ni is the number of customers of route Ri. The total cost of a
solution, which is the objective measure f(), is calculated as Formula (2).

f =
m∑
i=1

C(Ri) (2)
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where the total demand of each route should not exceed the vehicle ca-
pacity

Demand(Ri) =
ni∑
j=1

qπ(j) ≤ Qi (3)

where qπ(j) is the quantity requested by customer π(j), and Qi is the
capacity of vehicle i. Beside the capacity constraint, a route is only feasible
if the total travelling time does not exceed the given global upper bound T :

Time(Ri) =
ni∑
j=0

cπ(j),π(j+1) +
ni∑
j=1

δπ(i) ≤ T (4)

2.2. Dynamic Vehicle Routing Problems (DVRP)
In real-life situations, the travel time between customers depends on traf-

fic condition of the current road network. This means we do not have a
predetermined speed set for all vehicles. Traffic could vary significantly de-
pending on the time of the day. For example, the travel time during rush
hour would be multiple times higher than the time travelling at midnight.
This work uses the DVRP model proposed in [26], [21]. In this model, a
traffic factor (tij) is added to all edges connecting customers vi and vj. The
cost between customers vi and vj is now assigned as follows:

cij = dij × tij (5)
where the traffic factor tij is generated using the formula below:

tij =
tij ←− 1 +Rnd ∈ [FL, FU ] if rr ≤ mt

tij ←− 1 otherwise

where

• mt is the magnitude of changes which represents the probability of
adding a traffic factor value to current edge (route).

• FL is the lower bound value of the traffic factor.

• FU is the upper bound value of the traffic factor.

• rr is uniform random number between zero and one, rr ∈ [0, 1].
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The model generates a random number Rnd for every f time intervals.
The value of Rnd is between FL and FU . Each edge will be assigned with
a traffic factor based on the value of the magnitude of change (mt). The
traffic factor value could be tij=1+ Rnd or tij=1. So Rnd is the congestion
level. The higher value the more congestion there will be. The value of Rnd
could be close or equal to FU , simulating rush hour traffic. During off peak
hour Rnd should be close or equal to FL. While Rnd affects the severity of
congestion, the parameter f affects the frequency of congestion. Due to this
dynamic change, the travel time between customers is asymmetric. That
means the travel time from vi to vj might not the same of that from vj to vi.
Hence it is highly desirable to have an effective optimisation algorithm for
DVRP that can accommodate these changes and quickly find high quality
solutions for new situations.

Existing solutions for DVRP can be categorised into two types: re-optimisation
methods and adapting old solution methods. The re-optimisation methods
consider the arrival of new information (a new traffic) as a new problem that
needs to be solved from scratch. However, re-optimisation methods imprac-
tical for real world applications because solving problem from scratch is time
consuming, the solution to the new problem should not be very different, and
a very small change should not be considered as a new problem. Adapting old
solution methods, on the other hand, attempt to reduce the computational
complexity of DVRP by re-using the knowledge from the past to accommo-
date new changes into existing solution, thus much more practical solutions
to DVRP. That is, once a change occurs, the method has already generated
a number of solutions that can be used to reduce the computational com-
plexity and help to integrate new changes. Since the arrival of a new traffic
in DVRP can not be considered as a totally new DVRP, the work proposed
in this paper adapts old solution to accommodate the arrival of new changes.

3. Methodology

Population based algorithm is a good choice for dynamic problems like
DVRP. It is often referred as evolutionary algorithms (EAs). EAs such as
genetic algorithm [16], [19], particle swarm optimisation [14], [34], [47] and
differential evolution [35], [48], [8], have been successful in a wide range of
difficult real world problems [7]. As mentioned early one challenge of EAs
is the adaptive configuration which allows the search process to be tailored
according to its current state [36]. EAs often work well only for the problem
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they have been configured and customised for [18]. It is difficult for a fixed
configuration to always be the best during the whole search process. More
importantly best configurations do change when changes occur in the problem
and its constraints.

One way to address the above issue is self-adaptive methods, which have
appeared in [41]. The existing self-adaptive methods focus on evolving one or
a few operators or parameter values while our proposed method for DVRP
considers extra variations including the combination of operators and the
sequence of applying operators. The proposed self-adaptive framework is
integrated with genetic algorithm (GA). It searches for the best GA con-
figurations in order to obtain better DVRP solutions. To improve the con-
vergence, a range of improvement operators are introduced, which are also
evolved along with the GA configuration. This proposed self-adaptive EA
will not only reduce the need for manual parameter tuning but also allows
the configuration to be dynamically and automatically adjusted to suit the
dynamic changes and lead the search toward promising regions in the solution
space.

