
ar
X

iv
:1

31
0.

39
54

v1
 [

cs
.I

T
]

 1
5

O
ct

 2
01

3

Sparse Solution of Underdetermined Linear Equations via

Adaptively Iterative Thresholding

Jinshan Zeng1a, Shaobo Lin2a, Zongben Xu3a

a School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, China

Abstract

Finding the sparset solution of an underdetermined system of linear equations y = Ax has

attracted considerable attention in recent years. Among a large number of algorithms,

iterative thresholding algorithms are recognized as one of the most efficient and impor-

tant classes of algorithms. This is mainly due to their low computational complexities,

especially for large scale applications. The aim of this paper is to provide guarantees

on the global convergence of a wide class of iterative thresholding algorithms. Since the

thresholds of the considered algorithms are set adaptively at each iteration, we call them

adaptively iterative thresholding (AIT) algorithms. As the main result, we show that

as long as A satisfies a certain coherence property, AIT algorithms can find the correct

support set within finite iterations, and then converge to the original sparse solution ex-

ponentially fast once the correct support set has been identified. Meanwhile, we also

demonstrate that AIT algorithms are robust to the algorithmic parameters. In addition,

it should be pointed out that most of the existing iterative thresholding algorithms such as

hard, soft, half and smoothly clipped absolute deviation (SCAD) algorithms are included

in the class of AIT algorithms studied in this paper.

1E-mail: jsh.zeng@gmail.com
2E-mail: sblin1983@gmail.com
3Corresponding author,E-mail: zbxu@mail.xjtu.edu.cn

Preprint submitted to Signal Processing September 12, 2018

http://arxiv.org/abs/1310.3954v1

Keywords: Iterative thresholding algorithm; global convergence; underdetermined

linear equations; sparse solution.

1. Introduction

Finding the sparsest solution of an undertermined system of linear equations is an

important problem emerged in many applications (especially, in compressed sensing [1],

[2]). Generally, an undertermined system of linear equations can be described as

y = Ax, (1.1)

where y ∈ RM and A ∈ RM×N (M < N) are known, x = (x1, . . . , xN)
T ∈ RN is unknown.

Thus, finding the sparsest solution of the equations (1.1) can be mathematically modeled

as the following l0-minimization, that is,

min
x∈RN

‖x‖0 s.t. y = Ax, (1.2)

where ‖x‖0 denotes the number of the nonzero components of x and is formally called the

l0-norm. However, the problem (1.2) is NP-hard and generally intractable for computing.

Instead, there are mainly two classes of methods, that is, the greedy and relaxed

methods for approximately solving the problem (1.2). The basic idea of the greedy method

is that a sparse solution is refined iteratively by successively identifying one or more

components that yield the greatest improvement in quality [3]. There are many commonly

used greedy algorithms such as orthogonal matching pursuit (OMP) [4], [5], stagewise

OMP (StOMP) [6], regularized OMP (ROMP) [7], compressive sampling matching pursuit

(CoSaMP) [8] and subspace pursuit [9]. The greedy algorithms can be quite fast, especially

in the ultra-sparse case, and also may be very efficient at certain situations such as the

2

dictionary contains a continuum of elements [10]. However, the performance of the greedy

algorithms can not be guaranteed when the signal is not very sparse or the level of the

observational noise is relatively high.

The relaxed method converts the combinatorial l0-minimization into a more tractable

model via replacing the l0-norm with a certain nonnegative and continuous function P (·),

that is,

min
x∈RN

P (x) s.t. y = Ax. (1.3)

One of the most important cases is the l1-minimization (also known as Basis Pursuit (BP)

[11]) with P (x) = ‖x‖1, where ‖x‖1 =
∑N

i=1 |xi| is called the l1-norm. The l1-minimization

is a convex optimization problem and thus can be efficiently solved. Because of this, the

l1-minimization gets its popularity and has been accepted as a very useful tool for solution

to sparsity problems. Nevertheless, it cannot promote further sparsity when applied to

compressed sensing [12], [13], [14], [15], [16]. Moreover, many nonconvex functions were

proposed as relaxations of the l0-norm. Some typical nonconvex examples are the lq-

norm (0 < q < 1) [12], [13], [14], [15], smoothly clipped absolute deviation (SCAD) [17]

and minimax concave penalty (MCP) [18]. As compared with the l1-minimization, the

nonconvex relaxed models can usually induce better sparsity, however, they are generally

more difficult to be solved.

There are mainly two kinds of algorithms to solve the constrained optimization prob-

lem (1.3). The first one is the iteratively reweighted algorithm. Two of the most important

iteratively reweighted algorithms are the reweighted l1-minimization [16] and iteratively

reweighted least squares (IRLS) [19], [20] algorithms. One of the main advantages of this

3

kind of algorithms is that they can be used to solve a general model (1.3). However, the

computational complexities of these algorithms are usually relatively high. The other one

is commonly called the regularization method, which transforms the constrained optimiza-

tion problem (1.3) into the following unconstrained optimization problem via introducing

a regularization parameter

min
x∈RN

{‖Ax− y‖22 + λP (x)}, (1.4)

where λ > 0 is a regularization parameter. There are many algorithms for solving the

regularization model (1.4). Particularly, for some special P (x) such as the l0-norm, lq-

norms (q = 1, 2/3, 1/2), SCAD and MCP, the regularization models (1.4) can permit

the thresholding representations and thus yield the corresponding iterative thresholding

algorithms [15], [21], [22], [23]. Intuitively, an iterative thresholding algorithm can be

seen as a procedure of Landweber iteration projected by a certain thresholding operator.

Compared to the aforementioned algorithms including the greedy, BP and iteratively

reweighted algorithms, iterative thresholding algorithms can be implemented fast and

have almost the least computational complexity for large scale problems [24], [25], [26].

So far, most of theoretical results of the iterative thresholding algorithms were developed

for the regularization model (1.4) with fixed λ. However, it is in general difficult to

determine an appropriate regularization parameter λ, especially when P is nonconvex.

Alternatively, some adaptive strategies for setting the regularization parameters were

proposed for iterative thresholding algorithms. One of the commonly used strategies is to

set the regularization parameter adaptively according to a specified sparsity level at each

iteration. Once the specified sparsity level is given, the number of nonzero components

4

of vector at each iteration is also determined. In practice, the specified sparsity level is

desired to be a good estimation of the true sparsity level. This strategy was first adopted

to the iterative hard thresholding algorithm (called hard algorithm for short) in [27],

and later the iterative soft [28] (called soft algorithm for short) and half [15] (called half

algorithm for short) thresholding algorithms. The convergence of hard algorithm was

justified when A satisfies a certain restricted isometry property (RIP) [27]. Later, Maleki

investigated the convergence of both hard and soft algorithms in terms of the coherence

[28]. Both in the analysis of [27] and [28], the specified sparsity levels of AIT algorithms

are set to be the true sparsity level of the original sparse solution, however, which is

commonly unknown in practice. Therefore, the robustness of AIT algorithms to the

specified sparsity levels is very important in practice and worth of investigation. Moreover,

besides the hard and soft algorithms, there are many other AIT algorithms such as half,

SCAD, MCP algorithms which are widely used in signal processing, variable selection

and feature extraction. However, as far as we know, there are lack of the corresponding

theoretical guarantees on the global convergence of these algorithms for sparse solution

to the underdetermined linear equations. Thus, the theoretical performance of these AIT

algorithms should be further studied.

