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Abstract

This paper considers the problem of detecting and tracking multiple maneuvering targets, which suffers from the
intractable inference of high-dimensional latent variables that include target kinematic state, target visibility state,
motion mode-model association, and data association. A unified message passing algorithm that combines belief prop-
agation (BP) and mean-field (MF) approximation is proposed for simplifying the intractable inference. By assuming
conjugate-exponential priors for target kinematic state, target visibility state, and motion mode-model association, the
MF approximation decouples the joint inference of target kinematic state, target visibility state, motion mode-model
association into individual low-dimensional inference, yielding simple message passing update equations. The BP
is exploited to approximate the probabilities of data association events since it is compatible with hard constraints.
Finally, the approximate posterior probability distributions are updated iteratively in a closed-loop manner, which is
effective for dealing with the coupling issue between the estimations of target kinematic state and target visibility state
and decisions on motion mode-model association and data association. The performance of the proposed algorithm
is demonstrated by comparing with the well-known multiple maneuvering target tracking algorithms, including in-
teracting multiple model joint probabilistic data association, interacting multiple model hypothesis-oriented multiple
hypothesis tracker and multiple model generalized labeled multi-Bernoulli.

Keywords: Maneuvering target tracking, mean-field approximation, belief propagation, message passing

1. Introduction

Exploiting noisy measurements from sensors (e.g., radar and sonar), joint target detection and tracking is the
process of detecting the existence of targets and estimating their kinematic states. It plays an essential role in many
applications, such as surveillance, traffic control, and navigation [1], etc. Joint detection and tracking of multiple
maneuvering targets is particularly challenging due to the following reasons: (1) Data association uncertainty often
occurs since the origin of the measurements is unknown in multiple target tracking with clutter. (2) Targets of interest
are typically non-cooperative. Their motion patterns cannot be modeled with absolute confidence. (3) The number of
targets is unknown and time-varying. Targets may appear or disappear at any time in any place of the area of interest.
(4) A tracker has to handle high-dimensional latent variables that include target kinematic state, target visibility state,
motion mode-model association, and data association. (5) The estimations of target kinematic state and target visibility
state are coupled with the decisions on data association and motion mode-model association.

Joint detection and tracking of multiple maneuvering targets requires solving four major problems, kinematic state
estimation, data association decision, target motion mode identification, and target detection. Each of these problems
has its line of research, which has been active for decades in the statistical signal processing society. Specifically,
aiming to infer the kinematic state of targets from noisy measurements, kinematic state estimation can be solved
by Kalman filter for linear Gaussian models, and by extended Kalman filter, unscented Kalman filter and particle
filter for nonlinear models [2]. Data association, determining which measurements are used to update each track, is
addressed by methods such as joint probabilistic data association (JPDA) [3], multiple hypothesis tracker (MHT) [4],
probabilistic multihypothesis tracker (PMHT) [5], and Markov chain Monte Carlo data association (MCMCDA) [6].
Maneuvering targets may switch between different motion modes. Using a bank of different hypothetical motion
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models that follow finite-state Markov chain, interacting multiple model (IMM) estimator [7] is commonly exploited
for maneuvering target tracking. Comprehensive surveys on maneuvering target tracking and data association can be
found in [8] and [9], respectively. Typical target detection approaches include M-of-N logic [10], visibility model-
based method [11], existence model-based method [12], Hough transform [13] and random sample consensus [14].
The random finite set (RFS)-based multitarget tracking methods, including probability hypothesis density (PHD)
filter [15], multi-Bernoulli filter [16], bypass the complicated data association problem and incorporate the joint target
detection and tracking in a Bayesian way. Gradually, these work has been extended to simultaneously handle two or
more problems by combination. For example, IMMJPDA [17] and IMMPMHT [18] are proposed to track multiple
maneuvering targets. The joint integrated probabilistic data association (JIPDA) [19] that integrates modeling of target
existence with JPDA, the PMHT with visibility model (PMHT-v) [20], and the belief propagation (BP) with existence
model [21] are used for multiple target joint detection and tracking. IMMMHT [22], MMPHD [23, 24], and multiple
model generalized labeled multi-Bernoulli (MMGLMB) [25], considered all four above-mentioned problems.

In principle, the problem of multiple maneuvering target tracking and detection (MMTT) can be formulated in a
Bayesian framework and solved by computing the joint probability distribution function (PDF) of high-dimensional
latent variables, including target kinematic state, target visibility state, data association and motion mode-model as-
sociation. However, exact computation of this joint PDF is intractable by the fact that the required integrations
over continuous latent variables (i.e., target kinematic state) may not have closed-form analytical solutions, and the
marginalization involves summing over all possible configurations of the discrete latent variables (i.e., target visibility
state, data association and motion mode-model association). Two kinds of approximation methods, mean-field (MF)
approximation [26] and BP, are commonly used to solve the high-dimensional inference problem. In the MF approx-
imation, the intractable joint PDF of high-dimensional latent variables is approximated by tractable fully factorized
PDF, and the Kullback-Leibler (KL) divergence between the approximate PDF and the true PDF is minimized. BP
devotes to find an exact or approximate marginal distribution. Both MF and BP can be implemented in an iterative
way, such as message passing (MP). As stated in [27], MF has the virtues of convergent implementation and simple
MP update rules for conjugate-exponential models. However, MF is not compatible with hard constraints [28]. BP
yields a good approximation of the marginal distribution if the factor graph representing the joint distribution has no
short cycles. Unlike MF, BP is compatible with hard constraints. However, it may have high complexity. Riegler et
al. combined BP and MF approximation in a joint MP approach [27].

Recently, BP has been attracting much attention from the target tracking society. Williams and Lau [29] presented
a graphical model formulation of data association and approximated the marginal association probabilities based
on BP. They proved the convergence of BP for the data association problem and showed that the computational
complexity of BP is linear in the number of targets and measurements. In [30], they further extended their work
to multiple scan data association problem, for which a convex free energy was constructed and optimized using
a primal-dual coordinate ascent method. Meyer et al. [21] addressed the problem of multisensor-multitarget joint
detection-estimation problem, where the statistical structure of joint latent variables including target kinematic states,
target existence state, and data association was described by a factor graph, and the corresponding joint detection-
estimation problem was solved by loopy BP (LBP). This work was further extended to unknown and time-varying
parameters which were assumed to follow Markov chain models [31], and LBP was adopted to calculate the marginal
posterior distributions of the targets and model parameters. A comprehensive survey on BP for multitarget tracking
can be found in [32].

As a specific type of variational Bayes whereas the approximated PDF is assumed fully factorized, MF is also
widely used in adaptive state estimation and target tracking problems. The MF approximation for adaptive Kalman
filtering with unknown measurement noise covariance was presented in [33], which was further extended to both
unknown process noise covariance and measurement noise covariance [34], and nonlinear adaptive filtering [35, 36].
Ma et al. [37] considered the multiple model state estimation problem, and approximated the joint state estimation
and model identification through MF approximation. To solve the data association problem in multitarget tracking,
Lázaro-Gredilla et al. [38] introduced a mixture of Gaussian processes of which hyperparameters were learned based
on MF.

Few work considered combined BP and MF for multitarget joint detection and tracking. Turner et al. [39] proposed
a probabilistic tracking algorithm that integrates state estimation, data association, and track management, whereas the
joint PDFs of latent variables are fully factorized based on MF and the data association is approximated by BP. Lan et
al. [40] extended the work of [39] to multipath target detection and tracking whereas one target may produce multiple
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resolved measurements via different propagation paths. Lau et al. [41] presented a structured MF approximation that
considered the dependence between target kinematic state and target existence state and approximated data association
by BP. However, to our best knowledge, no one has considered MMTT by using the combined BP-MF approximation.

This work considers the high-dimensional inference arising from MMTT, and provides a derivation of combined
BP-MF MP approach to joint estimation of target kinematic state and target visibility state, and decisions on motion
mode-model associatioin and data association. Based upon the factor graph corresponding to a factorization of the
joint PDF of the latent variables and a choice for a separation of this factorization into BP and MF factors, we use
MF to deal with the target kinematic state estimation, visibility state estimation and motion mode-model association
due to its simple MP update rules for conjugate-exponential models, and use LBP to solve the data association with
the one-to-one frame (hard) constraints. The approximate posterior PDFs are updated iteratively in a closed-loop
manner, which is effective for dealing with the coupling issue between the estimations on target kinematic state and
target visibility state and decisions on motion mode-model association and data association. The performance of the
proposed algorithm, which is referred as MP-MMTT, is demonstrated by comparing with the well-known multiple
maneuvering target tracking algorithms, including IMMJPDA, IMM hypothesis-oriented MHT (IMMHMHT), and
MMGLMB.