Before we describe the details of the proposed self-adaptive EA, the GA
components for DVRP are briefly explained.

3.1. Genetic Algorithm Component
Genetic algorithm (GA) is a well-known stochastic optimisation algorithm

[13]. It operates on a population of solutions and each solution is encoded in
a chromosome. These solutions are iteratively improved through the appli-
cation of operators including crossover and mutation. The flowchart of GA
is shown in Figure 1. The major steps are also described.

• 1 Set parameters. The main parameters of GA are initialised in this
step. They are:

- Maximum number of generations (MaxGen).
- Population size (PS). This is the number of individuals in the

population.
- Crossover rate (CR). This parameter determines the probability

of applying the crossover operator on individuals.
- Mutation rate (MR). This sets the probability of mutating the

current solution.
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Start

1. Set pa-
rameters
2. Initial

population
of solutions

3. Fitness
calculation

4. Selection

5. Crossover

6. Mutation

7. Stop-
ping

condition
satisfied?

Stop
yes

Fitness cal-
culation

Update the
population

no

Figure 1: The flowchart of GA

• 2 Solution representation and population initialisation. To han-
dle DVRP by GA, each solution is represented as a one-dimensional
array, the chromosome as shown in Figure 2. The value of each cell
represents a customer Ci. For example, in Figure 2 we have three routes
denoted as: R1, R2 and R3. R1 visits four customers, C2, C4, C1 and
C5. R2 has three customers, C7, C9 and C11 on its path. R3 is set to
serve four customers, C6, C8, C3 and C10. All customers are visited
following their order in the given route. In this work, the population
of solutions, with size equal to PS, is randomly initialised.

• 3 Fitness evaluation. In this part each solution in the population
will be evaluated against the problem instance to generate the fitness
value. These values direct the search towards better solutions. In
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R1 R2 R3

C2 C4 C1 C5 C7 C9 C11 C6 C8 C3 C10

Figure 2: Solution representation for DVRP

DVRP, the fitness is simply the total travelling time on visiting all
customers calculated using Equation (2).

• 4 Selection. The selection mechanism picks a proportion of solutions
from existing population for the reproduction or crossover process. Fit-
ter solutions have higher chances to be selected.

• 5 Crossover. Crossover is the main operator in the reproduction
step. It creates a new population of solutions by combining the genetic
materials of the selected solutions.

• 6 Mutation. Mutation is another key operator of reproduction. It
helps increase the diversity so the search process may escape from a
local optima. Mutation in our method modifies solutions generated by
crossover although it could be independent from crossover.

• 7 Stopping condition. This checks whether the search should con-
tinue. If one of the stopping conditions is met, for example the maxi-
mum generation MaxG has been reached, then the GA search process
will stop and the best solution found will be returned as the final so-
lution. Otherwise, the GA process will continue with the following
steps:

- Fitness calculation: calculate the fitness value of the new gener-
ated solutions.

- Update the population: replace the old solutions by new ones if
they are better in term of the fitness values.

- Go to Step 4.

3.2. Self-adaptive EA
The proposed Self-adaptive EA (denoted as SAEA) aims to dynamically

adjust GA configurations including operators and parameters to suit the
DVRP. Please note that we will use the term “individual” within the proposed
algorithm in order to differentiate it from the actual DVRP solution. Thus,
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each SAEA individual consists of DVRP solution and its configuration. The
proposed SAEA takes the advantage of the complementaries and complex
interactions between various configurations. By allowing EA configuration to
be evolved along with the population of individuals, the proposed algorithm
can effectively deal with DVRP through generating different configuration
for different landscape changes and thus guide the search process towards
promising area to attain high quality solution. The flowchart of the proposed
SAEA is shown in Figure 3. Comparing with Figure 1, SAEA is based on
classical GA with some key components which are highlighted in Figure 3.
After selection SAEA calls a decoder (Section 3.2.5) to turn the selected
individuals into DVRP solution and configuration. The configuration will
be applied to the solution (Section 3.2.6). After this step, the procedure is
the same as GA which is checking stopping condition, evaluating solution,
updating the population and then back to selection for the next generation.

The details of the proposed self-adaptive EA framework are described
below.

3.2.1. Solution representation
Each individual in SAEA is also represented as a one-dimensional array

which has three parts as shown in Figure 4.
Part 1 - Solution: This part represents a DVRP solution. We use path

representation with route delimiters. A sequence of customer indices with
delimiters represents the beginning and the end of route. For example, this
Part 1 sequence |D|C1|C3|C4|D|C2|C6|C5|D| means there are two routes.
The first one serves customers C1, C3, and C4 and they are visited in the
order of the given sequence. The second route consists of customers C2, C6,
and C5. It starts from C2, and ends at C5. D is the deport which is also the
delimiter to separate routes. During the search process, the proposed SAEA
uses the given DVRP solution along with evolved configuration to generate
a new DVRP solution.

