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Abstract

In graph signal processing, many studies assume that the underlying network

is undirected. Although the digraph model is rarely adopted, it is more appro-

priate for many applications, especially for real world networks. In this paper,

we present a general framework for extending the graph signal processing to

directed graphs in graph fractional domain. For this purpose, we consider a

new definition for fractional Hermitian Laplacian matrix on directed graph and

generalize the spectral graph fractional Fourier transform to directed graph

(DGFRFT). Based on our new transform, we then define filtering, which is

used in reducing unnecessary noise superimposed on temperature data. Finally,

the performance of the proposed DGFRFT approach is also evaluated through

numerical experiments using real-world directed graphs.

Keywords: Graph signal processing, graph Fourier transform, fractional

Fourier transform, graph Laplacian, directed graph.

1. Introduction

In the field of network science and big data, it is necessary to expand the

scope beyond classical time signal analysis and processing to accommodate the

signals defined on the graph [1–5]. The irregular structure of the underlying

graph is different from the regular structure of classical signal processing, which

brings great challenges to the analysis and processing of graph signal. Graph

signal processing (GSP) offers effective tools to process such network data [6–
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8]. For instance, graph-supported signals can model vehicle trajectories over

road networks [9]. Research in GSP has only recently begun, but it is growing

rapidly. The main contributions include wavelet and Fourier transforms [5, 10–

13], sampling and reconstruction of graph signals [14–18], uncertainty principles

[19, 20], filtering of graph signals [21, 22], etc.

Different transforms of graph signal are still the core of GSP. Among them,

the graph Fourier transform (GFT) acts as a cornerstone [4, 5]. In the literature,

there are two frameworks for frequency analysis and processing of graph signals:

(i) based on Laplacian matrix [4], (ii) based on adjacency matrix. The classi-

cal Laplacian based approach is limited to graph signals located on undirected

graphs [5]. In this method, frequency ordering is based on quadratic form and

small eigenvalues correspond to low frequencies and vice versa. On the other

hand, the adjacency based approach builds on the shift operator of the graph.

This approach constructs the Fourier basis by using generalized eigenvectors of

the adjacency matrix. Recently, some unique methods have been proposed to

extend the GFT to directed graphs [23–33]. [23] uses the in-degree matrix and

weight matrix to define the directed Laplacian. [24] proposes an alternative ap-

proach that builds the graph Fourier basis as the set of orthonormal vectors that

minimize a continuous extension of the graph cut size, known as the Lovász ex-

tension. [25] introduces a novel harmonic analysis for functions defined on the

vertices of a strongly connected directed graph. [26] studies the problem of

constructing a GFT for directed graphs, which decomposes graph signals into

different modes of variation with respect to the underlying network. [27] pro-

poses a methodology to carry out vertex-frequency analyses of graph signals on

directed graph based on [26]. [29] also defines new transform for directed graph,

which using the Schur decomposition and leads to a series of embedded invari-

ant subspaces for which orthogonal basis are available. [30] extends graph signal

processing to directed graphs based on the Hermitian Laplacian. [31] provides

an overview of the current landscape of signal processing on directed graphs.

Although these methods can construct Fourier bases with desirable properties,

Fourier bases cannot completely retain information about the structure of the
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underlying graph.

In order to extract the local information of the graph signal, a new research

direction has been proposed in graph signal processing (GSP), that is, fractional

order [12, 13, 22, 34–39]. The fractional order has gained considerable atten-

tion in the last 20 years in classical signal processing, and the application of

fractional order to graphs has also aroused the interest of researchers [22, 36–

38]. The graph fractional domain is a combination of the graph spectrum do-

main and fractional transform domain. The graph fractional Fourier transform

(GFRFT) related to graph adjacency matrix is proposed in [12]. Furthermore,

a new spectral graph Fractional Fourier Transform (SGFRFT) related to graph

Laplacian matrix is proposed in [13]. GFRFT and SGFRFT show advantages

in revealing the local characteristics of the graph signal. However, for directed

graph, both of these transforms have their drawbacks. The Laplacian matrix for

SGFRFT is constructed by an undirected graph, so SGFRFT does not apply to

directed graphs. Although the GFRFT can use for directed graph, it has some

potential problems. First, the basis comes from the Jordan decomposition is

not orthonormal, and the Parseval’s identity does not hold and inner products

are not preserved in the vertex domain and graph fractional domains. Second,

numerical calculations of Jordan decomposition also often produce numerical

instability even for medium-sized matrices [40].