In this paper, we consider the global convergence a wide class of adaptively itera-

tive thresholding (AIT) algorithms for sparse solution to an underdetermined system of

linear equations. The associated thresholding functions satisfy some basic assumptions

including odevity, monotonicity and boundedness. We show that if A satisfies a certain

coherence property and the specified sparsity level is set in an appropriate range, then

AIT algorithms can find the correct support set within finite iterations. Moreover, once

5

the correct support set has been identified, then AIT algorithms converge to the original

sparse solution exponentially fast. In other words, the asymptotic convergence rates of

AIT algorithms are linear. It should be pointed out that the linear rates of asymptotic

convergence of AIT algorithms are not trivial since most of the thresholding operators

studied in this paper are expansive. Thus, the classical theoretical results of the Landwe-

ber iteration can not be straightly applicable to these algorithms.

The reminder of this paper is organized as follows. In section 2, we introduce the

adaptively iterative thresholding (AIT) algorithms. In section 3, we present the main

theoretical results of AIT algorithms. In section 4, we give the proof of the main theorem.

In section 5, we discuss some related work. We conclude the paper in section 6.

2. Adaptively Iterative Thresholding Algorithms

In this section, we first give some notations used in this paper, and then introduce the

adaptively iterative thresholding algorithms.

2.1. Notion and Notation

For any x ∈ RN , xi represents its i-th component. Given a positive integer k < N ,

|x[k]| represents its k-th largest component of x in magnitude. For any A ∈ RM×N ,

Ai ∈ RM denots its ith column, AT represents its transposition. For any index set S, |S|

denotes its cardinality, Sc represents its complementary set. Moreover, we denote by AS

the submatrix of A with the columns restricted to S.

6

2.2. AIT Algorithms

The adaptively iterative thresholding algorithm for sparse solution to (1.1) can be

generally expressed as the following iterative form:

z(t+1) = x(t) − AT (Ax(t) − y), (2.1)

x(t+1) = Hτ (t+1)(z(t+1)), (2.2)

where

Hτ (t+1)(x) = (hτ (t+1)(x1), · · · , hτ (t+1)(xN))
T (2.3)

is a componentwise thresholding operator associated with a thresholding function hτ (t+1),

τ (t+1) is the threshold value at (t + 1)-th iteration. More specifically, a thresholding

function hτ is commonly defined as

hτ (u) =















fτ (u), |u| > τ

0, otherwise

(2.4)

where fτ (u) is formally called the defining function for any u ∈ R. We give some basic

assumptions of the defining function as follows:

1. Odevity. fτ is an odd function.

2. Monotonicity. fτ (u) ≥ fτ (v) for any u ≥ v ≥ 0.

3. Boundedness. There exists a constant 0 ≤ c ≤ 1 such that u− cτ ≤ fτ (u) ≤ u for

u ≥ τ .

The odevity and monotonicity are two regular assumptions for the defining function, while

the boundedness confines hτ to be an appropriate thresholding function. It can be noted

that most of the commonly used thresholding functions satisfy these assumptions. We

7

list some typical examples as follows.

Example 1. Hard thresholding function for L0 regularization ([23])

hτ,0(u) =















u, |u| > τ

0, otherwise

. (2.5)

Example 2. Half thresholding function for L1/2 regularization ([15])

hτ,1/2(u) =















2
3
u
(

1 + cos
(

2π
3
− 2

3
arccos

(√
2
2
(τ
|u|)

3
2

)))

, |u| > τ

0, otherwise

. (2.6)

Example 3. 2/3-thresholding function for L2/3 regularization ([22])

hτ,2/3(u) =















sign(u)

(

φτ (u)+
√

2|u|
φτ (u)

−φτ (u)2

2

)3

, |u| > τ

0, otherwise

, (2.7)

where sign(u) denotes as the sign function of u henceforth, φτ (u) =
213/16

4
√
3
τ 3/16(cosh(θτ (u)

3
))1/2

with θτ (u) = arccosh(3
√
3u2

27/4(2τ)9/8
).

Example 4. Soft thresholding function for L1 regularization ([21])

hτ,1(u) =















u− sign(u)τ, |u| > τ

0, otherwise

. (2.8)

Example 5. SCAD-thresholding function for nonconvex likelihood model (a > 2) ([17])

hτ,SCAD(u) =















































u, |u| > aτ

(a−1)u−sign(u)aτ
a−2

, 2τ < |u| ≤ aτ

u− sign(u)τ, τ < |u| ≤ 2τ

0, otherwise

. (2.9)

8

The plots of these thresholding functions and their corresponding boundedness parameters

c are shown in Figure 1 and Table 1, respectively.

It can be observed that the tuning strategies of the threshold value τ (t) are crucial for

AIT algorithms. In this paper, we consider a heuristic way for setting the threshold value,

i.e., the threshold value is set to the (k+1)-th largest coefficient of z in magnitude at each

iteration, where k is the unique algorithmic parameter and called the specified sparsity

level. Therefore, the adaptively iterative thresholding algorithms can be formulated as

Algorithm 1.

It should be noticed that at (t + 1)-th iteration, the AIT algorithm yields a sparse

solution with k nonzero components by setting τ (t+1) = |z(t+1)|[k+1] in step 4 of Algorithm

1. To guarantee the performance of the AIT algorithm, the specified sparsity level is very

critical. Assume that the true sparsity level of the original sparse solution is k∗. On one

hand, when k ≥ k∗, the results will get better as k approaching to k∗. On the other hand,

once k < k∗, then the AIT algorithm fails to find the original sparse solution. Thus, k

should be specified as an upper bound estimation of k∗.

3. Convergence Analysis of AIT Algorithms

In this section, we provide the convergence analysis of AIT algorithms for sparse

solution to (1.1). For simplicity, we assume that the normalization step has been done

before the analysis, that is, ‖Aj‖2 = 1 for j = 1, . . . , N . We use x∗ = (x∗
1, · · · , x∗

N)
T

to denote the original sparse solution with k∗ nonzeros components. Without loss of

generality, we further assume that |x∗
1| ≥ |x∗

2| ≥ · · · ≥ |x∗
k∗| > 0 and x∗

j = 0 for j >

k∗. Moreover, we denote by I∗ and I(t) the support sets of x∗ and x(t), respectively.