The rest of the paper is organized as follows. The problem formulation of MMTT is described in Section 2. The
approximate posterior PDFs, i.e., beliefs, of each latent variables are derived via MP framework in Section 3. The
simulation analysis and conclusion are given in Section 4 and Section 5, respectively.

2. Problem Formulation

This paper considers MMTT in the presence of clutter. The detection probability of targets is assumed to be less
than one. In this section, we first present the models of target and measurement, and then introduce the problems of
data association and target motion mode-model association. At last, we discuss MMTT in the Bayesian framework.

2.1. Modeling of Target and Measurement
Like [8], we use mode, denoted by τ, to refer to the true and unknown pattern of target motion, and use model,

denoted by m, to describe the motion mode of a target mathematically. Note that one motion mode of a target can
be represented by one or more models, especially when the target is maneuvering. Multiple-model approach, which
assumes a set of models as possible candidates of the true mode in operation at the time, is a mainstream method for
maneuvering target tracking [8]. In this paper, we assume that: (1) The true mode of a target is time-variant; (2) The
mode space of a target at any time k is time-invariant and the same as the assumed model set. The motion mode-model
association event τi

k = mi
k ∈ {1, . . . ,NM} with NM being the known number of models, denotes that target i moves

according to the mth model at time k. The model sequence
{

mi
1, . . . ,m

i
k

}
is a Markov chain with initial probability

πi,m = Pr
[
mi

0 = 1, . . . ,mi
0 = NM

]
and transition probability Ti,m(τ1, τ2) = Pr(mi

k = τ2|mi
k−1 = τ1) from τ1 to τ2. By

these assumptions, we will use mi
k to denote both the mode and the model of the ith target at time k. For a Markov

jump linear system, the kinematic state of the ith target via the mth model follows the equation [17]:

xi
k = Fk(mi

k)xi
k−1 + wk(mi

k), (1)

where xi
k ∈ Rnx is the ith target kinematic state with nx being the dimension of target kinematic state. The model-

dependent kinematic state transition function Fk(mi
k) is assumed to be known. Process noise wk(mi

k) is assumed to
be a zero-mean white Gaussian process with covariance matrix Qk(mi

k). The initial target kinematic state under each
model m are assumed to be Gaussian random variables with mean x̄i,m

0 and covariance matrix Pi,m
0 . Denote the joint

kinematic states of all targets at time k by Xk =
{

x1
k , . . . , x

i
k, . . . , x

NT
k

}
, where NT is the maximum number of potential

targets (tracks).
To perform target detection (or track maintenance), a tracker needs the abilities to initialize a new track for a

newborn target, and to terminate the tracks when the corresponding targets disappear. There are two common models,
the existence-based model [41] and the visibility-based model [39], for carrying out target detection in a probabilistic
way. The former represents the target kinematic state as a conditional distribution on target existence state; that is,
there are two different kinds of PDFs for target kinematic state, non-existing target kinematic state PDF and existing
target kinematic state PDF. The latter assumes that the target kinematic state is conditionally independent of target
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visibility state given data association. Roughly speaking, the existence-based model, which is used in JIPDA [19],
random finite sets based algorithms [42], etc., is more appropriate for recursive processing whereas the joint PDFs of
target kinematic state and target existence state are updated with time. The visibility-based model is often used for
batch processing algorithms, such as PMHT-v [20], variational Bayes tracker (VBT) [39], etc. In this paper, we adopt
the visibility-based model. Define the binary variable ei

k ∈ {0, 1} to represent the visibility (detection) state of target i;
that is, target i is visible at time k if ei

k = 1, otherwise target i is invisible. The evolution of the visibility state ei
k ∈ {0, 1}

of target i is modeled as a two-state first-order Markov process with initial probability πi,e = Pr[ei
0 = 0, ei

0 = 1] and
transition probability Ti,e(ξ1, ξ2) = Pr(ei

k = ξ2|ei
k−1 = ξ1) from ξ1 to ξ2. The decision of target detection (or track

management) is made based on its visibility probability p(ei
k = 1), i.e., a track is confirmed if its visibility probability

is greater than a threshold δc, and is terminated when its visibility probability is less than a threshold δd.
Denote the set of all measurements at time k by Yk = {y1

k , . . . , y
j
k, . . . , y

Nk,E
k } with Nk,E being the number of mea-

surements at time k. Let y j
k ∈ Rny , j = 1, . . . ,Nk,E , be the jth measurement with ny being the dimension of the

measurement. Each measurement y j
k may originate from either a target or clutter. The measurement originated from

clutter is uniformly distributed within the volume of the area of interest VG, and the number of clutter is assumed to be
Poisson distributed [1] with intensity λVG, where λ is the clutter density. The measurement y j

k originated from target
i is measured according to the measurement model hk : Rnx → Rny with a detection probability pi

d, that is,

y j
k = hk(xi

k,m
i
k) + vk(mi

k), (2)

where vk(mi
k) ∼ N(0,Rm

k ) is assumed to be zero-mean white Gaussian measurement noise with covariance matrix Rm
k .

Here, wk(mi
k), vk(mi

k) and xi,m
0 are assumed to be mutually independent. For simplicity, here and thereafter, we denote

Fk(mi
k), Qk(mi

k), Rk(mi
k), hk(xi

k,m
i
k) as F i,m

k , Qi,m
k , Ri,m

k , hm
k (xi

k), respectively. For two functions f and g, define f c
= g if

f = g+c, where c is an additive constant; f (x) ∝ g(x) means that f (x) is equal to g(x) up to a proportionality constant;
〈 f (x)〉g =

∫
x f (x)g(x)dx denotes the expectation of f (x) over g(x).

2.2. Data Association and Mode-Model Association
The difficulty of MMTT arises from both the unknown origin of measurements and the unknown motion mode of

targets. Accordingly, two sorts of associations, data association and motion mode-model association, occur in MMTT.
Denote data association event ai, j

k = 1 if measurement j is originated from target i at time k and ai, j
k = 0 otherwise.

In particular, if j = 0, ai, j
k represents the event that the detection of target i is missed; if i = 0, ai, j

k represents the
event that measurement j is originated from clutter. Note that a0,0

k is meaningless so we let p(a0,0
k = 0) = 1. By

the fact that data association events are mutually exclusive and exhaustive, a joint association event is defined as
Ak =

⋂NT
i=0
⋂Nk,E

j=0 ai, j
k . In point target tracking, there often exists one-to-one frame (hard) constraints in data association,

that is, at each frame (scan), a measurement can originate from at most one target or from clutter, and a target can
generate at most one measurement. Based on the frame constraints, a joint event Ak ∈ Ak is feasible if it fulfils the
following equations, whereAk is the set of feasible joint association events.

NT∑
i=0

ai, j
k = 1, ∀ j ∈

{
1, . . . ,Nk,E

}
,

Nk,E∑
j=0

ai, j
k = 1, ∀i ∈ {1, . . . ,NT } .

(3)

Given NT targets and Nk,E measurements, the prior probability of a joint association event Ak is [39]

p(Ak |Ek) = (λVG)Nk,C exp(−λVG)/Nk,E!
NT∏
i=1

(
Pi

d(ei
k)
)di

k
(
1 − Pi

d(ei
k)
)1−di

k , (4)

where di
k = 1−ai,0

k is the ith target detection indicator associated with Ak, Nk,C = Nk,E−
∑NT

i=1 di
k is the number of clutter

at time k. In the vein of [43], we use a two-value variable Pi
d(ei

k) to represent the time-varying and target visibility
state-dependent detection probability. Specifically, Pi

d(ei
k = 1) = pi

d and Pi
d(ei

k = 0) = ε, where ε is a small positive
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real number (e.g., ε = 0.1). Note that the notion of pi
d, which is a predefined value, represents the target detection

probability in a single scan without considering the historic information on target visibility state. Pi
d(ei

k) equals pi
d if

p(ei
k = 1) = 1, in which case Eq. (4) is the same as the standard form [44].
Regarding motion mode-model association, the optimal approach to filter the state of the (hybrid) system repre-

sented by Eqs. (1) and (2) requires that every possible sequence of models from the beginning to the current time
needs to be considered, resulting in an exponentially increasing number of filters as the number of modes increases.

2.3. Problem Statement

Denote X1:K , E1:K , M1:K , A1:K and Y1:K as batch sequences of target kinematic state, target visibility state, target
motion model, data association and measurements from time 1 to time K, respectively. Let latent variables Θ1:K =

{X1:K , E1:K ,M1:K , A1:K}. The problem of MMTT is to estimate X1:K (tracking) and E1:K (detection) simultaneously,
given Y1:K in the presence of unknown A1:K and M1:K .