Part 2 - Parameters: This part encodes numeric parameters. In this
study two different parameters are used which are P1 and P2, the crossover
rate (CR) and the mutation rate (MR), respectively. The possible values are
provided in this study as P1 ∈ {0.2, 0.4, 0.6, 0.8} and P2 ∈ {0.3, 0.5, 0.7, 0.9}.
During the optimisation process, a parameter will be assigned with one value
from the given set. Note that mutation and crossover are independent in our
approach, so there is no constraint that mutation rate plus crossover rate
should be 100%. During the optimisation process, the proposed SAEA will
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Figure 3: The flowchart of the proposed Self-adaptive EA framework

Part 1 Par 2 Part 3

D C1 C3 C4 D C2 C6 C6 D P1 P2 OP1 OP2 Op3

Figure 4: Solution representation

assign, for each parameter, one value from the given set.
Part 3 - Operators: This part encodes the operators which include

three types of operators which are denoted as OP1, OP2 and OP3.
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OP1. This represents different type of crossover operators, which exchange
genetic materials of the selected solutions to create offspring’s. The solutions
undergo the crossover operator based on the CR value. In this work, OP1
uses three different types of crossover operators as follows [32]:

• OP1 1 Order-based operator: This operator randomly sets two crossover
points on one selected solution, copies the part in between the two
points into the offspring and then fill in the remaining parts using the
corresponding elements from the second selected solution.

• OP1 2 Route-based operator: This operator selects the best k (e.g.,
k=2) routes in term of fitness value from both selected solutions, moves
the selected routes into the offspring. The remaining positions are filled
by following the customer sequence on the best solution.

• OP1 3 Swap-based operator: This operator also randomly select k (e.g.,
k=2) routes from both solutions. However it swaps the selected routes
between two solutions and remove duplicate customers and re-insert
missed ones into the best possible position.

It should be noted that the above crossover operators ensure the feasibility
by removing duplicated customers and inserting missed ones.

OP2. This operator is responsible for mutation. It moves one or few positions
in the given offspring to new locations based on MR value. In this work,
OP2 make use of the following three mutation operators [32]:

• OP2 1 Random remove: This mutation operator removes N customers
(e.g., N=3) at random and re-assigns them to different positions.

• OP2 2 Worst remove: This one removes N customers with the largest
cost savings and re-assigns them to best cost saving positions.

• OP2 3Reverse: It selects one route at random and then shuffles cus-
tomer orders.

OP3. This operator iteratively improves on the DVRP solution acting like
a local search operator. A given solution is modified by a neighbourhood
operator, seeking for better alternatives which may have better fitness values.
In this work, the following operators are incorporated in SAEA. They have
appeared in early VRP works in [2]:
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• OP3 1 Swap: It iteratively selects two customers from two different
routes, and swap them. If the swap leads to a better fitness value, then
the search will continue based on the new solution generated from the
swap.

• OP3 2 Single move: It iteratively selects one customer at random and
moves it to a different route. Only better solution will be accepted.

• OP3 3 Double move: This operator iteratively selects two customers at
random and move them to a different route. Only solutions bringing
improvement are accepted.

Operators (OP3 1, OP3 2 and OP3 3) will stop if there is no improvement
after ten consecutive iterations (see Section 4.2).

During the search process, the proposed algorithm evolves the combi-
nation of these operators, one operator of each type and their application
sequence.

3.2.2. Population of Individuals
A population of individuals is initialised, of which the size is PS. Each

individual has three parts, Part 1, Part 2 and Part 3, as shown in Figure 4.
These parts are initialised as follows:

Initialise Part 1 (DV RPsolutions). DVRP solutions are randomly
created. We first create an empty route. Un-routed customers are randomly
selected and added to the current route as long as there is no violation in
the vehicle capacity. If no customer can be added into the current route, a
new route will be created. The process will be repeated until all customers
are routed.

Initialise Part 2 (P1 and P2). Both P1 and P2 are initialised by randomly
assigning a value from the predefined sets so P1 = Random{0.2, 0.4, 0.6, 0.8}
and P2 = Random{0.3, 0.5, 0.7, 0.9}.

Initialise Part 3 (OP1, OP2 andOP3). Each operator, OP1, OP2 orOP3,
is randomly assigned one operator from the corresponding operator type.
OP1=Random{set of crossover operators}, OP2=Random{set of mutation
operators}, and OP3=Random{set of improvement operators}.