The presence of directionality plays a crucial role when it comes to modeling

social networks, technological networks, biological and biomedical networks, as

well as information networks [41–43]. For directed graphs, the existing stud-

ies in graph fractional domain are all based on adjacency matrix [12, 34]. In

the continuous setting, fractional Fourier transform seeks the orthogonal bases

which are eigenfunctions of the fractional Laplacian operator. The background

naturally leads us to consider the eigenvectors of the fractional graph Lapla-

cian operator in the discrete setting. Thus, we believe the Laplacian-based

construction is more natural. In this paper, we aim to generalize SGFRFT to

directed graphs. In the new transform, the fractional Laplacian operator is a

simple extension of the Hermitian Laplacian discussed in [44] to directed graphs.
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Moreover, the new definition of SGFRFT links the existing Laplacian based ap-

proach to directed graph. The paper is organized as follows. We first review

the GFT and SGFRFT as our foundation in Section 2. Section 3 introduces

the procedure about how to design spectral graph fractional Fourier transform

for signal on directed graph. Then, an ideal filter and frequency selective filter

are presented in Section 4. For the last part, we present experiments on real

directed graph, and an application of signal denoising using the filtering in the

previous section.

2. Preliminaries

2.1. Spectral graph theory

An undirected weighted graph G = {V, E ,W} consists of a finite set of ver-

tices V = {v0, · · · , vN−1}, where N = |V| is the number of vertices, a set of

edges E = {(i, j)|i, j ∈ V, j ∼ i} ⊆ V × V, and a weighted adjacency matrix

W. If the values of W are all in 0, 1 then W is called an adjacency matrix

[43]. W = [Wij ] ∈ RN×N is defined as Wij = wij if (i, j) ∈ E and Wij = 0

otherwise. The non-normalized graph Laplacian is a symmetric difference op-

erator L = D −W [5], where D := diag(d1, ..., dN ) is a diagonal degree matrix

of G, and di :=
∑N
j=1 wij . Let {χ0, χ1, · · · , χN−1} be the set of orthonormal

eigenvectors. Suppose that the corresponding Laplacian eigenvalues are sorted

as 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λN−1 := λmax. Therefore

L = χΛχH , (1)

where

χ = [χ0, χ1, · · · , χN−1], (2)

and the diagonal matrix is Λ = diag([λ0, λ1, · · · , λN−1]). The superscript H

represents the conjugate transpose of matrix.

The graph signal f is defined as binding a scalar value to each vertex through

the function f : V → R. Using the definition of (inverse) graph Fourier transform
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(GFT) as in [5], the GFT of f is

f̂(`) = 〈f, χ`〉 =

N∑
n=1

f(n)χ∗` (n), ` = 0, 1, · · · , N − 1, (3)

where ∗ is complex conjugate. The inverse GFT is given by

f(n) =

N−1∑
`=0

f̂(`)χ`(n), n = 0, 1, · · · , N − 1. (4)

2.2. Spectral graph Fractional Fourier Transform

The graph fractional Laplacian operator Lα is defined by Lα = κRκH , where

α is the fractional order, 0 < α ≤ 1, ` = 0, 1, · · · , N − 1 [13]. Note that

κ =
[
κ0, κ1, · · · , κN−1

]
= χα, (5)

and

R = diag(
[
r0, r1, · · · , rN−1

]
) = Λα, (6)

so that

r` = λα` . (7)

In the follow-up part of this paper, computing the α power of a matrix always

uses matrix power function.

The spectral graph Fractional Fourier Transform (SGFRFT) of any signal f

building on the graph G is defined by [13]:

f̂α(`) = 〈f, κ`〉 =

N∑
n=1

f(n)κ∗` (n), ` = 0, 1, · · · , N − 1, (8)

when α = 1, the SGFRFT degenerates into standard GFT.