9

Furthermore, we denote Ir = {1, . . . , r} for 1 ≤ r ≤ k∗ as the set formed by the first r

largest components of x∗ in magnitude. Thus, we have I∗ = Ik∗ .

To investigate the convergence of AIT algorithms, we introduce the coherence of a

matrix A, which is defined as follows [29]

µ(A) = max
i 6=j

|〈Ai, Aj〉| for i, j ∈ {1, . . . , N}.

The coherence measures the maximal correlation between two different columns of A. For

simplicity, we use µ instead of µ(A) henceforth if there is no confusion. In [29], it was

shown that if k∗ ≤ 1
2
(1 + 1

µ
), then x∗ is the unique sparsest solution of (1.1). Next, we

define the dynamic range of the original sparse solution as

Dr =
mini∈I∗ |x∗

i |
mini∈I∗ |x∗

i |
,

which measures the diversity of the nonzero components of x∗. Moreover, we define two

positive constants in the following

Tk∗ = k∗ + (k∗ − 1) log(1+c)kµ

1− (3 + c)kµ

(3 + c)− (c2 + 4c+ 3 + 2/Dr)kµ
− log(1+c)kµ Dr, (3.1)

and

T ∗
k∗ = k∗ + (k∗ − 1) log(1+c)k∗µ

1− (3 + c)k∗µ

(3 + c)− (c2 + 4c+ 3 + 2/Dr)k∗µ
− log(1+c)k∗µDr. (3.2)

With these notations, we present the main result as follows.

Theorem 1. Suppose that 0 < µ < 1
(3+c)k∗ and k∗ ≤ k < 1

(3+c)µ
. Then there exists a

positive integer t∗ ≤ Tk∗ such that when t ≥ t∗, it holds

I∗ ⊂ I(t), (3.3)

10

and

‖x(t) − x∗‖∞ ≤ 3 + c

2
min
i∈I∗

|x∗
i |ρt−t∗+1 (3.4)

with ρ = (1 + c)kµ < 1/2.

In Theorem 1, we justify the global convergence of AIT algorithms. It shows that

as long as A satisfies a certain coherence property and the specified sparsity level k is

chosen in an appropriate range, AIT algorithms can find the correct support set within

finite iterations. Furthermore, once the correct support set has been identified, then AIT

algorithms converge to the original sparse solution exponentially fast.

As shown by Theorem 1 and (3.1), the upper bound on the number of iterations

required for identifying the correct support set is mainly determined by several parameters,

i.e., k∗, Dr and k. On one hand, according to (3.1), Tk∗ is monotonic increasing with

respective to both k∗ and Dr. In other words, if the original sparse solution has more

nonzero components and its dynamic range is larger, then more iterations are commonly

required to identify the correct support set. These coincide with the common senses.

As we all known, it is generally more difficult to find a denser solution. Also, if the

dynamic range of the original solution is larger, more efforts are usually required to

detect the smallest nonzero component. On the other hand, we can easily verify that

Tk∗ is monotonically increasing with respective to k. Therefore, if the specified sparsity

level k is estimated more precisely, the number of iterations required for finding the

correct support set may get fewer. Moreover, according to (3.4), it can be seen that

AIT algorithms converge faster with smaller ρ when k is closer to k∗. Thus, in practice,

k is desired to be estimated more precisely in terms of computational efficiency and

11

convergence speed.

As analysed in the previous, a tighter upper bound estimation of the true sparsity level

is more desired for the AIT algorithm in the perspectives of both theory and practice.

However, the upper bound is commonly unknown in practice. In applications, we may

conduct an empirical study or based on some known priors to yield a reasonable upper

bound. Moreover, there are several efficient ways inspired by some theoretical analysis.

In [30], it suggested that an upper bound can be estimated by the undersampling-sparsity

tradeoff, or “phase-transition curve”. However, it is generally very time-consuming to

obtain the “phase-transition curve”. According to [31], it was shown that the coherence

satisfies µ ∈
[
√

N−M
M(N−1)

, 1
]

. The lower bound is known as the Welch bound [32]. Particu-

larly, when N ≫ M , the lower bound is approximately µ ≥ 1√
M
. Together with Theorem

1, we can suggest O(
√
M) as a reasonable upper bound estimation of k∗.

In the following, we give a corollary to show the special case with k = k∗.

Corollary 1. Suppose that 0 < µ < 1
(3+c)k∗ and k = k∗. Then there exists a positive

integer t̂∗ ≤ T ∗
k∗ such that when t ≥ t̂∗, it holds

I∗ = I(t), (3.5)

and

‖x(t) − x∗‖∞ ≤ 3 + c

2
min
i∈I∗

|x∗
i |ρ̂t−t̂∗+1 (3.6)

with ρ̂ = (1 + c)k∗µ < 1/2.

From Corollary 1, when k = k∗, the AIT algorithm can recover the support set of x∗

exactly within finite iterations. According to (3.2), it can be observed that if k∗µ is not

sufficient close to 1
3+c

and the dynamic range of the original sparse solutio is not too large,

12

then the log term about k∗µ and Dr in the second and third terms of (3.2) respectively

are relatively small constants. In this case, the number of iterations required for the AIT

algorithm is about several times of k∗. For an instance, assume that k∗ = 9, µ = 1
40

and Dr = 10, according to (3.2), the number of iterations required for hard, soft and

half algorithms are 20, 42 and 25, which are about 2, 5 and 3 times of k∗, respectively.

Motivated by this observation, we can suggest an efficient halting rule for AIT algorithms

through setting the number of maximum iterations according to the true sparsity level.

It can be observed from Corollary 1 that the boundedness parameter c plays an im-

portant role in the guarantees of the convergence of AIT algorithms. The restriction of

the matrix A gets stricter as c increasing. As shown in Table 1, among these AIT algo-

rithms, hard algorithm permits the weakest requirement of A with µ < 1
3k∗ , while soft

algorithm requires the strictest restriction of A with µ < 1
4k∗ . It should be noticed that

the restriction on µ is relatively loose and can be attained in practice. In fact, it was

shown that the coherence µ is in the order of
√

logN/M for the random matrix where

entries of A are independently and identically gaussian distributed [33]. This implies that

k∗ = O(M ξ1) might suffice for the AIT algorithm when logN = O(M ξ2) for some positive

constants ξ1 and ξ2 satisfying 2ξ1 + ξ2 < 1.

Remark 1. As shown by the proof of Theorem 1 in Section 4, it is interested that

the procedure of identifying the correct support set is a sequential recruitment process.

That is, the supports are sequentially recruited in a descending order of the values of

their coefficients with the larger one being identified not later than the smaller one. This

procedure may be very useful to certain applications such as feature screening problem

in statistics.