3.2.3. Fitness calculation
The fitness measure of each individual in DVRP represents the total trav-

elling time of visiting all customers, as shown in Equation (2).
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3.2.4. Selection
SAEA uses roulette wheel selection, which is a stochastic mechanism

favouring good solutions in the population. The probability (P ) of ith indi-
vidual to be selected into the mating pool is proportional to its fitness value
(f), which is calculated as follows:

P (i) = f(i)∑PS
j=1 f(j)

(6)

where PS is the population size.

3.2.5. Decoder
The decoder splits a selected individual and turns its Part 1 as a DVRP

solution, its Part 2 as parameters and its Part 3 as the operators. The main
role each part is explained in Section 3.2.1.

3.2.6. Operator application
The operator application performs the following tasks on the decoded

individual from the last step:

• Task 1. This task is performed on Part 1 (DVRP solution) of the
selected individuals. It takes the selected DVRP solutions as input and
then applies the evolved sequence of operators (crossover, mutation and
local search) to the solution to generate a new offspring.

• Task 2. This task is performed on Part 2 (GA parameters, P1 and P2).
It uses the mutation operator to generate a new values for P1 and P2.

• Task 3. This task is performed on Part 3 (GA variation operators
(crossover and mutation) and improvement operator, OP1 OP2 and
OP3). It applies the crossover and mutation operators to change the
sequence of all operators or to generate a new ones. To generate a new
sequence of operators, we apply the single point crossover operator. We
first randomly select a crossover point and then the string from begin-
ning up to the crossover point is copied from the first individual and
the rest is copied from the second individual. The mutation operator
randomly selects one operator from the corresponding operator type as
follows: OP1=Random{set of crossover operators}, OP2=Random{set
of mutation operators}, and OP3=Random{set of improvement oper-
ators}.
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The rest of SAEA process is identical to that in classical GA discussed in
the last sub-section.

4. Experiments

This section firstly presents the benchmark instances, then the parameter
settings and lastly the performance measure.

4.1. Benchmark instances
We use two dynamic routing problems traffic congestion for evaluation:

dynamic vehicle routing problem (DVRP) and dynamic travelling salesman
problem (DTSP) [20].

4.1.1. DVRP instances
The DVRP benchmark instances are published by [26]. The instances are

generated using three well-known static VRP instances. Table 1 shows the
main features of these instances.

Table 1: Static VRP instances for generating DVRP
Instance No. of customers Capacity No. of vehicles
F-n45-k4 45 2010 4
F-n72-k4 72 30000 4
F-n135-k7 135 2210 7

To simulate various congestion levels, different values for the frequency
of changes (f) and the magnitude of changes (m) were used. That is, both
f and m are randomly generated within the pre-defined range to simulate
the traffic level on different time of the day. Similar to [26], we set these
parameters as follows to generate DVRP instances: f = Random(1, 100),
mt = Random(0, 1), FL = 0 and FU = 5. (See explanation of these parame-
ters in Section 2)

4.1.2. DTSP instances
The travelling salesman problem (TSP) is a well-known routing problem

as well. Given a set of customers and their positions (pairwise distances),
the goal is to find the shortest path, where each customer is visited only
once and the path ends at the first customer. The total travelling time

17



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

is the measure for performance. TSP with traffic congestion is a dynamic
version of TSP (denoted as DTSP). DTSP benchmark is reported in [20]. The
DTSP instances are take from the TSBLIB and converted into DTSP through
randomly changing the travel time between customers. The total number of
customers, or the size of instances is shown in Table 2. To simulate real
world situation, the magnitude of changes (mt) is randomly selected from
three different ranges that represent small, medium and high magnitude
of environment changes; m = Random(0, 0.25), m = Random(0, 0.5) and
m = Random(0, 1). For each mt, two values for the frequency (f) of changes
are used, f=15 seconds and f=30 seconds.

Table 2: TSP instances for generating DTSP
Instances Size
Berlin52 52
Eill101 101
D198 198

Lin318 318
Pcb442 442
U574 574

Rat783 783
Pcb1173 1173

4.2. SAEA settings
The proposed SAEA has only three main parameters that need to be set:

the maximum number of generations (MaxGen), population size (PS) and
the number of customers to be removed (k). To ensure a fair comparison,
MaxGen is fixed to 1,000 fitness evaluations like the other algorithms in
the literature [26]. PS and k were fine tuned by conducting experiments on
benchmark instances for different sets of values, PS=30 and k=3.