In the sense of Bayesian inference, the above joint detection and tracking problem is to calculate the joint posterior
PDF L(Θ1:K) , p(Θ1:K |Y1:K) first, and then marginalize L(Θ1:K) to obtain the posterior PDF of target kinematic state
X1:K and posterior PDF of target visibility state E1:K . As [39], the interdependence among the latent variables is
assumed as follows. Target kinematic state Xk, target visibility state Ek and motion mode-model association Mk

evolve with first-order Markov process. Data association Ak is independent over time. At each time, measurement Yk

is generated from Xk via the measurement model, and the relationship between target-to-measurement association is
represented by Ak. Additionally, Ak is related to target visibility state Ek, and Xk is conditionally independent of Ek

given Ak. To this end, the full joint posterior PDF L(Θ1:K) can be factorized into

L(Θ1:K) ∝
K∏

k=1

NT∏
i=1

Nk,E∏
j=1

V−a0, j
k

G

NM∏
mi

k=1

p(y j
k |x

i
k,m

i
k, a

i, j
k )ai, j

k

︸                                                ︷︷                                                ︸
pY1:K |X1:K ,M1:K ,A1:K

×

NT∏
i=1

p(xi
0|m

i
0)

K∏
k=1

NM∏
mi

k=1

p(xi
k |x

i
k−1,m

i
k)

︸                                          ︷︷                                          ︸
pX1:K |M1:K

×

NT∏
i=1

πi,m

K∏
k=1

p(mi
k |m

i
k−1)︸                         ︷︷                         ︸

pM1:K

×

K∏
k=1

p(Ak |Ek)︸           ︷︷           ︸
pA1:K |E1:K

I(Ak ∈ Ak) ×
NT∏
i=1

πi,e

K∏
k=1

p(ei
k |e

i
k−1)︸                      ︷︷                      ︸

pE1:K

.

(5)

If A1:K and M1:K are known, it is tractable to handle tracking by inferring the posterior PDF p(X1:K |M1:K , A1:K ,Y1:K)
via a fixed-interval smoother, and handle detection by inferring the posterior PDF p(E1:K |A1:K ,Y1:K) via a hidden
Markov model (HMM) smoother. With unknown A1:K and M1:K , however, it is required to summarize over all pos-
sible configurations of the data association hypotheses and motion mode-model hypotheses from 1 to K. Since the
number of data association events increases exponentially with the number of targets and the number of (validated)
measurements, and the number of motion mode-model hypotheses increases exponentially with the number of models,
the exact calculation of joint posterior PDF is prohibitively expensive and approximation solutions are often sought.
Since the sampling-based stochastic approximation methods (e.g., MCMC) are computationally intensive, we adopt a
combined BP-MF approximation in this paper.

3. Solutions

3.1. Combined BP-MF Approximation for MMTT

MP techniques, operating on factor graphs, are broadly used to solve optimization and inference problem by
iteratively exchanging information (messages) between neighboring nodes. BP is an explicit MP technique. Many
other inference algorithms, such as MF approximation, expectation-maximization, can also be interpreted as MP [45,
46]. MF approximates a joint distribution pX(x) based on the minimization of the variational free energy, which has
the virtue of yielding closed-form computationally tractable expressions in conjugate-exponential models. However,
MF approximation fails if a factor graph has deterministic factor nodes, e.g., hard constraints. BP computes the
marginal distribution pi(xi) of the variable xi associated to the joint distribution pX(x) by minimizing the Bethe free
energy, which works in models with deterministic factor nodes as well. The fixed-point equations of both BP and
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MF approximation can be obtained via the region-based free energy approximation [28, 27]. Next, based on the
region-based free energy approximation [28, 27], we describe the combined BP-MF approximation for MMTT.

A factor graph (e.g., Fig. 1) is a bipartite graph that has a variable node i (typically represented by a circle) for each
variable xi, i ∈ I, a factor node a (represented by a square) for each factor fa, a ∈ F , with an edge connecting variable
node i to factor node a if xi is an argument of fa. In a factor graph, S(a) is the set of all variable nodes connected to a
factor node a ∈ F and S(i) represents the set of all factor nodes connected to a variable node i ∈ I.

Following the definitions in [28, 27], a region R of a factor graph consists of subsets of indices IR ⊂ I and FR ⊂ F

with the restriction that a ∈ FR implies that S(a) ⊆ IR. Each region R associates a counting number cR ∈ Z. For all
a ∈ F and i ∈ I, a set R = {(R, cR)} of regions and associated counting numbers is called valid if∑

(R,cR)∈R

cRI(a ∈ FR) =
∑

(R,cR)∈R

cRI(i ∈ IR) = 1. (6)

BP RegionMF Region

Figure 1: The factor graph corresponding to the factorization of the joint PDF in Eq. (5). The splitting of the factor graph into BP and MF part is
chosen in such a way that utilizes most of the advantages of BP (for hard constraints) and the MF approximation (for conjugate-exponential model).

By the fact that BP works well with hard constraints (one-to-one frame constraints in data association) and the
MF approximation yields simple MP update equations of conjugate-exponential model, the factor graph (illustrated
in Fig. 1) corresponding to MMTT can be divided into two regions, i.e., MF region RMF = (IMF,FMF) and BP region
RBP = (IBP,FBP) with

IBP ={A1, . . . , AK}, (7)
FBP ={I(A1 ∈ A1)} ∪ · · · ∪ {I(AK ∈ AK)}, (8)
IMF ={X1, . . . , XK} ∪ {E1, . . . , EK} ∪ {M1, . . . ,MK} ∪ {A1, . . . , AK}, (9)
FMF ={pM1:K } ∪ {pX1:K |M1:K } ∪ {pY1:K |X1:K ,M1:K ,A1:K } ∪ {pE1:K } ∪ {pA1:K |E1:K }. (10)

It is seen that IBP ∪ IMF = I, IBP ∩ IMF = {A1, . . . , AK}, FBP ∪ FMF = F and FBP ∩ FMF = ∅. The joint posterior
PDF L(Θ1:K) of Eq.(5) can be expressed as

L(Θ1:K) =

MF region︷                                                                    ︸︸                                                                    ︷
pM1:K × pX1:K |M1:K × pY1:K |X1:K ,M1:K ,A1:K × pE1:K × pA1:K |E1:K ×

BP region︷                                     ︸︸                                     ︷
I(A1 ∈ A1) × · · · × I(AK ∈ AK) . (11)

Let the counting number of MF region cRMF = 1. The BP region is further divided into small regions Ri = ({i}, ∅)
with cRi = 1 − |SBP(i)| − I(i ∈ IMF) for all i ∈ IBP, and large regions Ra = (S(a), {a}) with cRa = 1 for all a ∈ FBP.
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Accordingly, the joint posterior PDF L(Θ1:K) can be approximated by minimizing the region-based free energy [28],
(For continuous variables xi, i.e., target kinematic state, one should replace the sum over xi by a Lebesgue integral.)

FBP, MF =
∑

a∈FBP

∑
xa

ba(xa) ln
ba(xa)
fa(xa)

−
∑

a∈FMF

∑
xa

∏
i∈S(a)

bi(xi) ln fa(xa) −
∑
i∈I

(|SBP(i) − 1|)
∑

xi

bi(xi) ln bi(xi), (12)

where the positive functions ba(xa) and bi(xi), referred as beliefs, are the approximations of fa(xa) and p(xi), respec-
tively. ba(xa) and bi(xi) should fulfill the marginalization constraints and the normalization constraints as follows

bi(xi) =
∑
xa\xi

ba(xa), ∀a ∈ FBP, i ∈ S(a), (13)

and ∑
xi

bi(xi) = 1, ∀i ∈ IMF\IBP,∑
xa

ba(xa) = 1, ∀a ∈ FBP.
(14)

Using the Lagrange multipliers method with the constraints given in Eqs. (13), (14), a new MP scheme [27], called
BP-MF approach, is derived as follows.

ni→a(xi) =zi

∏
c∈SBP(i)\a

mBP
c→i(xi)

∏
c∈SMF(i)

mMF
c→i(xi), ∀a ∈ F , i ∈ S(a)

mBP
a→i(xi) =za

∑
xa\xi

fa(xa)
∏

j∈S(a)\i

n j→a(x j), ∀a ∈ FBP, i ∈ S(a)

mMF
a→i(xi) = exp

(∑
xa\xi

∏
j∈S(a)\i

n j→a(x j) ln fa(xa)
)
, ∀a ∈ FMF, i ∈ S(a)

(15)

where ni→a(xi) is the message from the variable node i to the factor node a, and ma→i(xi) is the message from the
factor node a to the variable node i. zi (i ∈ I) and za(a ∈ FBP) are positive constants ensuring normalized beliefs.
The notation S(a)\i denotes the set of variable nodes that are neighbours of factor node a but with variable node
i being removed, and

∑
xa\xi

denotes a sum over all the variables xa that are arguments of fa except xi. Note that
ni→a(xi) = bi(xi) when a ∈ FMF.