13

4. Proof of Theorem 1

We denote i
(t)
[k+1] = argmini∈{1,2,··· ,N}

{

i :
∣

∣

∣
z
(t)
i

∣

∣

∣
=
∣

∣z(t)
∣

∣

[k+1]

}

and then let Λ
(t)
[k+1] = I(t)∪

{

i
(t)
[k+1]

}

. To prove Theorem 1, we need the following lemmas. First, we give a lemma to

bound the gap between the components of x(t) and z(t) at t-th iteration, which is served

as the basis of the other lemmas.

Lemma 1. At any t-th iteration (t ≥ 1), there exists an i
(t)
0 ∈ Λ

(t)
[k+1] \ I∗, such that

(i) for any i ∈ I(t),

∣

∣

∣
z
(t)
i − x

(t)
i

∣

∣

∣
≤ c

∣

∣

∣

∣

z
(t)

i
(t)
0

− x∗
i
(t)
0

∣

∣

∣

∣

, (4.1)

where c is the boundedness parameter of the associated thresholding function;

(ii) for any i /∈ I(t),

∣

∣

∣
z
(t)
i − x

(t)
i

∣

∣

∣
≤
∣

∣

∣

∣

z
(t)

i
(t)
0

− x∗
i
(t)
0

∣

∣

∣

∣

. (4.2)

Here, it should be mentioned that x∗
i
(t)
0

= 0 and we keep it in (4.1) and (4.2) only for

better formats.

Proof. (i) For i ∈ I(t), by the definition of the thresholding function Hτ and the

boundness assumption of fτ , it holds

∣

∣

∣
z
(t)
i − x

(t)
i

∣

∣

∣
=
∣

∣

∣
z
(t)
i − fτ (t)(z

(t)
i)
∣

∣

∣
≤ cτ (t) = c

∣

∣z(t)
∣

∣

[k+1]
. (4.3)

Since i
(t)
[k+1] /∈ I(t), then the cardinality of Λ

(t)
[k+1] is k + 1. Moreover, by |I∗| = k∗ < k + 1,

then there exists an index i
(t)
0 such that i

(t)
0 ∈ Λ

(t)
[k+1] \ I∗. Thus, (4.3) becomes

∣

∣

∣
z
(t)
i − x

(t)
i

∣

∣

∣
≤ c

∣

∣z(t)
∣

∣

[k+1]
≤ c

∣

∣

∣

∣

z
(t)

i
(t)
0

∣

∣

∣

∣

= c

∣

∣

∣

∣

z
(t)

i
(t)
0

− x∗
i
(t)
0

∣

∣

∣

∣

. (4.4)

(ii) Similarly, for any i /∈ I(t), it holds

∣

∣

∣
z
(t)
i − x

(t)
i

∣

∣

∣
=
∣

∣

∣
z
(t)
i

∣

∣

∣
≤
∣

∣z(t)
∣

∣

[k+1]
≤
∣

∣

∣

∣

z
(t)

i
(t)
0

− x∗
i
(t)
0

∣

∣

∣

∣

. (4.5)

14

Thus, we end the proof of this lemma.

In the next, we give a lemma to show that the largest component (in magnitude) of

x∗ will be detected at the first iteration.

Lemma 2. Suppose that 0 < µ < 1
2k∗−1

and k∗ ≤ k < 1
2
(1 + 1

µ
). Then at the first

iteration, it holds:

(i) {1} ⊂ I(1);

(ii) for any j ∈ I(1),
∣

∣

∣
x
(1)
j − x∗

j

∣

∣

∣
≤ (1+c)(3+c)

2
kµ |x∗

1| .

Proof. First, we show that {1} ⊂ I(1). On one hand, we observe that

∣

∣

∣
z
(1)
1

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

x∗
1 +

∑

i∈I∗\{1}
〈A1, Ai〉x∗

i

∣

∣

∣

∣

∣

∣

≥ |x∗
1| − µ

k∗
∑

i=2

|x∗
i | ≥ |x∗

1| − (k − 1)µ|x∗
1|.

On the other hand, for any i /∈ I∗, it holds

∣

∣

∣
z
(1)
i

∣

∣

∣
=

∣

∣

∣

∣

∣

k∗
∑

j=1

〈Ai, Aj〉x∗
j

∣

∣

∣

∣

∣

≤ k∗µ |x∗
1| ≤ kµ |x∗

1| .

Since k < 1
2
(1 + 1

µ
), then kµ |x∗

1| < |x∗
1| − (k − 1)µ |x∗

1| , which implies that

∣

∣

∣
z
(1)
1

∣

∣

∣
> max

i/∈I∗

∣

∣

∣
z
(1)
i

∣

∣

∣
.

Thus, {1} ⊂ I(1).

Next, we give the error bound. For any j ∈ I(1), we observe that

∣

∣

∣
x
(1)
j − x∗

j

∣

∣

∣
≤
∣

∣

∣
x
(1)
j − z

(1)
j

∣

∣

∣
+
∣

∣

∣
z
(1)
j − x∗

j

∣

∣

∣
≤ c

∣

∣

∣

∣

x∗
i
(1)
0

− z
(1)

i
(1)
0

∣

∣

∣

∣

+
∣

∣

∣
z
(1)
j − x∗

j

∣

∣

∣
, (4.6)

where the second inequality holds for Lemma 1. Furthermore, for any i, it holds

∣

∣

∣
z
(1)
i − x∗

i

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∑

j∈I∗\{i}
〈Ai, Aj〉x∗

j

∣

∣

∣

∣

∣

∣

≤ k∗µ |x∗
1| ≤ kµ |x∗

1| . (4.7)

Combining (4.6) with (4.7), for any j ∈ I(1), it holds

∣

∣

∣
x
(1)
j − x∗

j

∣

∣

∣
≤ (1 + c)kµ |x∗

i | ≤
(1 + c)(3 + c)

2
kµ |x∗

1| .

15

Thus, we end the proof of this lemma.

Lemma 3. Suppose that 0 < µ < 1
(3+c)k∗ and k∗ ≤ k < 1

(3+c)µ
. Moreover, assume

that at m-th iteration, Ir ⊂ I(m) (0 < r ≤ k∗) and for any j ∈ I(m), it holds
∣

∣

∣
x
(m)
j − x∗

j

∣

∣

∣
≤

(1+c)(3+c)
2

kµ |x∗
r|. Then at (m+ s)-th iteration (s ≥ 1), it holds

(i) for any j,

∣

∣

∣
z
(m+s)
j − x∗

j

∣

∣

∣
≤ (3 + c)

2
kµ ((1 + c)kµ)s |x∗

r|+kµ
∣

∣x∗
r+1

∣

∣

[

1 + (1 + c)kµ+ · · ·+ ((1 + c)kµ)s−1
]

;

(ii) for any i ∈ I(m+s),

∣

∣

∣
x
(m+s)
i − x∗

i

∣

∣

∣
≤ (3 + c)

2
((1 + c)kµ)s+1 |x∗

r|+ kµ
∣

∣x∗
r+1

∣

∣ [(1 + c)kµ+ · · ·+ ((1 + c)kµ)s] ;

(iii) Ir ⊂ I(m+s).