4.3. Performance measure
To facilitate comparisons on DVRP, the number of runs on each instance

and the performance measure are the same as that in [26]. We conducted 30
independent runs using different random seeds. The offline performance is
used in our measure. The calculation of this measure is from [26] and shown
below.
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Poff = 1
MaxGen

MaxGen∑
i=1

(
1
R

R∑
j=1

Pij

)
(7)

where MaxGen is the total number of generations, R is the maximum
number of runs, and Pij is the quality of the best solution in the population
after the change at ith iteration of jth run. As for DTSP, the performance
measure is simply the average travel time of the best solutions from 30 inde-
pendent runs from each environment [20].

5. Results and discussions

This section presents the experimental results and analysis of the pro-
posed SAEA. It is divided into four subsections. In Section 5.1, we inves-
tigate the benefit of self-adaptive mechanism. The computational results
of using different traffic update formula is presented in Section (5.2). Sec-
tions 5.3.1 and 5.3.2 show the comparisons between SAEA with the state of
the art algorithms on both DVRP and DTSP. Further discussion on SAEA
performance is presented in Section 5.4.

5.1. Effectiveness evaluation
To show the effectiveness of the self-adaptive mechanism in SAEA, we

have tested SAEA using each operator separately, fixed parameter values
and without any of these self-adaptive elements. Hence eleven variations of
EA are introduced:

• SAEA: the proposed self-adaptive algorithm (see Section 3).

• EA1: uses fixed parameter values (CR=0.85 and MR=0.03) and fixed
operators (OP1=OP1 1 and OP2=OP2 1). We also excluded OP3 from
the configuration in order to have a clear indication on operator com-
bination impact.

• EA2: same as EA1 but OP1=OP1 2 and OP2=OP2 2

• EA3: same as EA1 but OP1=OP1 3 and OP2=OP2 3

• EA4: uses the three different operators, OP1=OP1 1, OP2=OP2 1 and
OP3= OP3 1
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• EA5: same as EA4 but OP3=OP3 2

• EA6: same as EA4 but OP3=OP3 3

• EA7: uses fixed operators (randomly selected from the given set) but
the parameter values are randomly changed.

• EA8: same as EA7 but MR= 0.3.

• EA9: same as EA7 but MR= 0.5.

• EA10: same as EA7 but MR= 0.7.

• EA11: same as EA7 but MR= 0.9.

Together with SAEA these eleven algorithms (EA1 to EA11) were tested
on the same DVRP benchmark instances, under the same environment with
the same settings. Table 3 shows the best, average and the standard deviation
(Std) of these twelve algorithms from 30 independent runs. The best among
the twelve are highlighted in bold. Clearly we can see that SAEA is better
than all other alternative. The best, average and the standard deviation
obtained by SAEA are all the lowest among results from all algorithms.
This comparison shows that the self-adaptive mechanism is effective.

To verify the observation from Table 3, we also did statistical signifi-
cance test using Wilcoxon signed-rank test with 0.05 confidence level between
SAEA and other eleven alternatives. The p-values of SAEA versus each one
of them on different instances are presented in Table 4. A value less than
0.05 (p-value <0.05) means SAEA is statistically better than its counterpart.
A value greater than 0.05 (p-value >0.05) means the opposite. As we can
see Table 4 has no value greater than 0.05 present. It shows that SAEA
is indeed significantly better than other variations. This again verifies the
benefit of the proposed self-adaptive mechanism.

5.2. Results of different traffic update formula
In this section, the proposed algorithm (SAEA) and the seven algorithms

(EA1 to EA7) were tested on the same DVRP benchmark instances, under
the same environment with the same settings but using different traffic up-
dates formula. In this formula, the traffic level is randomly either decreased
or increased. The average and the standard deviation (Std) of these eight
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algorithms over 30 independent runs are presented in Table 5. The best av-
erage objective function value and the standard deviation for each instance
has been highlighted in boldfont. Table 5 shows that, compared with the
other seven referenced algorithms, SAEA produced better average and the
standard deviation across all instances.

5.3. Compared to the state of the art algorithms
In the following subsection, the results of SAEA for DVRP and DTSP

are compared with the best reported results in the literature.

5.3.1. Comparison on DVRP
The existing approaches for DVRP used in this comparison are listed

below. They all have been tested on same DVRP instances.

1. ASrank-CVRP: rank-based ant system[3], [26].
2. ACS-DVRP: standard ant colony system [27], [26].
3. M-ACO: memetic ant colony optimisation [25].
4. MMASR: MAX −MIN ant system [23].
5. RIACO: random immigrants ant colony optimisation [21].
6. EIACO: elitism-based immigrants ant colony optimisation [21].
7. MIACO: memory-based immigrants ant colony optimisation [22].