The belief bi(xi) at a variable node i, which is the approximation to the exact marginal probability function pi(xi),
can be computed from the equation

bi(xi) = zi

∏
a∈SBP(i)

mBP
a→i(xi)

∏
a∈SMF(i)

mMF
a→i(xi), ∀i ∈ I. (16)

In the remainder of this section, we will present the detailed derivations of each beliefs together with the corre-
sponding subgraphs of the factor graph in Fig. 1 to show the related variable nodes, factor nodes and messages more
clearly.

3.1.1. Derivation of Belief bX(X)
Based on the assumption that each target moves independently, the belief of kinematic state of all targets can be

factorized as,

bX(X) =

NT∏
i=1

bX(xi
1:K) =

NT∏
i=1

K∏
k=1

bX(xi
k). (17)

Fig. 2 shows the target kinematic state estimation subgraph that corresponding to the belief bX(xi
k).

In Fig. 2, xi
k, i = 1, . . . ,NT , k = 1, . . . ,K, are the variable nodes to be considered. Our aim is to calculate belief

bX(xi
k). For each variable node xi

k, connect it with two factor nodes, S(xk
i ) =

{
pxi

k |x
i
k−1,m

i
k
, pyk |xi

k ,m
i
k ,Ak

}
. The sets of

7



Figure 2: The target kinematic state estimation subgraph.

variable nodes connected to the each factor node are S(pxi
k |x

i
k−1,m

i
k
) = {xi

k, x
i
k−1,m

i
k} and S(pyk |xi

k ,m
i
k ,Ak

) = {xi
k,m

i
k, Ak}.

According to Eq. (16), the belief bX(xi
k) can be computed by multiplying all the incoming messages from the factor

nodes S(xk
i ) to the variable node xi

k, that is,

bX(xi
k) ∝ mMF

pxi
k |x

i
k−1 ,m

i
k
→xi

k
(xi

k) × mMF
pyk |x

i
k ,m

i
k ,Ak
→xi

k
(xi

k). (18)

Using the message-computation rules given in Eq. (15), the factor-to-variable messages in Eq. (18) are calculated as

mMF
pxi

k |x
i
k−1 ,m

i
k
→xi

k
(xi

k) = exp

∫
xi

k−1

NM∑
mi

k=1

nxi
k−1→pxi

k |x
i
k−1 ,m

i
k
(xi

k−1)nmi
k→pxi

k |x
i
k−1 ,m

i
k
(mi

k) lnN
(

xi
k |F

i,m
k xi

k−1,Q
i,m
k

)
dxi

k−1

 , (19)

mMF
pyk |x

i
k ,m

i
k ,Ak
→xi

k
(xi

k) = exp

 NM∑
mi

k=1

Nk,E∑
j=1

nmi
k→pyk |x

i
k ,m

i
k ,Ak

(mi
k)nai, j

k →pyk |x
i
k ,m

i
k ,Ak

(ai, j
k ) lnN

(
y j

k |h
m
k (xi

k),Ri,m
k

)ai, j
k

 . (20)

Recall that for all a ∈ FMF and i ∈ S(a), the variable-to-factor messages ni→a(xi) = bi(xi) [27]. Thus, we have

nxi
k−1→pxi

k |x
i
k−1 ,m

i
k
(xi

k−1) =bX(xi
k−1), nmi

k→pxi
k |x

i
k−1 ,m

i
k
(mi

k) = bM(mi
k), (21)

nmi
k→pyk |x

i
k ,m

i
k ,Ak

(mi
k) =bM(mi

k), nai, j
k →pyk |x

i
k ,m

i
k ,Ak

(ai, j
k ) = bA(ai, j

k ). (22)

Substituting Eqs. (21), (22) into Eqs. (19), (20), we have

mMF
pxi

k |x
i
k−1 ,m

i
k
→xi

k
(xi

k) ∝
NM∏

mi
k=1

N
(

xi
k |F

i,m
k x̂i

k−1, F
i,m
k Pi

k−1(F i,m
k )T + Qi,m

k

)m̂i
k , (23)

mMF
pyk |x

i
k ,m

i
k ,Ak
→xi

k
(xi

k) ∝
NM∏

mi
k=1

Nk,E∏
j=1

N

(
y j

k |h
m
k (xi

k),Ri,m
k

)m̂i
k ,â

i, j
k
∝

NM∏
mi

k=1

N
(
ȳi

k |h
m
k (xi

k), R̄i,m
k

)m̂i
k , (24)

8



where m̂i
k = 〈mi

k〉bM (mi
k), x̂i

k−1 = 〈xi
k−1〉bX (xi

k) and âi, j
k = 〈ai, j

k 〉bA(ai, j
k ) are the expectations of mi

k, xi
k−1 and ai, j

k taken over

corresponding beliefs. The synthetic measurement ȳi
k and the corresponding covariance matrix R̄i,m

k in Eq. (24) are
defined as

ȳi
k =

∑Nk,E
j=1 âi, j

k y j
k

1 − âi,0
k

, R̄i,m
k =

Ri,m
k

1 − âi,0
k

. (25)

Substituting Eqs. (23), (24) into Eq. (18), the belief bX(xi
k) is rewritten as

bX(xi
k) ∝

NM∏
mi

k=1

N
(

xi
k |F

i,m
k x̂i

k−1, F
i,m
k Pi

k−1(F i,m
k )T + Qi,m

k

)m̂i
k ×

NM∏
mi

k=1

N
(
ȳi

k |h
m
k (xi

k), R̄i,m
k

)m̂i
k (26)

∝

NM∏
mi

k=1

N
(

xi
k |x̂

i,m
k , Pi,m

k /m̂i
k

)
.

Eq. (26) shows that, for each target i, posterior PDF (belief) bX(xi
k) is Gaussian distributed with the product form of

mode-dependent PDFs bX(xi,m
k ), m = 1, 2, . . . ,NM . The maximum a posteriori estimation of the parameters of bM(xi,m

k )
can be achieved by a Kalman filter (for linear models) or a nonlinear filter (for nonlinear models) on an averaged state
space system with synthetic measurement ȳi

k and covariance R̄i,m
k , that is,

x̂i,m
k = E

(
xi,m

k |ȳ
i
k,m

i
k

)
, Pi,m

k = cov
(

x̂i,m
k , x̂i,m

k |ȳ
i
k, R̄

i,m
k ,mi

k

)
. (27)

The posterior PDF (belief) bX(xi
k) is then obtained by fusing the local mode-dependent PDFs bX(xi,m

k ), m =

1, 2, . . . ,NM , with mean x̂i
k|1:K and covariance P̂i

k|1:K given by

x̂i
k = Pi

k

NM∑
mi

k=1

m̂i
k

(
Pi,m

k

)−1
x̂i,m

k ,
(
Pi

k

)−1
=

NM∑
mi

k=1

m̂i
k

(
Pi,m

k

)−1
. (28)

For a time sequence 1 : K, the belief bX(xi
1:K) is derived as

bX(xi
1:K) =

K∏
k=1

bX(xi
k) =

K∏
k=1

N
(

xi
k |x̂

i,m
k , Pi,m

k /m̂i
k

)
. (29)

In this case, one simply replaces the filtering in Eq. (27) with smoothing, and the Kalman smoother (for linear models)
or nonlinear smoother such as Unscented Rauch-Tung-Striebel Smoother (URTS)[2] can be used.

3.1.2. Derivation of Belief bE(e)
Like the target kinematic state, the belief of the visibility state of all targets can be factorized as,

bE(E) =

NT∏
i=1

bE(ei
1:K) =

NT∏
i=1

K∏
k=1

bE(ei
k). (30)

Fig. 3 shows the target visibility state estimation subgraph corresponding to the belief bE(ei
k). The to-be-considered

variable nodes of the target detection subgraph are ei
k, i = 1, . . . ,NT , k = 1, . . . ,K. For each variable node ei

k, connect
it with two factor nodes, S(ei

k) =
{

pei
k |e

i
k−1
, pAk |ei

k

}
. The sets of variable nodes connected to each factor node are

S(pei
k |e

i
k−1

) = {ei
k, e

i
k−1} and S(pAk |ei

k
) = {ei

k, Ak}, respectively. According to the message-computation rules given in
Eq. (15), the messages from the factor nodes S(ei

k) to the variable node ei
k are calculated as

mMF
pei

k |e
i
k−1
→ei

k
(ei

k) = exp
( 1∑

ei
k−1=0

nei
k−1→pei

k |e
i
k−1

(ei
k−1) ln Ti,e(ei

k−1, e
i
k)
)

= Ti,e(ei
k−1, e

i
k), (31)

mMF
pAk |e

i
k
→ei

k
(ei

k) = exp
( 1∑

ai,0
k =0

nai,0
k →pAk |e

i
k

(ai,0
k ) ln p(Ak |ei

k)
)
∝ exp

(
(1 − âi,0

k ) ln(Pi
d(ei

k)) + âi,0
k ln(1 − Pi

d(ei
k))
)
. (32)

9



Figure 3: The target visibility state estimation subgraph.