Proof. We prove this lemma by induction. First, when s = 1, for any i ∈ I(m+1), it

holds

∣

∣

∣
x
(m+1)
i − x∗

i

∣

∣

∣
≤
∣

∣

∣
x
(m+1)
i − z

(m+1)
i

∣

∣

∣
+
∣

∣

∣
z
(m+1)
i − x∗

i

∣

∣

∣
.

By Lemma 1, there exists an i
(m+1)
0 ∈ Λ

(m+1)
[k+1] \ I∗ such that

∣

∣

∣
x
(m+1)
i − z

(m+1)
i

∣

∣

∣
≤ c

∣

∣

∣

∣

z
(m+1)

i
(m+1)
0

− x∗
i
(m+1)
0

∣

∣

∣

∣

,

then it holds

∣

∣

∣
x
(m+1)
i − x∗

i

∣

∣

∣
≤ c

∣

∣

∣

∣

z
(m+1)

i
(m+1)
0

− x∗
i
(m+1)
0

∣

∣

∣

∣

+
∣

∣

∣
z
(m+1)
i − x∗

i

∣

∣

∣
. (4.8)

16

Moreover, for any j, it holds

∣

∣

∣
z
(m+1)
j − x∗

j

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∑

i∈I(m)∪I∗\{j}

〈Aj , Ai〉(x∗
i − x

(m)
i)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

i∈I(m)\{j}

〈Aj, Ai〉(x∗
i − x

(m)
i) +

∑

i∈I∗\(I(m)∪{j})

〈Aj, Ai〉x∗
i

∣

∣

∣

∣

∣

∣

≤ kµ

(

(1 + c)(3 + c)

2
kµ |x∗

r|
)

+ (k∗ − r)µ
∣

∣x∗
r+1

∣

∣

≤ (3 + c)

2
kµ ((1 + c)kµ |x∗

r|) + kµ
∣

∣x∗
r+1

∣

∣ . (4.9)

Combining (4.8) with (4.9), for any i ∈ I(m+1), it holds

∣

∣

∣
x
(m+1)
i − x∗

i

∣

∣

∣
≤ (1 + c)

(

(3 + c)

2
kµ((1 + c)kµ |x∗

r|) + kµ
∣

∣x∗
r+1

∣

∣

)

=
(3 + c)

2
((1 + c)kµ)2 |x∗

r|+ (1 + c)kµ
∣

∣x∗
r+1

∣

∣ . (4.10)

Then we need to prove that Ir ⊂ I(m+1). According to (4.9), for any j, it holds

|z(m+1)
j − x∗

j | ≤
(

1 +
(3 + c)(1 + c)

2
kµ

)

kµ|x∗
r|.

Since k < 1
(3+c)µ

, it holds

(

1 +
(3 + c)(1 + c)

2
kµ

)

kµ <
1

2
.

Then for any j, it holds

∣

∣

∣
z
(m+1)
j − x∗

j

∣

∣

∣
<

1

2
|x∗

r| . (4.11)

According to (4.11), we observe that, for any i ∈ Ir,

∣

∣

∣
z
(m+1)
i

∣

∣

∣
≥ |x∗

i | −
∣

∣

∣
z
(m+1)
i − x∗

i

∣

∣

∣
≥ |x∗

r| −
1

2
|x∗

r| >
1

2
|x∗

r| . (4.12)

While for i /∈ I∗,

∣

∣

∣
z
(m+1)
i

∣

∣

∣
=
∣

∣

∣
z
(m+1)
i − x∗

i

∣

∣

∣
<

1

2
|x∗

r| . (4.13)

17

With (4.12) and (4.13), it follows that Ir ⊂ I(m+1). Therefore, the conclusion holds for

s = 1.

Second, assume that the conclusion holds for s (s ≥ 1), then we need to check it holds

for s+ 1. The proof is similar to the case s = 1 and we omit it here.

Lemma 4. Suppose that 0 < µ < 1
(3+c)k∗ and k∗ ≤ k < 1

(3+c)µ
. Moreover, assume that

at m-th iteration, Ir ⊂ I(m) (r < k∗) and for any j ∈ I(m), |x(m)
j − x∗

j | ≤ (1+c)(3+c)
2

kµ|x∗
r|.

Then it holds:

(i) the index {r + 1} will be detected after at most lr iterations with

lr =

⌊

log(1+c)kµ

1− (3 + c)kµ

(3 + c)(1− (1 + c)kµ)|x∗
r|/|x∗

r+1| − 2kµ

⌋

,

where the function ⌊u⌋ denotes the smallest integer not less than u for any u ∈ R.

(ii) for any j ∈ I(m+lr+1),

∣

∣

∣
x
(m+lr+1)
j − x∗

j

∣

∣

∣
<

(1 + c)(3 + c)

2
kµ
∣

∣x∗
r+1

∣

∣ .

Proof. We first show that the index {r+1} will be detected after at most lr iterations,

and then give the error bound. According to Lemma 3, at (m + lr)-th iteration, for any

j, it holds

∣

∣

∣
z
(m+lr)
j − x∗

j

∣

∣

∣
≤ (3 + c)

2
((1 + c)kµ)lr |x∗

r|+ kµ
∣

∣x∗
r+1

∣

∣

(

1 + · · ·+ ((1 + c)kµ)lr−1
)

<
(3 + c)

2
((1 + c)kµ)lr |x∗

r|+ kµ
∣

∣x∗
r+1

∣

∣

1− ((1 + c)kµ)lr

1− (1 + c)kµ

=
∣

∣x∗
r+1

∣

∣

(

(3 + c)

2
((1 + c)kµ)lr

|x∗
r|

∣

∣x∗
r+1

∣

∣

+ kµ
1− ((1 + c)kµ)lr

1− (1 + c)kµ

)

≤
∣

∣x∗
r+1

∣

∣

(

(3 + c)

2
((1 + c)kµ)lr

|x∗
r|

∣

∣x∗
r+1

∣

∣

+ kµ
1− ((1 + c)kµ)lr

1− (1 + c)kµ

)

.

Since

lr ≥ log(1+c)kµ

1− (3 + c)kµ

(3 + c)(1− (1 + c)kµ)|x∗
r|/|x∗

r+1| − 2kµ
,

18

then

(3 + c)

2
((1 + c)kµ)lr

|x∗
r|

|x∗
r+1|

+ kµ
1− ((1 + ckµ)lr

1− (1 + ckµ)
≤ 1

2
.