The best value of SAEA over 30 runs and that from other algorithms are
presented and compared in Table 6. Value in Bold indicates the best result
on the instance. From Table 6 we can see that SAEA is better than results
reported by other methods on all tested instances. It should be noted that our
SAEA and other algorithms use the same number of fitness evaluations as
the search termination condition. This means that the total computational
time for all algorithms is the same or very similar. For all instances, we
are able to achieve results better than the current best. This suggests that
SAEA has the ability to cope with the dynamic changes and to find high
quality solutions.

5.3.2. Comparison on DTSP
The DTSP algorithms from the literature that were used for our compar-

ison are listed below. They all have tested on the same DTSP instances as
SAEA.

1. MMAS: ant colony optimization with local search [20].
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2. KP: local search algorithm [17], [20].
3. MM: MAX −MIN ant system and local search [42], [20].
4. P-ACO: population based ant colony optimization [12], [20].
5. EIACO: ant colony optimization with immigrants schemes [24].
6. GAPX: elitism-based immigrants genetic algorithm[43], [20].

SAEA and the state-of-the-art algorithms all terminate after 10 environ-
mental changes. All methods conducted 30 independent runs. The average
of SAEA results are presented in Table 7 and compared with that from
MMAS, KP, MM, P-ACO, EIACO and GAPX. The best result on one in-
stance, e.g. the best in its row, is highlighted in bold. As Table 7 shows,
SAEA achieved new best results on 41 out of 48 cases. From Table 7, we
infer that, although SAEA does not obtain the best average results for 7 in-
stances, overall, the average results of these instances with regard to relative
error are relatively small. Considering the magnitude of changes (mt) and
the frequency of changes (f), we can make the following observation:

• When f change every 15 seconds, SAEA is better than the compared
algorithms (MMAS, KP, MM, P-ACO, EIACO and GAPX) on all in-
stances for m ∈ [0, 0.25] and m ∈ [0, 1]. As for m ∈ [0, 0.5], SAEA
obtained better results on 3 instances and being inferior on 5 instances.
The most competing algorithms are MMAS and KP. Considering an
individual comparisons for f=15 seconds SAEA is better than MMAS
and KP on 18 and 23 out of 24 tested instances, respectively.

• When f change every 30 seconds, SAEA outperforms the compared
algorithms (MMAS, KP, MM, P-ACO, EIACO and GAPX) on all in-
stances for m ∈ [0, 0.25], m ∈ [0, 0.5], and m ∈ [0, 1], with the exception
of one instance (Berlin52 when m ∈ [0, 0.5]).

The above results show that SAEA outperforms other DTSP algorithms
on most instances. For other instances it is still very competitive. Also, it is
worth noting that the existing methods are specifically designed to produce
the best results only for one or a few instances, while our SAEA incorpo-
rates no domain specific knowledge or preference and generalize well over all
instances.

22



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5.4. Discussion
The results presented throughout this work illustrate that, across two dif-

ferent combinatorial optimisation problems, SAEA produced very good re-
sults compared to the state of the art algorithms. More importantly, SAEA
obtained new best results for all DVRP instances and 85.4% for DTSP in-
stances. We hypothesize that the capability of SAEA in dealing with two
different dynamic routing problems and achieving good results is due to the
following two factors.

• The ability of the proposed algorithm in handling the dynamic changes
by evolving different configuration to be applied at different decision
point. By evolving configuration, the search can effectively capture
different area in the search and thus problem changes can be accom-
modated and tracked.

• The ability of the proposed algorithm in generating, for each solution,
different sequences of operator combination during the search. By doing
so, the proposed algorithm can effectively escape from the local optima
and explore different areas in the problem solution search space.

6. Conclusion

In this paper, we presented a self-adaptive evolutionary algorithm for the
the dynamic vehicle routing problem with traffic congestion. The proposed
algorithm adaptively evolves the configurations (the parameter values and
operator types) of evolutionary algorithm in order to effectively handle the
dynamic changes as well as generating high quality solutions. It encodes var-
ious configurations that undergo a thorough evolutionary process and evolve
at the same time than the solution to a given problem. The proposed al-
gorithm has been tested on two routing problems with traffic congestion:
vehicle routing and travelling salesman. The obtained results demonstrate
the effectiveness of the proposed algorithm when compared to the one with-
out self-adaptive mechanisms. It also achieved competitive, if not better,
results compared to other algorithms proposed in the literature. In our fu-
ture work, we would like to apply the proposed algorithm on a real-world
dynamic vehicle routing problem.
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Table 3: SAEA Comparing with 11 Variations
Algorithm Instance F-n45-k4 F-n72-k4 F-n135-k7