The inverse SGFRFT is given by

f(n) =

N−1∑
`=0

f̂α(`)κ`(n), n = 0, 1, · · · , N − 1. (9)

Remark 1. In this paper, to distinguish directed graphs from undirected graphs,

we use G represents undirected graphs whereas G represents directed graphs.
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3. Spectral graph fractional Fourier transform for directed graph

(DGFRFT)

The orthogonality of eigenvectors gives the algebraic ideal properties of the

SGFRFT, which makes the graph signal processing of undirected graphs de-

velop well. However, since the eigenvectors of the fractional Laplacian operator

of digraphs are usually not orthonormal, it is difficult to extend graph signal

processing to digraphs simply. Our goal is to find a new way of defining frac-

tional Laplacian matrix to keep the orthogonality of the eigenvectors and avoid

the calculation of Jordan decomposition, i.e., Hermitian fractional Laplacian

matrix. The Hermitian Laplacian is a complex matrix obtained from an exten-

sion of the graph Laplacian [30, 44–46]. It preserves the edge directionality and

Hermitian property. Here we consider a directed graph G = (V,E,W ). V is the

set of N vertices and E is the set of directed edges. W is the weight matrix of the

graph, its element is defined as wij which represents the weight of the directed

edge from vertex i to j. For directed graphs, the integers dini and douti specify

the number of arrowheads directed toward and away from vertex i respectively,

[47]. The in-degree of vertex i is calculated as dini =
∑N
j=1 wij , whereas, the

out-degree is douti =
∑N
j=1 wji. We define a new weight matrix as Ws = [wij,s],

where wij,s = 1
2 (wij + wji). Ws = [wij,s] and Es (ignoring the directionality

of E) uniquely determine the corresponding undirected graph Gs = (V,Es,Ws)

for directed G. The diagonal degree matrix Ds of Gs is D(i, i) :=
∑N
j=1 wij,s.

Then a Hermitian Laplacian of G is defined as:

Definition 1. (Hermitian graph Laplacian matrix)

L = Ds − Γq �Ws, (10)

where � is the hadamard product [48], and Γq is a Hermitian matrix which

encodes the edge directionality of G.

Γq can take many forms, here’s a simple example. Define Γq = [γ(i, j)] that

satisfies γ(i, j) = γ(i, j)H . γ is a map from V × V to a unitary group of degree
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1 and is written by [46]:

γqi, j = e2πiq(wij−wji), (11)

when wij = 1, γqi, j = e2πiq represents the edge from vertex i to j and 0 ≤ q < 1

is a rotation parameter.

As Ds and Ws are real symmetric matrices, L is Hermitian matrix. Let

vk and uk be respectively the k-th eigenvalue and eigenvector of the Hermitian

Laplacian L. The eigendecomposition of L can be written as:

L = UV UH , (12)

where U = [u0, u1, · · · , uN−1]. V = diag([v0, v1, · · · , vN−1]) is a real diagonal

matrix, and Hermitian Laplacian eigenvalues are sorted as 0 ≤ v0 < v1 ≤ v2 ≤

· · · ≤ vN−1 := vmax.

The graph Hermitian fractional Laplacian matrix for directed graph is given

by Lα,d = PQPH , in which

P =
[
p0, p1, · · · , pN−1

]
= Uα, (13)

and

Q = diag(
[
ξ0, ξ1, · · · , ξN−1

]
) = V α, (14)

that is

ξ` = vα` , l = 0, 1, · · · , N − 1. (15)

We select two different α as examples to show the spectral properties of Her-

mitian fractional Laplacian matrix Lα,d in Fig. 1. When the rotation parameter

q = 0, the Hermitian fractional Laplacian matrix degrades to normal fractional

Laplacian matrix as each element of Γq equals to 1. Therefore, when the values

of q are relatively small, the spectrum of the Hermitian fractional Laplacian is

similar to the spectrum of the fractional Laplacian, otherwise, when q is large,

there will be oscillation.

The total variation for graph signals is defined as an absolute sum of the

discrete difference of a graph signal [49]. It was first introduced in as an exten-

sion of the original total variation (TV) [50]. We define the total variation of a
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Figure 1: Eigenvalues of Hermitian fractional Laplacian with respect to different fractional

orders.

graph signal f as

TV(f) :=
∑

(i,j)∈E

|f(i)− f(j)|2. (16)

to measure the smoothness of eigenvectors of Lα,d. The total variation has an

intuitive interpretation: it compares how the signal varies with time or space

and calculates a cumulative magnitude of the signal. The smaller the difference

between the original signal f(i) and f(j), the lower the signal’s variation. Fig.