According to Eq. (16), the belief bE(ei
k) can be computed as

bE(ei
k) ∝mMF

pei
k |e

i
k−1
→ei

k
(ei

k) × mMF
pAk |e

i
k
→ei

k
(ei

k) (33)

=Ti,e(ei
k−1, e

i
k) exp

(
(1 − âi,0

k ) ln(Pi
d(ei

k)) + âi,0
k ln(1 − Pi

d(ei
k))
)︸                                                         ︷︷                                                         ︸

ξk(ei
k)

.

For a time sequence 1 : K, the belief bE(ei
1:K) is derived as

bE(ei
1:K) =

K∏
k=1

bE(ei
k) = πei

1
ξ1(ei

1)
K∏

k=2

Ti,e(ei
k−1, e

i
k)ξk(ei

k). (34)

It is seen that the belief bE(ei
1:K) follows a HMM with the indirect observation sequence {ξ1(ei

1), . . . , ξK(ei
K)}, and the

estimation of bE(ei
1:K) can be addressed by a forward-backward algorithm [47].

3.1.3. Derivation of Belief bM(m)
Similarly, the belief bM(M) is factorized over targets. The subgraph of the target motion mode-model association

corresponding to the belief bM(mi
k) is illustrated in Fig. 4. In Fig. 4, mi

k, i = 1, . . . ,NT , k = 1, . . . ,K, are to-be-
considered variable nodes. For each mi

k, connect it with three factor nodes, S(mi
k) = {pmi

k |m
i
k−1
, pxi

k |x
i
k−1,m

i
k
, pyk |xi

k ,m
i
k ,A

i
k
}.

The sets of variable nodes connected to each factor node are S(pmi
k |m

i
k−1

) = {mi
k,m

i
k−1}, S(pxi

k |x
i
k−1,m

i
k
) = {xi

k, x
i
k−1,m

i
k},

and S(pyk |xi
k ,m

i
k ,Ak

) = {xi
k,m

i
k, Ak}. The messages from each factor nodes S(mi

k) to variable node mi
k is calculated as

mMF
pmi

k |m
i
k−1
→mi

k
(mi

k) = exp
( NM∑

mi
k−1=1

nmi
k−1→pmi

k |m
i
k−1

(mi
k−1) ln Ti,m(mi

k−1,m
i
k)
)

= Ti,m(mi
k−1,m

i
k), (35)

mMF
pxi

k |x
i
k−1 ,m

i
k
→mi

k
(mi

k) = exp
(∫

xi
k

∫
xi

k−1

nxi
k→pxi

k |x
i
k−1 ,m

i
k
(xi

k)nxi
k−1→pxi

k |x
i
k−1 ,m

i
k
(xi

k−1) lnN
(

xi
k |F

i,m
k xi

k−1,Q
i,m
k

)
dxi

k
dxi

k−1︸                                                                                                  ︷︷                                                                                                  ︸
Mx,k

)
, (36)

mMF
pyk |x

i
k ,m

i
k ,A

i
k
→mi

k
(mi

k) = exp
(∫

xi
k

Nk,E∑
j=1

nxi
k→pyk |x

i
k ,m

i
k ,A

i
k
(xi

k)nai, j
k →pyk |x

i
k ,m

i
k ,A

i
k

(ai, j
k ) lnN

(
y j

k |h
m
k (xi

k),Ri,m
k

)ai, j
k

dxi
k︸                                                                                          ︷︷                                                                                          ︸

My,k

)
(37)
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Figure 4: The target motion mode-model association subgraph.

with

Mx,k , −
1
2

Tr
{(

Pi,m
k|k−1

)−1
〈(

xi
k − F i,m

k xi
k−1

) (
xi

k − F i,m
k xi

k−1

)T
〉

bX (xi
k),bX (xi

k−1)

}
(38)

= −
1
2

Tr
{(

Pi,m
k|k−1

)−1 (
Pi

k − Pk,k−1(F i,m
k )T − F i,m

k Pk,k−1 + F i,m
k Pi

k−1(F i,m
k )T + (x̂i

k − F i,m
k x̂i

k−1)(x̂i
k − F i,m

k x̂i
k−1)T)}

My,k , −
1
2

Tr
{(

S i,m
k

)−1
âi, j

k

Nk,E∑
j=1

〈(
yk − hm

k (xi
k)
) (

yk − hm
k (xi

k)T)〉
bX (xi

k)

}
(39)

= −
1
2

Tr
{(

S i,m
k

)−1 (
(ȳi

k − hm
k (x̂i

k))(ȳi
k − hm

k (x̂i
k))T + Hm

k Pi
k(Hm

k )T)}
In Eqs. (38)-(39), Pi,m

k|k−1 is the predicted covariance of xi,m
k , Pi

k,k−1 is the covariance of xi
k and xi

k−1, S i,m
k is the innovation

covariance, x̂i
k = 〈xi

k〉bX (xi
k) is the expectation of xi

k taken over the beliefs bX(xi
k), and Hm

k is the Jacobian matrix of
function hm

k with respect to (w.r.t.) x.
According to Eq. (16), the belief bM(mi

k) can be computed as

bM(mi
k) ∝mMF

pmi
k |m

i
k−1
→mi

k
(mi

k) × mMF
pxi

k |x
i
k−1 ,m

i
k
→mi

k
(mi

k) × mMF
pyk |x

i
k ,m

i
k ,A

i
k
→mi

k
(mi

k) (40)

=Ti,m(mi
k−1,m

i
k) exp

(
Mx,k +My,k

)︸                    ︷︷                    ︸
Mk(mi

k)

.

The belief bM(mi
1:K) over a time sequence 1 : K is thus given by

bM(mi
1:K) = πmi

1
M1(mi

1)
K∏

k=2

Ti,m(mi
k−1,m

i
k)Mk(mi

k). (41)

From Eq. (41), it is seen that the belief bM(mi
1:K) follows a HMM with observation sequence {M1(mi

1), . . . ,MK(mi
K)},

and the estimation of bM(mi
1:K) can be addressed by a forward-backward algorithm as well [47].
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3.1.4. Derivation of Belief bA(a)
In this paper, we assume that the data association is independent over different scans. Accordingly, the belief on

data association bA(ai, j
k ) is factorized over time horizon, that is,

bA(A) =

K∏
k=1

bA(ak). (42)

Fig. 5 shows the data association subgraph corresponding to the belief bA(a). The data association subgraph
consists of the variable nodes ai, j

k , i = 0, 1, . . . ,NT , j = 0, . . . ,Nk,E , k = 1, . . . ,K. There are four factor nodes neigh-
bouring to variable node ai, j

k , i.e., S(ai, j
k ) =

{
pAk |ek , py j

k |xk ,mk ,a
i, j
k
, f R

i , f C
j

}
where we denote f R

i = I
(∑NT

i=0 ai, j
k = 1

)
and

f C
j = I

(∑Nk,E
j=0 ai, j

k = 1
)

for simplicity. The sets of variable nodes connected to the corresponding factor node are
S(pAk |ek ) = {Ak, ek}, S(py j

k |xk ,mk ,a
i, j
k

) = {y j
k, x

i
k, a

i, j
k }, S( f R

i ) = {a0, j
k , . . . , aNT , j

k } and S( f C
j ) = {ai,0

k , . . . , a
i,Nk,E
k }.

Figure 5: The data association subgraph.

By the message-computation rules given in Eq. (15), the messages from each factor nodes S(ai, j
k ) to the variable

node mi
k is calculated as follows.