SAEA

Best 1097.24 418.76 2411.53
Average 1101.833 426.61 2425.55

Std 3.68 5.46 12.94

EA1

Best 1127.52 491.34 2584.54
Average 1135.13 511.52 2647.31

Std 11.42 27.92 26.44

EA2

Best 1206.35 476.58 2611.23
Average 1327.28 508.36 2753.92

Std 25.31 22.83 23.46

EA3

Best 1213.44 481.75 2592.53
Average 1347.35 510.42 2686.03

Std 27.41 32.62 27.49

EA4

Best 1196.35 483.09 2581.54
Average 1281.78 507.01 2622.4

Std 22.93 19.75 31.27

EA5

Best 1112.62 462.57 2542.47
Average 1273.56 495.64 2679.18

Std 22.74 16.42 36.21

EA6

Best 1188.27 486.56 2541.65
Average 1291.35 514.74 2667.46

Std 25.43 26.11 33.08

EA7

Best 1231.46 492.57 2541.26
Average 1368.15 548.96 2668.11

Std 28.01 20.72 34.53

EA8

Best 1245.22 501.27 2576.10
Average 1332.02 563.51 2604.95

Std 25.28 22.04 31.23

EA9

Best 1305.37 530.47 2712.47
Average 1412.15 606.62 2927.48

Std 33.70 31.06 40.64

EA10

Best 1353.24 590.27 2703.63
Average 1472.04 640.08 2922.84

Std 32.07 36.92 41.67

EA11

Best 1373.24 557.43 2723.07
Average 1475.46 607.02 2897.63

Std 34.02 38.16 40.62
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Table 5: The results of SAEA and other variants using different traffic update formula
Algorithm Instance F-n45-k4 F-n72-k4 F-n135-k7

SAEA
Best 992.31 394.11 2285.11
Ava 1141.24 421.23 2413.17
Std 4.12 6.16 14.17

EA1
Best 1048.27 427.16 2518.36
Ava 1242.35 550.74 2875.14
Std 16.55 32.74 30.19

EA2
Best 1114.63 468.39 2696.44
Ava 1411.46 512.92 2974.56
Std 29.11 28.25 27.27

EA3
Best 1196.34 469.56 2611.48
Ava 1411.48 548.71 2811.39
Std 30.12 31.1 29.2

EA4
Best 1114.21 481.27 2703.35
Ava 1288.03 529.63 2901.28
Std 23.24 18.11 34.09

EA5
Best 1137.62 471.68 2489.13
Ava 1297.29 506.11 2718.26
Std 23.12 17.1 37.08

EA6
Best 1100.79 461.56 2384.17
Ava 1219.47 508.59 2667.46
Std 21.11 20.92 34.29

EA7
Best 1104.46 461.44 2476.59
Ava 1213.28 511.07 2674.25
Std 25.17 18.94 31.31
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Table 6: Comparing with State-of-the-art Methods on DVRP

Algorithm F-n45-k4 F-n72-k4 F-n135-k7
SAEAbest 1097.24 418.76 2411.53
SAEAStd 3.68 5.46 12.94

ASrank-CVRP 1126.69 473.27 2695.42
ACS-DVRP 1118.71 469.58 2656.18

M-ACO 1177.52 466.98 2618.42
MMASR 1112.49 461.09 2626.73
RIACO 1106.19 436.11 2496.29
EIACO 1117.49 429.21 2483.48
MIACO 1120.38 433.46 2505.39
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Table 7: The computational results of SAEA compared to other algorithms
Instances SAEAbest SAEAStd MMAS KP MM P-ACO EIACO GAPX

m randomly generated ∈ [0, 0.25] with f = 15 seconds
Berlin52 7895.3 3.81 7895.3 7865.3 7923.2 8055.6 7916 8347.5
Eill101 640.3 14.8 652.5 657.2 655.7 671.4 663.2 703.4
D198 16673.1 11.7 16680.4 16690.1 16932 17679.6 17106.9 18203.2
Lin318 44765.2 15.7 44787 46019.9 45182.1 48588.1 46426.1 52737.9
Pcb442 53682.7 14.0 53741.3 55100.1 57226.9 60649 57460.5 65169.2
U574 40211.4 12.4 40255.7 40570.7 44604.1 47231.7 43510.8 47487
Rat783 9457.3 11.7 9534.6 9727.1 10996.3 11609 10543.9 11587.4
Pcb1173 64344.7 13.9 64412.2 65764.8 77971.7 81969.6 72742 84265.1