Thus, for any j, it holds

∣

∣

∣
z
(m+lr)
j − x∗

j

∣

∣

∣
<

1

2

∣

∣x∗
r+1

∣

∣ . (4.14)

By (4.14), on one hand

∣

∣

∣
z
(m+lr)
r+1

∣

∣

∣
≥
∣

∣x∗
r+1

∣

∣−
∣

∣

∣
z
(m+lr)
r+1 − x∗

r+1

∣

∣

∣
>

1

2

∣

∣x∗
r+1

∣

∣ , (4.15)

and on the other hand, for any j /∈ I∗,

|z(m+lr)
j | = |z(m+lr)

j − x∗
j | <

1

2
|x∗

r+1|. (4.16)

With (4.15) and (4.16), it shows that {r + 1} will be detected at (m + lr)-th iteration,

that is, {r + 1} ⊂ I(m+lr).

Next, we give the upper bound of the error. For any i ∈ I(m+lr+1), it holds

∣

∣

∣
x
(m+lr+1)
i − x∗

i

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∑

j∈I(m+lr)\{i}

〈Ai, Aj〉(x∗
j − x

(m+lr)
j) +

∑

j∈I∗\(I(m+lr)∪{i})

〈Ai, Aj〉β∗
j

∣

∣

∣

∣

∣

∣

≤ µ
∑

j∈I(m+lr)\{i}

∣

∣

∣
x∗
j − x

(m+lr)
j

∣

∣

∣
+ (k∗ − r − 1)µ

∣

∣x∗
r+1

∣

∣ . (4.17)

Moreover, for any j ∈ I(m+lr), it holds

∣

∣

∣
x∗
j − x

(m+lr)
j

∣

∣

∣
≤
∣

∣

∣
x∗
j − z

(m+lr)
j

∣

∣

∣
+
∣

∣

∣
z
(m+lr)
j − x

(m+lr)
j

∣

∣

∣
. (4.18)

According to Lemma 1 and (4.14), then (4.18) becomes

∣

∣

∣
x∗
j − x

(m+lr)
j

∣

∣

∣
<

1

2

∣

∣x∗
r+1

∣

∣ + c

∣

∣

∣

∣

z
(m+lr)

i
(m+lr)
0

− x∗
i
(m+lr)
0

∣

∣

∣

∣

<
1 + c

2

∣

∣x∗
r+1

∣

∣ . (4.19)

19

Combining (4.17) and (4.19), for any i ∈ I(m+lr+1), it holds

∣

∣

∣
x
(m+lr+1)
i − x∗

i

∣

∣

∣
≤ (1 + c)

2
kµ
∣

∣x∗
r+1

∣

∣+ (k∗ − r − 1)µ
∣

∣x∗
r+1

∣

∣

=

(

1 + c

2
+

k∗ − r − 1

k

)

kµ
∣

∣x∗
r+1

∣

∣

≤ (1 + c)(3 + c)

2
kµ
∣

∣x∗
r+1

∣

∣ .

Therefore, for any i ∈ I(m+lr+1), it holds

∣

∣

∣
x
(m+lr+1)
i − x∗

i

∣

∣

∣
≤ (1 + c)(3 + c)

2
kµ
∣

∣x∗
r+1

∣

∣ .

Thus, we end the proof of Lemma 4.

Proof of Theorem 1. With these lemmas, we prove Theorem 1 inductively. For

i = 1, by Lemma 2, the largest component (in magnitude) will be detected at the first

iteration, that is, I1 = {1} ⊂ I(1). By Lemma 3, once the first largest index is identified,

then it remains in the support set forever. Furthermore, by Lemma 4, the second largest

component will be identified after at most l1 iterations, i.e., I2 ⊂ I(t) when t ≥ 1 + l1. In

order to obtain the required error bound for the inductive procedure, one more iteration

should be implemented. When this procedure is repeated for r times with 0 < r ≤ k∗−1,

it holds Ir+1 ⊂ I(t) when t ≥ r +
∑r−1

i=1 li. Furthermore, by Lemma 3, once all the correct

indices are detected, they remains in the support set and the error estimation of the

iteration can be obtained. Therefore, there exists an integer constant t∗ ≤ k∗ +
∑k∗−1

i=1 li

such that when t ≥ t∗, it holds I∗ ⊂ I(t) and the error estimation of the iteration can be

achieved. Moreover, by the definition of li in Lemma 4 and the fact that |x∗
i |/|x∗

i+1| ≤ Dr,

20

it holds

li ≤ log(1+c)kµ

1− (3 + c)kµ

(3 + c)(1− (1 + c)kµ)|x∗
i |/|x∗

i+1| − 2kµ

≤ log(1+c)kµ

1− (3 + c)kµ

(3 + c)− (c2 + 4c+ 3 + 2/Dr)kµ
− log(1+c)kµ

|x∗
i |

|x∗
i+1|

(4.20)

for i = 1, · · · , k∗ − 1. Therefore,

k∗+

k∗−1
∑

i=1

li ≤ k∗+(k∗−1) log(1+c)kµ

1− (3 + c)kµ

(3 + c)− (c2 + 4c+ 3 + 2/Dr)kµ
−log(1+c)kµ

|x∗
1|

|x∗
k∗|

= Tk∗.

Thus, we obtain the proof of Theorem 1.

5. Related Work

In this section, we first discuss some related work of AIT algorithms, and then give

some comparisons with other typical algorithms including BP, OMP, CoSaMP in terms

of the sufficient condition for convergence and computational complexity.

(i) On related work of AIT algorithms. In [28], Maleki provided some similar

results for two special AIT algorithms, i.e., the hard and soft algorithms with k = k∗.

The sufficient conditions for convergence are µ < 1
3.1k∗ and µ < 1

4.1k∗ for hard and soft

algorithms, respectively. As shown by Corollary 1, our conditions for both algorithms

are slightly weaker than Maleki’s conditions. Moreover, from Theorem 1, we show the

robustness of AIT algorithms to the specified sparsity levels, which is very important in

practice. Except the hard and soft algorithms, as far as we know, there are no similar

results on the global convergence of other AIT algorithms such as half, SCAD and MCP

algorithms for sparse solution to the underdetermined linear equations.

Besides the coherence property, another important property called the restricted isom-

etry property (RIP) is commonly used to characterize the performance of an algorithm

21

for sparse solution to (1.1). The s-order restricted isometry constant (RIC), δs of A is

defined as the smallest constant 0 < δ < 1 such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22, ∀‖x‖0 ≤ s. (5.1)

In [34], it was demonstrated that if A has unit-norm columns and coherence µ, then A

has the (s, δs)-RIP with

δs ≤ (s− 1)µ. (5.2)

In terms of RIP, Blumensath and Davies justified the performance of the hard algorithm

when applied to signal recovery problem [27]. It was shown that if A satisfies a certain RIP

with δ3k∗ <
1

8
√
2−1

, then the global convergence of the hard algorithm can be guaranteed.