For the messages belong to the MF region (a ∈ FMF), we have

mMF
pAk |ek→ai, j

k
(ai, j

k ) = exp

 1∑
ei

k=0

nei
k→pAk |ek

(ei
k) ln p(Ak |ei

k)


∝ exp

〈Nk,E∑
j=1

ai, j
k ln Pi

d(ei
k) + ai,0

k ln(1 − Pi
d(ei

k))

〉
bE (ei

k)


=


〈
1 − Pi

d(ei
k)
〉ai, j

k
bE (ei

k) , ∀i > 0, j = 0〈
Pi

d(ei
k)
〉ai, j

k
bE (ei

k) , ∀i > 0, j > 0

(43)
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mMF
p

y j
k |xk ,mk ,a

i, j
k
→ai, j

k
(ai, j

k ) = exp

∫
xi

k

NM∑
mi

k=1

nxi
k→p

y j
k |xk ,mk ,a

i, j
k

(xi
k)nmi

k→p
y j
k |xk ,mk ,a

i, j
k

(mi
k) ln p(y j

k |x
i
k, a

i, j
k ,m

i
k)dxi

k


∝ exp

(
a0, j

k ln(1/VG) + ai, j
k

〈
lnN

(
y j

k |h
m
k (xi

k), S i,m
k

)〉
xi

k ,m
i
k︸                                  ︷︷                                  ︸

Xk

)

=

{
VG
−a0, j

k , ∀i = 0, j > 0
exp(ai, j

k Xk), ∀i > 0, j > 0

(44)

with

Xk = −

{
1
2

Tr
{

(S i,m
k )−1((y j

k − hm
k (x̂i

k))(y j
k − hm

k (x̂i
k))T + Hm

k Pi
k(Hm

k )T)} +
ny

2
ln(2π) +

1
2

ln |S i,m
k |

}
. (45)

For the messages belong to the BP region (a ∈ FBP), we have

mBP
f R
i →ai, j

k
(ai, j

k ) ∝
∑
ai,0

k

· · ·
∑
ai, j−1

k

· · ·
∑
ai, j+1

k

· · ·
∑
a

i,Nk,E
k

f R
i

Nk,E∏
j1=0, j1, j

nai, j1
k → f R

i
(ai, j1

k ). (46)

Recall that from the frame constraint, target i either produces a measurement j at time k or is missed. That is, if
ai, j

k = 1, then ai, j1
k = 0, j1 = 0, . . . , j − 1, j + 1, . . . ,Nk,E . Eq. (46) can be rewritten as

mBP
f R
i →ai, j

k
(ai, j

k ) =

[
mBP

f R
i →ai, j

k
(0)

mBP
f R
i →ai, j

k
(1)

]
=


Nk,E∑

j1=1( j1, j)
nai, j1

k → f R
i

(1)
Nk,E∏

j2=1( j2, j1, j)
nai, j2

k → f R
i

(0)

Nk,E∏
j1=1( j1, j)

nai, j1
k → f R

i
(0)

 . (47)

In a similar way, the message mBP
f C

j →ai, j
k

(ai, j
k ) can be rewritten as

mBP
f C

j →ai, j
k

(ai, j
k ) ∝

∑
a0, j

k

· · ·
∑
ai−1, j

k

· · ·
∑
ai+1, j

k

· · ·
∑
aNT , j

k

f C
j

NT∏
i1=0(i1,i)

nai1 , j
k → f C

j
(ai1, j

k )

=

[
mBP

f C
j →ai, j

k
(0)

mBP
f C

j →ai, j
k

(1)

]
=


NT∑

i1=1(i1,i)
nai1 , j

k → f C
j
(1)

NT∏
i2=1(i2,i1,i)

nai2 , j
k → f C

j
(0)

NT∏
i1=1(i1,i)

nai1 , j
k → f C

j
(0)

 .
(48)

According to Eq. (16), the belief bA(ai, j
k ) can be computed as

bA(ai, j
k ) ∝ mMF

pAk |ek→ai, j
k

(ai, j
k ) × mMF

p
y j
k |x

i1
k ,m

i1
k ,ai, j

k
→ai, j

k
(ai, j

k ) × mBP
f R
i →ai, j

k
(ai, j

k ) × mBP
f C

j →ai, j
k

(ai, j
k ). (49)

Accordingly, the expectation âi, j
k is given by

âi, j
k =

bA(ai, j
k = 1)

bA(ai, j
k = 1) + bA(ai, j

k = 0)
=

1

1 +

mMF
pAk |ek→ai, j

k
(0) × mMF

p
y j
k |x

i
k ,m

i
k ,a

i, j
k
→ai, j

k
(0) × mBP

f R
i →ai, j

k
(0) × mBP

f C
j →ai, j

k
(0)

mMF
pAk |ek→ai, j

k
(1) × mMF

p
y j
k |x

i
k ,m

i
k ,a

i, j
k
→ai, j

k
(1) × mBP

f R
i →ai, j

k
(1) × mBP

f C
j →ai, j

k
(1)

=
1

1 + exp

(
− ln m̄MF

pAk |ek→ai, j
k
− ln m̄MF

p
y j
k |x

i
k ,m

i
k ,a

i, j
k
→ai, j

k
− ln m̄BP

f R
i →ai, j

k
− ln m̄BP

f C
j →ai, j

k

)
(50)
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with

m̄MF
pAk |ek→ai, j

k
=

m̄MF
pAk |ek→ai, j

k
(1)

m̄MF
pAk |ek→ai, j

k
(0)

= mMF
pAk |ek→ai, j

k
(1), (51)

m̄MF
p

y j
k |x

i
k ,m

i
k ,a

i, j
k →ai, j

k

=

mMF
p

y j
k |x

i
k ,m

i
k ,a

i, j
k
→ai, j

k
(1)

mMF
p

y j
k |x

i
k ,m

i
k ,a

i, j
k
→ai, j

k
(0)

= mMF
p

y j
k |x

i
k ,m

i
k ,a

i, j
k →ai, j

k

(1), (52)

m̄BP
f R
i →ai, j

k
=

mBP
f R
i →ai, j

k
(1)

mBP
f R
i →ai, j

k
(0)

=

Nk,E∏
j1=1( j1, j)

nai, j1
k → f R

i
(0)

Nk,E∑
j1=0( j1, j)

nai, j1
k → f R

i
(1)

Nk,E∏
j2=1( j2, j)

nai, j2
k → f R

i
(0)/nai, j1

k → f R
i

(0)
, (53)

m̄BP
f C

j →ai, j
k

=

mBP
f C

j →ai, j
k

(1)

mBP
f C

j →ai, j
k

(0)
=

NT∏
i1=1(i1,i)

nai1 , j
k → f C

j
(0)

NT∑
i1=0(i1,i)

nai1 , j
k → f C

j
(1)

NT∏
i2=1(i2,i)

nai2 , j
k → f C

j
(0)/nai1 , j

k → f C
j
(0)

. (54)

Note that the variable to factor messages nai, j
k → f R

i
(ai, j

k ) and nai, j
k → f C

j
(ai, j

k ) in Eqs. (53), (54) are

nai, j
k → f R

i
(ai, j

k ) =

mMF
pAk |ek→ai, j

k
(ai,0

k ), ∀i > 0, j = 0

mMF
pAk |ek→ai, j

k
(ai, j

k )mMF
p

y j
k |x

i
k ,m

i
k ,a

i, j
k
→ai, j

k
(ai, j

k )mBP
f C

j →ai, j
k

(ai, j
k ), ∀i > 0, j > 0 (55)

and

nai, j
k → f C

j
(ai, j

k ) =


mMF

p
y j
k |x

i
k ,m

i
k ,a

i, j
k
→ai, j

k
(a0, j

k ), ∀i = 0, j > 0

mMF
pAk |ek→ai, j

k
(ai, j

k )mMF
p

y j
k |x

i
k ,m

i
k ,a

i, j
k
→ai, j

k
(ai, j

k )mBP
f R
i →ai, j

k
(ai, j

k ), ∀i > 0, j > 0
(56)

Substituting Eqs. (55), (56) into Eqs. (53), (54), yields,

m̄BP
f R
i →ai, j

k
(ai, j

k ) =
1

mMF
pAk |ek→ai,0

k
(1) +

∑
j1>0( j1, j)

mMF
pAk |ek→ai, j1

k

(1)mMF
p

y
j1
k |x

i
k ,m

i
k ,a

i, j1
k
→ai, j1

k

(1)m̄BP
f C

j1
→ai, j1

k

, (57)

m̄BP
f C

j →ai, j
k

(ai, j
k ) =

1
mMF

p
y j
k |x

i
k ,m

i
k ,a

i, j
k
→a0, j

k
(1) +

∑
i1>0(i1,i)

mMF
pAk |ek→ai1 , j

k

(1)mMF
p

y j
k |x

i1
k ,m

i1
k ,a

i1 , j
k
→ai1 , j

k

(1)m̄BP
f R
i1
→ai1 , j

k

. (58)

Note that since loops exist in the BP region when we calculate the belief bA(ai, j
k ), the LBP is adopted. By showing

that the message update equations are contractions, the LBP for the data association problem was proved to con-
verge [29]. By observing Eqs. (20), (21), (61), (62) in [29], the convergence of the LBP in this part is assured by
leveraging the techniques in [29].