m randomly generated ∈ [0, 0.5] with f = 15 seconds
Berlin52 8292.4 12.5 8285.8 8259.3 8313.2 8506.4 8327.6 8715.8
Eill101 692.6 13.4 697.8 707.7 701.5 724.8 716.1 783.7
D198 17602.3 11.6 17594.9 17658 17783.6 18707.5 18134.6 19588.6
Lin318 47396.1 14.2 47383.9 48569.2 47779.3 51670.3 48981.4 56478.4
Pcb442 59345.6 15.4 59320 60088 63858.8 67403.6 63569.9 72879.2
U574 42992.9 15.2 42976.2 42969.9 47621.3 50416.9 46122.4 51026.5
Rat783 10176.3 12.3 10187.8 10311.2 11853.5 12447.3 11226.7 12826.6
Pcb1173 73082.4 10.8 73097.2 73564.4 88305.7 91737.9 81363.8 106143.2

m randomly generated ∈ [0, 1] with f = 15 seconds
Berlin52 8585.1 7.4 8594.9 8632.8 8603.8 8856.4 8634.5 9144.2
Eill101 746.5 8.2 750.8 770.4 755.2 784.8 768.1 843.2
D198 18577.3 8.1 18687.7 18591.4 18727.1 19774.5 19086.8 21127.5
Lin318 49834.7 8.2 49843.6 51711.4 50976.1 54641.3 51141.6 61448.2
Pcb442 66062.8 5.3 66066.1 66919.3 71487.4 75552.8 70377.6 80807.4
U574 48469.1 7.9 48487.9 48409.2 53248.6 56169.7 51682.8 58439.9
Rat783 11956.3 7.7 11971.9 12103.3 13671 14303.1 12948.5 15957.5
Pcb1173 93664.2 7.5 93686.7 93523.8 110622.2 114821.3 102621.4 145865

m randomly generated∈[0, 0.25] with f = 30 seconds
Berlin52 7859.7 10.3 7897.3 7863.7 7911.4 8046.5 7919.7 8307.8
Eill101 650.2 3.4 650.7 655.6 653 669 661.5 696.7
D198 16614 7.6 16629.5 16651.6 16815.4 17477 17012.6 17855
Lin318 44378.4 12.3 44396.8 45905.8 44911 47616.6 46000.4 52337.2
Pcb442 53736.2 8.1 53754 54931 56211.6 58745.6 56936.4 64532.4
U574 40048.1 11.5 40062.6 40464.1 43030.7 46386.8 43033.9 46946.1
Rat783 9465.9 5.2 9487.3 9695.4 10748.8 11370.1 10416.3 11453.9
Pcb1173 64244.5 8.1 64259.4 65489.3 76034.4 80172.1 71838.2 81796.5

m randomly generated ∈ [0, 0.5] with f = 30 seconds
Berlin52 8254.1 3.5 8265.2 8237.3 8299.2 8473.4 8298.5 8672.1
Eill101 691.2 2.7 696.9 705.8 699 722.6 713.9 770.1
D198 17564.7 5.8 17572.5 17590.6 17651.1 18586.6 18071.1 19414.7
Lin318 46914 9.4 46923.8 48439.6 46993.1 50694 48300.3 56334.9
Pcb442 59143.5 10.3 59151 59959.6 62465.5 65975.1 62877.6 72674.3
U574 42782.6 7.4 42788.1 42816.2 46319.1 49472.7 45630.3 50736.3
Rat783 10142.3 6.1 10167.6 10297.3 11579.9 12206.9 11080.2 12426.6
Pcb1173 72749.1 7.8 72766.4 73327.9 86079.7 90127.3 80246.8 99820.1

m randomly generated ∈ [0, 1] with f = 30 seconds
Berlin52 8573.3 3.4 8584.2 8610.2 8587.3 8792.3 8627.4 8966.6
Eill101 732.6 1.9 749.1 768.2 752.6 819.2 765.8 830.5
D198 18447.3 6.2 18468.7 18494.3 18628.7 20196.5 19018.1 20625.8
Lin318 48854 7.7 48869.7 51466.6 49267.5 56111.2 50456 60855.7
Pcb442 65822.6 11.3 65828.3 66606.9 69335.8 76785 69731.3 80922.7
U574 48427.8 9.6 48445.2 48172.6 51791.3 56641.7 51119.9 58121.8
Rat783 11911 12.4 11914.3 11993 13341.6 14207.5 12776.5 15061.3
Pcb1173 92892.4 10.3 92916.7 93473.5 108006.6 112048.4 101139.6 136732.2
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