Later, this condition was significantly improved to by Foucart [38], i.e., δ3k∗ <
1
2
. Together

with (5.2), we can easily deduce a coherence based sufficient condition of convergence,

that is, µ < 1
2(3k∗−1)

. As compared with the existing RIP based conditions, it is hard to

claim whether our conditions are better. Instead, we can give some useful remarks on

these conditions. On one hand, the sufficient conditions based on coherence can be in

general verified much easier than those based on RIP. On the other hand, the RIP based

conditions can be generalized and improved usually easier than those based on coherence.

(ii) On comparison with other algorithms. For better comparison, we list the

state-of-the-art results on sufficient conditions of some typical algorithms including BP,

OMP, CoSaMP, hard, soft, half and other AIT algorithms in Table 2.

From Table 2, in the perspective of coherence, the sufficient conditions of AIT al-

gorithms are slightly stricter than those of BP and OMP algorithms. However, AIT

algorithms are generally faster than both algorithms with lower computational complex-

22

ities, especially for large scale applications. As analyzed in Section 3, the number of

iterations required for the convergence of the AIT algorithm is empirically of the same

order of the original sparsity level k∗, that is, O(k∗). At each iteration of the AIT al-

gorithm, only some simple matrix-vector multiplications and a projection on the vector

need to be done, and thus the computational complexity per iteration is O(MN). There-

fore, the total computational complexity of the AIT algorithm is O(k∗MN). While the

total computational complexities of BP and OMP algorithms are generally O(M2N) and

max{O(k∗MN),O((k
∗)2(k∗+1)2

4
)}, respectively. It should be pointed out that the compu-

tational complexity of OMP algorithm is related to the commonly used halting rule of

OMP algorithm, that is, the number of maximal iterations is set to be the true sparsity

level k∗.

As another important greedy algorithm, CoSaMP algorithm identifies multicompo-

nents (commonly 2k∗) at each iteration. From Table 2, the RIP based sufficient condi-

tion of CoSaMP is δ4k∗ < 0.384 and a deduced coherence based sufficient condition is

µ < 0.384
4k∗−1

. In the perspective of coherence, our conditions for AIT algorithms are bet-

ter than CoSaMP, though this comparison is not very reasonable. At each iteration of

CoSaMP algorithm, some simple matrix-vector multiplications and a least squares prob-

lem should be considered. Thus, the computational complexity per iteration of CoSaMP

algorithm is generally max{O(MN),O((3k∗)3)}, which is higher than those of AIT al-

gorithms, especially when k∗ is very large. However, the number of iterations required

for CoSaMP algorithm is commonly fewer than those of AIT algorithms, since the speed

of convergence of CoSaMP algorithm is exponential while those of AIT algorithms are

asymptotically exponential, that is, AIT algorithms converge exponentially fast after cer-

23

tain iterations. Therefore, as claimed in the introduction, when applied to very sparse

case, both OMP and CoSaMP algorithms may be more efficient than AIT algorithms.

While AIT algorithms may be better when applied to more general cases.

6. Conclusion

In this paper, we provide the convergence analysis of a wide class of adaptively iterative

thresholding (AIT) algorithms for sparse solution to an underdetermined system of linear

equations y = Ax. We prove that as long as A satisfies a certain coherence property and

the specified sparsity level is set in an appropriate range, AIT algorithms can identify the

correct support set within finite steps. Furthermore, we demonstrate that the asymptotic

convergence rates of AIT algorithms are linear, that is, once the correct support set has

been identified, AIT algorithms converge to the original sparse solution exponentially

fast. It is interested that the procedure of finding the correct support set is a sequential

recruitment process, i.e., the supports are sequentially recruited into the support set in the

descending order of the magnitudes of their coefficients. This property may be very useful

to certain applications such as feature screening problem. It should be noted that most

of the commonly used iterative thresholding algorithms (say, hard, soft, half and SCAD

algorithms) are included in the class of iterative thresholding algorithms studied in this

paper. Besides the hard and soft algorithms, we provide some fundamental guarantees on

the performance of the other AIT algorithms for sparse solution to an underdetermined

linear equations.

24

References

[1] D. L. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52

(4): 1289-1306, 2006.

[2] E. J. Candes, J. Romberg, and T. Tao, Robust uncertainty principles: exact signal

reconstruction from highly incomplete frequency information, IEEE Transactions on

Information Theory, 52 (2): 489-509, 2006.

[3] S. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE

Transactions on Signal Processing, 41 (12): 3397-3415, 1993.

[4] Y. Pati, R. Rezaifar and P. Krishnaprasad, Orthogonal matching pursuit: recursive

function approximatin with applications to wavelet decomposition, In Asilomar Conf.

Signals, Syst., Comput., Pacific Grove, CA, 1993.

[5] J. A. Tropp and A. Gilbert, Signal recovery from random measurements via or-

thogonal mathching pursuit, IEEE Transactions on Information Theory, 2007, 53:

4655-4666.

[6] D. L. Donoho, Y. Tsaig, O. Drori and J.-L. Starck, Sparse solution of underdeter-

mined systems of linear equations by stagewise orthogonal matching pursuit, IEEE

Transactions on Information Theory, 58 (2): 1094 - 1121, 2012.

[7] D. Needell and R. Vershynin, Signal recovery from incomplete and inaccurate mea-

surements via Regularized Orthogonal Matching Pursuit, IEEE Journal of Selected

Topics in Signal Processing, 4: 310-316, 2010.

25

[8] D. Needell and J. A. Tropp, CoSaMP: Iterative signal recovery from incomplete and

inaccurate samples, Applied and Computational Harmonic Analysis, 26 (3): 301-321,

2008.

[9] W. Dai and O. Milenkovic, Subspace pursuit for compressive sensing signal recon-

truction, IEEE Transactions on Information Theory, 55 (5): 2230-2249, 2009.

[10] J. A. Tropp and S. Wright, Computational methods for sparse solution of linear

inverse problems, in: Proceedings of the IEEE, 98: 948-958, 2010.

[11] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis

pursuit, SIAM Journal on Scientific Computing, 20: 33-61, 1998.

[12] R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization.

IEEE Signal Processing Letters, 14 (10): 707-710, 2007.

[13] R. Chartrand and V. Staneva, Restricted isometry properties and nonconvex com-

pressive sensing, Inverse Problems, 24: 1-14, 2008.

[14] Z. B. Xu, H. Zhang, Y. Wang, X. Y. Chang and Y. Liang, L1/2 regularizater. Science

in China, series F-Information Science, 53: 1159-1169, 2010.