3.2. Summary

The proposed MP-MMTT algorithm which solves MMTT based on MP, performs target kinematic state estima-
tion, target visibility state estimation, target motion mode-model decision and data association decision jointly in a
closed-loop iterative manner, and is summarized as Algorithm 1. Like MHT, MP-MMTT works in an online fashion
using a sliding window.
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Algorithm 1 MP-MMTT algorithm

Input: Sequence of measurements Yk−l+1:k, k ≥ l with l > 0 being the interval length;
Output: Beliefs bX(Xk−l+1:k), bE(Ek−l+1:k), bM(Mk−l+1:k), bA(Ak−l+1:k);

1: Initialization: initialize beliefs b(0)
i (xi) for all i ∈ IMF\IBP, i.e., b(0)

X (X1:K), b(0)
E (E1:K), b(0)

M (M1:K) and NT ; send the
corresponding messages ni→a(xi) = b0

i (xi) to all factor nodes a ∈ SMF(i).
2: for each iteration do
3: Data association: Calculate the belief bA(a) and its expectation âi, j

k iteratively via Eqs. (49), (50) by using all
incoming messages given by Eqs. (57), (58).

4: Visibility state estimation: Calculate the belief bE(e) via Eq. (34) by using a forward backward algorithm.
5: Mode-model association: Calculate the belief bM(m) via Eq. (41) by using a forward backward algorithm.
6: Kinematic state estimation: Calculate the mode-dependent beliefs bX(xm) via a fixed interval smoother, and

then fuse those mode-dependent beliefs to obtain the belief bX(x) via Eq. (29).
7: Iteration stop rule: the iteration terminates if the beliefs between two consecutive iterations are close

enough (less than the iteration threshold δT ) or the maximum number of iterations rmax is reached.
8: end for
9: Perform track management by using the visibility probability bE(e).

10: Exit the iteration and go to the next sliding window.

3.3. Other Aspects of MP-MMTT

3.3.1. Initialization
Initial beliefs b(0)

X (X1:l), b(0)
E (E1:l), b(0)

M (M1:l) and the maximum number of targets NT are required for MP-MMTT.
The initialization procedure for the first sliding window k ∈ [1, l] is given as follows.

• At time k = 1, the tentative tracks are established for each measurement, i.e., each measurement is an “initiator”.

• At time k = 2, a gate associated with each initiator is set up based on the assumed maximum target velocity
and the measurement noise intensity. If a measurement falls in the gate, then the associated tentative track
becomes a preliminary track. Otherwise, the tentative track is dropped. For each preliminary track that has two
measurements, a filter can be used to initialize the kinematic state estimate {x̂i

2, P
i
2}. Set up the suitable values

of initial visibility probability πi,e and initial model probability πi,m.

• Starting from k = 3, for each preliminary track i, select candidate measurements using gating technique, es-
tablish the pseudo-measurement via the LBP algorithm, and update the kinematic state {x̂i

k, P
i
k} by a filter.

Meanwhile, the visibility probability p(ei
k) and model probability p(mi

k) are recursively updated by using for-
ward algorithm. The measurements that do not fall into the validation gates of any tracks are used to initialize
new tracks.

• For the batch window [1, l], manage tracks based on p(E1:l). Specifically, if the average visibility probability of
target i in three successive scans is less than the threshold δd, the track i is deleted; otherwise, track i becomes
a confirmed track. NT is the total number of confirmed potential tracks over the batch window [1, l].

3.3.2. Computational Complexity
The MP-MMTT algorithm is an iterative processor with MP among four subgraphs. Its computational complexity

is
ctotal = Nr × (cx + ce + cm + ca), (59)

where Nr is the number of iterations, cx, ce, cm and ca are the computational cost of target kinematic state estimation,
target visibility state estimation, target motion mode-model association and data association, respectively. For target
kinematic state estimation, the main cost relies on the model-dependent state estimation, which is carried out by
a fixed-interval smoother. If Kalman smoother is used, cx = O(lNT n3

x). Both the target visibility state estimation
and target motion model association are carried out by forward and backward algorithm, thus ce = O(4lNT ) and
cm = O(lNT N2

M). LBP is used to approximate the data association. The main computational cost of LBP is the
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message update equation, which is O(|xi|
2) for each variable node i at each iteration. In the data association subgraph,

there are at most (NT + 1)(Nk,M + 1) variable nodes, each of which takes values of 0 and 1. Hence, the computational
cost ca = O(Na

∑l
k=1 4NT Nk,E) with Na being the number of LBP iterations.

3.3.3. Properties of MP-MMTT
The proposed MP-MMTT algorithm has several properties:

• It is obtained by a unified MP approach that performs the BP and MF approximation for MMTT.

• It has a closed-loop iterative manner among kinematic state estimation, target detection, data association deci-
sion, and motion mode-model association decision. In the view of feedback control, such an iterative structure
of MP-MMTT is effective in dealing with the coupling between estimation error and decision error.

• It is computationally effective. Leveraging MF approximation, the joint inference of high-dimensional latent
variables is decomposed into several individual inferences of low-dimensional latent variables. Meanwhile, the
problem of the combinatorial explosion in data association is eliminated by using LBP.

4. Simulation and Analysis

We consider a simulation scenario with an unknown and time-varying number of maneuvering targets in the
presence of clutter and missed detections. The proposed MP-MMTT algorithm is compared with IMMJPDA [48],
IMMHMHT [49, 4] and MMGLMB [50]. All the four algorithms are implemented in MATLAB R2016a on a PC
with an Intel Core i5 CPU and 8GB RAM.

1) Scenario parameters: The surveillance region is assumed to be [13, 19] km in range and [0.7, 1] rad in azimuth.
Sampling period T = 1s. Two motion models, constant velocity (CV) and constant turning (CT), are selected to model
target motion. The corresponding parameters are

FCV
k = I2 ⊗

[
1 T
0 1

]
,QCV

k = I2 ⊗

[
0.01 0

0 0.005

]
, FCT

k =


1

sin(θ)
ω

0
cos(θ) − 1

ω
0 cos(θ) 0 − sin(θ)

0
1 − cos(θ)

ω
1

sin(θ)
ω

0 sin(θ) 0 cos(θ)

 ,QCT
k = 10QCV

k . (60)

where ω = 0.087 rad and θ = ωT . The measurement noise covariance R = diag(400 m2, 1e − 6 rad2). The initial
kinematic states and motion parameters of four targets are shown in Table 1.

Table 1: The initial state and motion parameters of targets

target index i Initial kinematic state Duration
Motion model and its duration

CV CT CV
i = 1 [11400; 0; 10200; 120] [1,30] [1,10] [11,20] [21,30]
i = 2 [11300; 0; 10200; 120] [1,30] [1,10] [11,20] [21,30]
i = 3 [11750; -120; 11840; 0] [11,40] [11,20] [21,30] [31,40]
i = 4 [11750; -120; 11940; 0] [11,40] [11,20] [21,30] [31,40]

The performance of target tracking algorithms is related to detection probability Pd, clutter density λ, the number
of targets NT and the distance between parallel-moving targets. One hundred Monte Carlo runs are carried out to
compare the performances of MP-MMTT, IMMJPDA, IMMHMHT, and MMGLMB by varying these factors.

2) Algorithm parameters: For MP-MMTT, gate probability Pg = 0.997, threshold for terminating the iteration
δT = 10−3, maximum number of iterations rmax = 10, window length l = 10 and sliding step s = 1. The thresholds
of survival target and dead target are δc = 0.85 and δd = 0.3, respectively. The initial visibility probability for each
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target πi,e=1 = 0.5. The detection probability related to the target visibility state Pi
d(1) = 0.9 and Pi

d(0) = 0.1. A
track is terminated if p(si

k = 1) is less than δs for three successive scans. Let the initial model probability for each

target πi,m=CV = 0.9, πi,m=CT = 0.1, and the transition probability matrices Ti,e =

[
0.85 0.15
0.15 0.85

]
,Ti,m =

[
0.9 0.1
0.1 0.9

]
.

For IMMJPDA, M/N logic rule with parameters 2/2&1/3 is used for track confirmation. Specifically, a new track is
confirmed if at least three detections are received over five successive scans, and the first two detections are used to
initialize the track head. Based on the hypothesis-oriented MHT algorithm, IMMHMHT is implemented by adopting
Murty’s approximation method that always keeps the first n (n = 3 in this paper) best hypothesis, and the window
length is 3. For both IMMJPDA and IMMHMHT, a track will be deleted if no measurement falls into the gate
of the track over three successive scans. To improve the computational efficiency and reduce the number of false
tracks, GLMB filters often assume the locations that new targets possibly appear are known to be in a small set [51].
For MMGLMB, the four targets are assumed to appear at four pre-defined Gaussian birth locations with probabil-
ity 0.025 and means being [11400, 0, 10200, 0]T , [11300, 0, 10200, 0]T , [11750, 0, 11840, 0]T , [11750, 0, 11940, 0]T ,
respectively. The GLMB filter [52] is capped to 100 components for the four targets. To compare MMGLMB with
IMMJPDA, IMMHMHT, and MP-MMTT, a track is terminated if the label of the track is missed over three successive
scans. Note that the initial model probability and transition probability matrices are set to be the same for the four
algorithms.