2 shows total variations of eigenvectors of Lα,d on a random directed graph with

50 nodes when the fractional parameter α = 0.8 and 0.6. To construct a random

directed graph, we fix n nodes and for each pair of nodes we generate a direct

edge with probability p (n = 50, p = 0.1).

Then we prove that Lα,d is a positive semi-definite Hermitian matrix.

Proposition 1. For any fractional order α, the Lα,d is a Hermitian matrix:

(Lα,d)
H = Lα,d. (17)

Proof. Since V is a real diagonal matrix, (V α)H = V α.

(Lα,d)
H = (PQPH)H = (UαV α(Uα)H)H = UαV α(Uα)H = PQPH = Lα,d.

(18)
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Figure 2: Total variations of eigenvectors of Hermitian fractional Laplacian with respect to

different fractional orders.

Proposition 2. For any fractional order α, the Lα,d is a positive semi-definite

matrix.

Proof. From Proposition 1, we know V α is real diagonal matrix. Let J =

V α/2(Uα)H , so Lα,d = JHJ . For any signal f ∈ CN , note that

fHLα,df = fHUαV α(Uα)Hf = fHJHJf = (Jf)HJf ≥ 0 (19)

Clearly, in this case, this Hermitian fractional Laplacian matrix has a set

of orthonormal eigenvectors. This orthogonality allows the basic concepts of

graph signal processing of undirected graphs to be extended directly to those of

directed graphs.

Definition 2. (Directed graph fractional Fourier transform) The spectral graph

Fractional Fourier Transform for directed graph (DGFRFT) of any signal f

building on the graph G is defined as:

f̂α,d(`) = 〈f, p`〉 =

N∑
n=1

f(n)p∗` (n), ` = 0, 1, · · · , N − 1. (20)

By the matrix form, the DGFRFT is

f̂α,d = PHf, (21)
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when α = 1, the DGFRFT degenerates into GFT for directed graph.

The inverse DGFRFT is given by

f(n) =

N−1∑
`=0

f̂α,d(`)p`(n), n = 0, 1, · · · , N − 1. (22)

Now we have the definition of DGFRFT, it has some useful properties.

Property 1. Unitarity: P−1 = (Uα)−1 = U−α = PH .

Property 2. Index additivity: U−α ◦ U−β = U−β ◦ U−α = U−(α+β).

Property 3. Reduction to SGFRFT when wij = wji.

Property 4. Parseval relation holds, for any signal f and g defined on the

directed graph G we have:

〈f, g〉 = 〈f̂α,d, ĝα,d〉. (23)

If f = g, then

N∑
n=1

|f(n)|2 = ‖f‖22 = 〈f, f〉

= 〈f̂α,d, f̂α,d〉 = ‖f̂α,d‖22 =

N−1∑
`=0

|f̂α,d(`)|2.

(24)

DGFRFT is a new transform focused on directed graph in graph fractional

domain. Compared with GFRFT, it has several significant advantages. First,

the columns of U are linearly independent eigenvectors, and at the same time

they are orthogonal. This results in DGFRFT that preserves the inner product

when passed from the vertex domain to the graph fractional domain. In addi-

tion, DGFRFT preserves edge directionality. Finally, computing the GFRFT

needs to do Jordan decomposition, when the size of the graph exceeds the me-

dian value, the calculation of Jordan decomposition will lead to serious and

difficult numerical instability. As our new Laplacian matrix for directed graph

is Hermitian matrix, the Jordan decomposition can be avoided in the calculation

of DGFRFT.
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4. Directed graph filtering

4.1. Spectral graph filtering

In classical signal processing, filtering can be defined by convolution. The

convolution of signal a with b is the result of signal a filtered by b. Therefore, to

define the directed graph filtering in graph fractional domain, first we need to

define the convolution operator. Convolution in the time domain is equivalent

to multiplication in the Fourier domain. For directed graph, the graph fractional

convolution operator is defined as the following form consistent with the classical

convolution by using the directed graph fractional Laplacian eigenvector.