[15] Z. B. Xu, X.Y. Chang, F. M. Xu and H. Zhang, L1/2 regularization: a thresholding

representation theory and a fast solver, IEEE Transactions on Neural Networks and

Learning Systems, 23: 1013-1027, 2012.

[16] E. J. Candes, M. B. Wakin and S. P. Boyd, Enhancing sparsity by reweighted l1

minimization, Journal of Fourier Analysis and Applications, 14 (5): 877-905, 2008.

26

[17] J. Fan, J. and R. Li, Variable selection via nonconcave penalized likelihood and its

oracle properties, Journal of the American Statistical Association, 96: 1348-1360,

2001.

[18] C. H. Zhang, Nearly unbiased variable selection under minimax concave penalty, The

Annals of Statistics, 38 (2): 894-942, 2010.

[19] I. F. Gorodnitsky and B. D. Rao, Sparse signal reconstruction from limited data using

FOCUSS: a re-weighted minimum norm algorithm, IEEE Transactions on Signal

Processing, 45 (3): 600-616, 1997.

[20] I. Daubechies, R. Devore, M. Fornasier and C. S. Gunturk, Iteratively reweighted

least squares minimization for sparse recovery, Communications on Pure and Applied

Mathematics, 63: 1-38, 2010.

[21] I. Daubechies, M. Defries and C. De Mol, An iterative thresholding algorithm for

linear inverse problems with a sparisity constraint, Communications on Pure and

Applied Mathematics, 57: 1413-1457, 2004.

[22] W. F. Cao, J. Sun and Z. B. Xu, Fast image deconvolution using closed-form thresh-

olding formulas of Lq (q = 1/2, 2/3) regularization, Journal of Visual Communication

and Image Representation, 24: 31-41, 2013.

[23] T. Blumensath and M. E. Davies, Iterative thresholding for sparse approximation,

Journal of Fourier Analysis and Application, 14 (5): 629-654, 2008.

[24] Y. T. Qian, S. Jia, J. Zhou and A. Robles-Kelly, Hyperspectral unmixing via L1/2

27

sparsity-constrained nonnegative matrix factorization, IEEE Transactions on Geo-

science and Remote Sensing, 49 (11): 4282-4297, 2011.

[25] J. S. Zeng, J. Fang, Z. B. Xu, Sparse SAR imaging based on L1/2 regularization,

Science China Information Sciences, 55: 1755-1775, 2012.

[26] J. S. Zeng, Z. B. Xu, B. C. Zhang, W. Hong, Y. R. Wu. Accelerated L1/2 regulariza-

tion based SAR imaging via BCR and reduced Newton skills, Signal Processing, 93:

1831-1844, 2013.

[27] T. Blumensath and M. E. Davies, Iterative hard thresholding for compressed sensing,

Applied and Computational Harmonic Analysis, 27: 265-274, 2008.

[28] A. Maleki, Coherence analysis of iteative thresholding algorithms, in Forty-Seventh

Annual Allerton Conference, Allerton House, UIUC, Illinois, USA, 2009.

[29] D. L. Donoho and M. Elad, Optimally sparse representation in general (nonorthog-

onal) dictionaries via l1 minimization, Proceedings of the National Academy of Sci-

ences, 100 (5): 2197-2202, 2003.

[30] A. Maleki and D. L. Donoho, Optimally tuned iterative reconstruction algorithms

for compressed sensing, IEEE Journal of Selected Topics in Signal Processing, 4(2):

330-341, 2010.

[31] R. Gribonval and M. Nielsen, Sparse representations in unions of bases, IEEE Trans-

actions on Information Theory, 49 (12): 3320-3325, 2003.

28

[32] L. R. Welch, Lower bounds on the maximum cross correlation of signals, IEEE

Transaxtions on Information Theory, 20 (3): 397-399, 1974.

[33] E. J. Candes and Y. Plan, Near-ideal model selection by l1 minimization, The Annals

of Statistics, 37: 2145-2177, 2009.

[34] T. T. Cai, G. Xu and J. Zhang, On recovery of sparse signals via l1 minimization,

IEEE Transactions on Information Theory, 55 (7): 3388-3397, 2009.

[35] S. Foucart, A note on guaranteed sparse recovery via l1-minimization, Applied and

Computational Harmonic Analysis, 29: 97-103, 2010.

[36] J. A. Tropp, Greed is good: algorithmic results for sparse approximation, IEEE

Transactions on Information Theory, 50 (10): 2231-2242, 2004.

[37] M. B. Wakin and M.A. Davenport, Analysis of orthogonal matching pursuit using

the restricted isometry property, IEEE Transactions on Information Theory, 56 (9):

4395-4401, 2010.

[38] S. Foucart, Sparse recovery algorithms: Sufficient conditions in terms of restricted

isometry constants, in Proceedings of the 13th International Conference on Approxi-

mation Theory, M. Neantu and L. Schumaker, eds., San Antonio, TX, 2010, Springer.

29

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

hτ(u)

u

Hard
Half
2/3ThFun
Soft
SCAD (a=3.7)

Figure 1: Typical thresholding functions hτ (u) with τ = 1.

30

Table 1: Boundedness parameters c for different thersholding functions

fτ,∗ fτ,0 fτ,1/2 fτ,2/3 fτ,1 fτ,SCAD

c 0 1
3

1
2

1 1

1
3+c

1
3

3
10

2
7

1
4

1
4

31

Algorithm 1: Adaptively Iterative Thresholding Algorithm

Step 1. Normalize A such that ‖Aj‖2 = 1 for j = 1, . . . , N ;

Step 2. Choose a specified sparsity level k and begin with x(0) = 0;

Step 3. Compute z(t+1) = x(t) + AT (y − Ax(t));

Step 4. Set τ (t+1) = |z(t+1)|[k+1];

Step 5. Update x(t+1) = Hτ (t+1)(z(t+1));

Step 6. Repeat steps 3-5 until the stop rule being satisfied;

32

Table 2: Sufficient Conditions for Different Algorithms

Algorithm BP OMP CoSaMP hard soft half Other AIT

µ 1
2k∗−1

[28] 1
2k∗−1

[32] 0.384
4k∗−1

⋆ 1
3k∗

1
4k∗

3
10k∗

1
(3+c)k∗

(s, δs) (2k∗, 0.465)[31] (k∗ + 1, 1

3
√

k∗
)[33] (4k∗, 0.384)[34] (3k∗, 0.5)[34] – – –

⋆: a coherence based sufficient condition for CoSaMP derived directly by the fact that

δ4k∗ < 0.384 and δs ≤ (s − 1)µ; –: represents no related theoretical result as far as we

know.

33

	1 Introduction
	2 Adaptively Iterative Thresholding Algorithms
	2.1 Notion and Notation
	2.2 AIT Algorithms

	3 Convergence Analysis of AIT Algorithms
	4 Proof of Theorem 1
	5 Related Work
	6 Conclusion