3) Performance evaluation: The following performance metrics are used to evaluate the four algorithms.

• Number of Valid Tracks (NVT ↑): A track is valid if it is assigned to only one target and, the assigned target is
not associated with any other tracks.

• Track Probability of Detection (TPD ↑): Ratio of the length of a valid track to the lifetime of its associated
target.

• Number of False Tracks (NFT ↓): A track is false if it is not associated with any target.
• Euclidean Error (EE ↓): Euclidean error is defined as the absolute value of the difference between the true value

and the estimated value.
• Number of Track Breakages (NTB↓): For a target, NTB is defined as one less the number of tracks associated

with the target.
• Optimal Subpattern Assignment (OSPA ↓) [53]: A weighted sum performance index considering both detection

performance (measured by cardinality distance) and estimation performance (measured by spatial distance).
• Mode-model Association Error Rate (MAER ↓): False posterior probability of the model associated with the

true mode of the target.
• Data Association Error Rate (DAER ↓): False posterior probability of a valid track associated with the mea-

surement originated from the target.
• Total Execution Time (TET ↓).

For the detailed definition of NVT, TPD, and TET, refer to [54]. We denote AOSPA (↓) as the averaged OSPA over
time. To statistically evaluate the performance of the four algorithms, TPD, EE, NTB, OSPA, MAER, DAER are av-
eraged overall targets, and all of the metrics are averaged over all Monte Carlo runs. ↑ (↓) indicates the higher (lower)
value the metric, the better (worse) the performance is.

4) Simulation results: A challenging scenario of four target trajectories is designed. Target 1 and Target 2 move
in parallel along Y-direction with 100 m away in X-direction, and Target 3 and Target 4 move in parallel along X-
direction with 100 m away in Y-direction. Target 1 and Target 3 cross at time k = 15, and Target 2 and Target 4 cross
at time k = 16. Target 1 and Target 2 maneuver during the time interval [11, 20], and Target 3 and Target 4 maneuver
during the time interval [21, 30], respectively. In this scenario, Pd = 0.95 and λ = 10−4.

The performance comparison on target kinematic state estimation, target visibility state estimation, data asso-
ciation, and motion mode-model association of all algorithms are shown in Fig. 6-Fig. 9, respectively. MP-MMTT
performs best on target state estimation and motion mode-model association. MP-MMTT and IMMHMHT have com-
parable performance on estimating the number of targets, which are better than IMMJPDA and MMGLMB. In terms
of the data association, IMMHMHT is slightly better than MP-MMTT and MMGLMB, and IMMJPDA is worst. The
OSPA in Fig. 10 shows that, on the whole, MP-MMTT is superior to the other algorithms. The reason is that the
iterative and batch processing manner of MP-MMTT is benefit to improve the performance on both estimation and
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decision. Note that peaks appear in MAER and OSPA curves at time 10, 20, and 30 due to the birth of new targets
and model switch of targets motion.
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Figure 6: Target kinematic state estimation
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Figure 7: Target visibility state estimation
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Figure 8: Data association error rate
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Figure 9: Mode-model association error rate
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Figure 10: OSPA
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Figure 11: Running time w.r.t. number of targets
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Figure 12: Running time w.r.t. clutter density
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Figure 13: MOSPA w.r.t. clutter density
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Figure 14: MOSPA w.r.t. detection probability
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Figure 15: MOSPA w.r.t. target distance
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Table 2: Performance Comparison

Metrics IMMJPDA IMMHMHT MMGLMB MP-MMTT

NVT 3.96 4 3.92 4
TPD 0.94 0.96 0.86 0.95
NFT 0.47 0.42 0.26 0.02

ANBT 0.01 0.01 0.14 0.01
MAER 1 0.34 0.32 0.41 0.07
DAER 1 0.092 0.032 0.033 0.032

AEE-P (m) 2 20.49 17.53 17.33 10.47
AEE-V (m/s) 2 10.70 10.66 12.25 3.12
MOSPA (m) 3 26.61 24.93 26.76 14.15

TET (s) 0.23 5.71 8.59 14.27
1 MAER, DAER, AEE-P and AEE-V are averaged over all time steps.
2 AEE-P and AEE-V denote AEE in position and velocity, respectively.
3 MOSPA is calculated with parameters p = 2 and c = 100m.

Table 2 provides an average performance comparison of MP-MMTT, IMMJPDA, IMMHMHT, and MMGLMB.
In the aspect of target detection performance evaluated by NVT and NFT, the number of false tracks of MP-MMTT
is much less than those of IMMJPDA, IMMHMHT, and MMGLMB although all the four algorithms can detect
targets successfully. In the aspect of target tracking performance, IMMJPDA, IMMHMHT, and MP-MMTT have
comparable performance on persistent target tracking capability (evaluated by TPD and ANBT). The target tracking
accuracy (evaluated by AEE-P and AEE-V) of MP-MMTT is better than those of the other three algorithms. This is
because MP-MMTT adopts a batch processing methodology and a smooth mechanism where multiple scan measure-
ments are integrated to improve detection and tracking performance. Because of the batch and iterative processing
structure, MP-MMTT makes a trade-off between estimation accuracy and computational cost. The computational
cost of MP-MMTT is the largest. Through the closed-loop structure where more accurate state estimates are used
to identify data association and target motion model, MP-MMTT outperforms the other three algorithms in terms of
MAER and OSPA, and has the comparable performance on DAER with IMMHMHT and MMGLMB.

To compare the computational cost of the four algorithms as the number of targets increases, we vary the number
of targets to be 8, 12, 16, respectively. For each case, one-half (one subgroup) of the targets move in parallel along
Y-direction and the distance in X-direction between two neighboring targets is 100 m. The rest (the other subgroup)
of the targets move in parallel along X-direction and the distance in Y-direction between two neighboring targets
is 100 m as well. The two subgroups of targets cross and maneuver in the same way as the four targets. Fig. 11
shows the running time of the four algorithms when NT = 4, 8, 12, 16. It is observed that for the different number
of targets, IMMHMHT has the lowest computational cost and IMMJPDA has the highest computational cost, while
the computational cost of MP-MMTT and MMGLMB are comparable. Note that when NT ≥ 12, IMMJPDA is
not able to output results in a reasonable amount of time. The computational cost comparison with different clutter
densities λ = 10−4, 2× 10−4, 4× 10−4, 6× 10−4, 8× 10−4, 10−3 is shown as in Fig. 12. IMMHMHT and IMMJPDA are
not computationally feasible for heavy clutter scenarios since their computational complexity scale exponentially in
the number of (valid) measurements, while MMGLMB has a lower computational cost than MP-MMTT. Note that,
however, MMGLMB improves the computational efficiency by assuming that the target birth intensity is known as
a priori, which means the prior information of the region of interest is required. Lack of such prior information will
make the computational cost of MMGLMB increase dramatically.

More comparison results in the term of MOSPA for different values of clutter density, detection probability, spatial
distance and number of targets are shown in Figs. 13-16, respectively. The MOSPA of MP-MMTT is smaller than
those of other algorithms in all of these cases. Meanwhile, the dotted square (black) line represents the MOSPA
performance curve of MP-MMTT without iteration (r = 0). Comparing it with the solid star (red) line, which is the
MOSPA performance curve of MP-MMTT when r = 3, it is concluded that the closed-loop structure of MP-MMTT
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is indeed helpful to improve tracking performance. The dash-dot diamond (cyan) line represents the MOSPA curve
of MP-MMTT with real-time outputs. It is seen that, with the cost of delay outputs, the tracking performance of
MP-MMTT is improved by adopting the smoothing strategy.

5. Conclusion

This paper studied the joint detection and tracking of multiple maneuvering targets, and provided a derivation of
unified MP approach that performs the BP and MF approximation for the joint estimation of target kinematic state
and visibility state, and the decision of data association and motion mode-model association. The corresponding
beliefs were calculated iteratively via the fixed-interval smoother, the forward-backward algorithm and the LBP. With
the cost of time delay output of tracks like IMMHMHT, the proposed MP-MMTT method outperforms IMMJPDA,
IMMHMHT and MMGLMB in the aspects of both target detection and tracking. Meanwhile, MP-MMTT is more
computationally effective than IMMJPDA and IMMHMHT in the scenario of multitarget tracking with heavy clutter.
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