Definition 3. (Convolution operator) For any graph signal f and g which un-

derlying graph structure is directed, their graph fractional convolution ∗ is

(f ∗ g)(n) =

N−1∑
l=0

f̂α,d(`)ĝα,d(`)p`(n). (25)

A graph filter is a system which takes a graph signal as input and produces

another graph signal as output [51]. Given a input directed graph signal fin,

the filtering is defined by the convolution of fin and a filter h. Thus the spectral

directed graph filtering in vertex domain is:

fout(n) = (f ∗ h)(n) =

N−1∑
`=0

f̂ inα,d(`)ĥα,d(`)p`(n), n = 0, 1, · · · , N − 1, (26)

and in graph fractional domain:

f̂outα,d (`) = f̂ inα,d(`)ĥα,d(`), ` = 0, 1, · · · , N − 1. (27)

4.2. Frequency selective filtering

The above spectral graph filtering is an ideal filter. It retains all frequencies

within a given range and completely removes those that are out of range. Be-

cause the graph has a finite number of points, it is impossible to design such a

filter. A frequency selective filter is a system that isolates the specific frequency
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components and excludes all others. It’s easier to achieve in application. The

ideal response of the frequency selective filter is [52]

hd(l) =

 1, l ∈ passband

0, l ∈ stopband.
(28)

Lowpass, bandpass and highpass filters are three common frequency selective

filters.

Using hd(l), the graph signal f is filtered in graph fractional domain by:

f̂outα,d = Jdf̂α,d, (29)

where Jd = diag([hd(ξ1), hd(ξ2), · · · , hd(ξN )]), and P−1f = f̂α,d is the DGFRFT

of f .

Or, equivalently, vertex domain filtering can be obtained by inverse DGFRFT:

fout = P f̂outα,d = PJdf̂α,d = PJdP
−1f = Hf. (30)

where H = PJdP
−1 represents the transfer matrix.

5. Application

Here we assess the performance of DGFRFT via simulations on two graphs.

In Simulation 1, we use the US temperature data to test that directionality is an

important key in application. For a graph that starts out as a directed graph,

we apply DGFRFT to denoise. Then ignore the directionality of the graph, do

the same denoising step, and observe the results. In graph fractional domain,

DGFRFT and GFRFT [12] are suitable for directed graph. The former is based

on Laplacian matrix, and the latter uses adjacency matrix. In Simulation 2, for

a real dataset, we use DGFRFT and GFRFT to perform the same filtering and

denoising task, and then compare the results. The experimental results show

that our DGFRFT introduces smaller errors and has higher robustness.

5.1. Simulation 1: Directed VS Undirected

In this section, real temperature data measured by 50 state meteorological

stations in the United States (US) are used to make experiment. We consider

12
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Figure 3: Average temperature data measured by 50 meteorological state stations in the US.

signal denoising on a directed graph. First, based on a map of the US, we

define a digraph using geographic locations and latitude. In this graph, the

vertexes represent the 50 states of the US. The directed edges between states

are based on latitudinal assignments from states with low latitude to states

with high latitude. Only when two states share a border are they connected by

an edge. The average annual temperature in each state is viewed as a graph

signal. States at lower latitudes have higher average temperatures. Therefore,

there is a correlation between latitude and temperature, and it is reasonable to

use latitude to define a digraph. Fig. 3 shows the US temperature signal on a

directed graph. The data is available in https://www.currentresults.com/

Weather/US/average-annual-state-temperatures.php.

We generate a noisy signal g = f+n, where f is the original signals represent-

ing average temprature on the graph and n is the noise vector whose coordinates

are independently sampled from the Gaussian distribution with zero mean and

standard deviation σ = 10. We apply GFT [4], Hemitian GFT [30], DGFRFT

to recover the original signal from the noisy signal. For each method, we use a
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(b) noisy signal.
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(c) denoised signal using Hermitian

GFT [30].
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(d) denoised signal using DGFRFT.

Figure 4: Original, noisy and denoised temperature signals on directed US graph.

low-pass filter kernel

ĥd(λ) =
1

1 + cλ
,

where λ is the eigenvalue corresponding to graph Laplacian, Hermitian graph

Laplacian, graph Hermitian fractional Laplacian respectively. The denoised

signal can be calculated as

f̃ = UĤU∗g,

where Ĥ = diag{ĥd(λ0), . . . , ĥd(λN−1)} and U is the GFT, Hermitian GFT,

DGFRFT transform matrix. In this experiment, we set c = 0.02, q = 0.5 and

α = 0.9. Note that we can only apply GFT [4] to undirected graphs. To verify

the importance of the directionality, we use the above denoising scheme using

the same US graph in Fig. 3, where we omit the direction of edges. Fig. 4
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(c) denoised signal.

Figure 5: Original, noisy and denoised temperature signals on undirected US graph.

and 5 give an intuitive example of the original, noisy, and denoised temperature

signals on directed and undirected US graphs respectively. In the directed case,

the performance difference of Hermitian GFT and DGFRFT is observed in Fig.

4(c) and 4(d). In the undirected case, the denoising result after GFT is shown

in Fig. 5(c).

In addition, we calculate the root mean square error (RMSE) between origi-

nal signal and the denoised signal obtained using GFT [4], Hermitian GFT [30]

and DGFRFT approaches. The results are described in Table 1. As the results

demonstrate, these three transforms to graph signal denoising perform well,

leading to small average errors. The RMSE obtained by our method is about

6.3828, while this quantity changes to 6.5685 and 6.5657 by using classical GFT

based on undirected graph [4] and another kind of GFT based on directed graph

[30] for denoising respectively. In conclusion, the proposed approach DGFRFT

on directed graph outperforms other two ways, which highlights its practical

usefulness in data denoising.

Table 1: Average RMSE between denoised signal and original signal.

Graph type Transform method RMSE

undirected GFT [4] 6.5685

directed Hermitian GFT [30] 6.5657

directed DGFRFT 6.3828
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Figure 6: A sample realization of the original, noisy, and recovered signals of DGFRFT and

GFRFT

5.2. Simulation 2: DGFRFT VS GFRFT

Next, compared to GFRFT [12], which is also applicable to digraph, we

study a real brain graph to demonstrate the superiority of DGFRFT in denoising

tasks. The datasets represent the macaque large-scale visual and sensorimotor

area corticocortical connectivity [53]. It has 47 vertexes and 505 edges (121

edges are directed). The vertexes represent cortical areas and edges represent

large corticocortical tracts or functional associations. The data is available in

https://sites.google.com/site/bctnet/.

Let U be the orthonormal DGFRFT or GFRFT basis. We construct a

synthetic graph signal by xf = e−f . We add Gaussian noise to the original

signal to obtain noisy signal g = xf + n. We use a series of filter kernels

constructed by H := diag(h), where hi = 1[i ≤ `] and ` is a tuning parameter

to control the number of diagonal elements. The parameter ` can be viewed

as spectral window size and when ` = 47 the filter kernel is just the identity

matrix. The recovered signal is given by

x̃f = UHU∗g.

16
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Figure 7: Relative recovery error of DGFRFT and GFRFT when α = 0.9 and q = 0.2.

Fig. 6 shows an example of original, noisy, and recovered signals of DGFRFT

and GFRFT with window size 5. Moreover, we compute the relative recovery

error with respect to the true error. The recovery error is defined as ef = ‖x̃f −

xf‖/‖xf‖. The true error is defined as e = ‖n‖/‖x‖, and the relative recovery

error is defined as ef/e. Fig. 7 are boxplots depicting ef/e versus ` averaged over

1000 Monte-Carlo simulations, and demonstrates the effectiveness of adopting

filters along with the proposed two methods. We can see DGFRFT is much more

stable compared with GFRFT. The Jordan decomposition required in GFRFT

is numerically unstable, which may be responsible for the large reconstruction

errors. Therefore, compared with GFRFT, DGFRFT has certain advantages

when dealing with graph signals whose underlying structure is directed graph.

6. Conclusions

Signals defined on directed graphs have important practical significance.

This paper proposes a methodology to carry out graph signals processing on di-

rected graph in spectral graph fractional domain. First, we introduce a method

to construct a new fractional Laplacian matrix for directed graph and prove

that it is a positive semi-definite Hermitian matrix. Equipped with this Her-

mitian fractional Laplacian matrix, a new transform named DGFRFT is pre-

sented. Then, to highlight the utility of DGFRFT, we propose two basic filtering

17



method and use it to signal denoising on real data. Finally, the effectiveness

of the DGFRFT construction is illustrated through tests on directed real world

graphs.
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