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Abstract

This paper presents a method of designing variable structure control systems for

robots. As the on-board robot computational resources are limited, but in some

cases the demands imposed on the robot by the user are virtually limitless, the

solution is to produce a variable structure system. The task dependent part has

to be exchanged, however the task governs the activities of the robot. Thus not

only exchange of some task-dependent modules is required, but also supervisory

responsibilities have to be switched. Such control systems are necessary in the

case of robot companions, where the owner of the robot may demand from it to
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provide many services.

Keywords: robot controllers, variable structure controllers, cloud robotics,

RAPP

1. Introduction

World population is ageing [1] and in Europe this process is especially acute.

The process of aging in an individual inevitably leads to a decline in both the

mental and physical abilities and that usually results in at least partial social

exclusion. To prevent this, a plethora of social workers could be employed,

nevertheless the ratio of working-age people decreases in relation to the number

of the elderly. Thus an alternative remedy will have to be employed. It is

believed that the reintroduction of the infirm into society can be facilitated

by assistive robots [2, 3, 4, 5, 6, 7, 8, 9]. Robot companions can physically

assist people by carrying out tasks that are either beyond their capabilities or

simply difficult to accomplish by them, e.g. can perform detection of hazards

at home, monitor the owner’s health, ensure their safety and entertain them.

Those enhanced capabilities should reverse the trend of withdrawal from (or

perhaps rejection by) the society.

A robot companion must be universal to cater to all the needs of the owner.

This requires that both the mechanical construction and the control system of

such a robot should be capable of executing very diverse tasks. This paper

concentrates on the control system aspect of designing such devices. It should

be noted that the requirements of the owner of the robot can be potentially

unlimited, while its resources are definitely constrained. The size of the robot

should not be too large, in order not to disconcert people, not to mention an in-

crease of probability of potential injury due to inevitable collisions. As modern

robots are computer controlled one should take into account that the reduction

of the overall dimensions influences the size of the computer and thus its memory

resources, which store the control software. Hence potentially unlimited require-

ments have to be matched to limited software resources. The solution of this

2



problem is based on the idea of supplementing the limited on-board resources of

the robot by the theoretically unlimited resources provided by the cloud. How-

ever this implies that portions of the control software will be downloaded during

operation of the robot from the cloud. Moreover this software will need to as-

sume control of the robot as only it has the capability (“knowledge”) of solving

the task formulated by the owner. The controller is always governed by the

necessities of the task. Thus not only the software composition of the controller

will vary but also the supervisory responsibilities will have to be transferred

between its modules. This paper focuses on the solution of this problem. For

that purpose a RAPP system is proposed, where RAPP is an acronym standing

for: Robotic Applications for Delivering Smart User Empowering Applications

[10].

The paper is organized as follows. It starts with the presentation of robot

control architectures (sec. 2), taking into account diverse criteria, so as to point

out the specificity of a RAPP based robot controller. The RAPP system struc-

ture is based in the concept of an agent, which is briefly described in sec. 3. The

description of a RAPP system architecture starts with its structure (sec. 4).

Then, the functions of particular RAPP agents are presented in sec. 5. The

whole system was implemented on various robots (sec. 6) and experimentally

verified with a hazard detection application (sec. 7).

2. Robot Control Architectures

The papers on robot control, although abundant, rarely specify the architec-

ture in other terms than general text description, sometimes supplemented by

block diagrams. There is no common way of representing architectures, not to

mention universally accepted formal tools for that purpose. Although some work

on formal specification of robot control software, e.g. [11, 12, 13, 14, 15], and

its formal verification verification, e.g. [16, 17], unfortunately it has not gained

widespread acceptance. Thus, some form of general classification of robot con-

trol system structures (architectures) has to be produced to be able to compare
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diverse approaches to controller design. The overviews [18, 19] distinguish:

• architectural structure, i.e. division of the considered robot control system

into subsystems as well as the presentation of their interconnections, and

• architectural style, where computational and communication concepts are

described.

However the paper [18] points out that in many implemented systems it is

difficult to clearly define their architectural structure and style. Since the time

of that publication not much has changed. Some robot-related classifications

have been mentioned in surveys, e.g. [20, 21, 22, 23, 24, 25, 26, 27, 28], however

although they use similar criterions their definitions are not always consistent

or evident (e.g. [20, 21, 22, 23, 24, 25, 27]) or the classification criterions are

marginally relevant to the topic discussed in this paper (e.g. [26]), so we need

to disclose how we understand the criterions we use.

A crude definition of a robot can be provided from the perspective of its

components. For our purposes we shall define a robot as a device having one or

more effectors and zero or more receptors, controlled in such a way as to execute

the allotted tasks, e.g. [29, 13, 30]. Effectors are those devices that influence the

environment in which the robot acts. For practical purposes, in robotics two

categories of receptors are distinguished: exteroceptors and proprioceptors. The

former gather the information from the environment and the latter provide data

about the state of the effectors. Herein only exteroceptors will be of interest,

thus for the purpose of brevity they will be called simply receptors. The control

system acquires the information from the receptors and commands the effectors.

The task can be embedded in the control system or can be exchangeable.

Robotic systems are inherently complex. To overcome this complexity some

kind of decomposition is necessary, thus control systems are usually divided into

subsystems. In the case of a single-robot control system those subsystems in

conjunction exert influence over the robot hardware (i.e. effectors and receptors)

in such a way as to achieve the desired goal, i.e. execute the allotted task.

Examples of such single-robot multi-effector systems are abundant, e.g. [31, 7,
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32, 33, 34]. In the case of multi-robot systems the controllers of individual

robots can act:

• separately (robots having separate control systems, acting unallied or do-

ing work together, but without explicitly communicating with each other,

e.g. one thousand robots filling-in a predefined 2D space [35]; two box-

pushing robots perceiving the environment to accomplish a task [36];

a robot using a motion capture system as a remote sensor, guiding a for-

mation of robots which observe through their own sensors the relative

distance to the leader, which moves along a predefined path [37]),

• together by explicitly exchanging information (individual robot controllers

directly exchange information between themselves, e.g. flocking or foraging

robots directly exchanging information [24]; three-robot system based on

ALLIANCE architecture communicating with each other to inform about

the waste sites that each of them is taking care of [38]),

• together by being commanded by a supervisor (a distinguished supervi-

sor influences the robot controllers through direct communication, e.g.

supervisor of a multi-robot-based reconfigurable fixture supporting flexi-

ble workpieces during machining [39]; a system composed of a supervisor

commanding three heterogeneous robots in conjunction carrying a rigid

beam [40]; master-slave approach tested both in simulation and field with

four Stalker XE aerial vehicles flying in a formation [41]).

It should be noted that the distinction between a single- and a multi-robot

system is not that obvious. A two-hand device can either be treated as a single

two-handed robot (e.g. two industrial manipulators holding an egg rigidly [42]

or solving a Rubik’s cube puzzle [43]) or two separate manipulators. In the for-

mer case a single controller exerts influence over the two manipulators, while in

the latter case two separate controllers govern the actions of the manipulators

separately. Hence how to differentiate between supervised two separate control

systems of two manipulators and a single control system of a two-handed sys-
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tem? This dilemma is resolved by stating how the interactions between system

components are treated. If the connections of the subsystems are treated as

internal to the system, a single controller results, but if some of the connections

are treated as external then several interacting systems are produced. In prac-

tice this resolution, based on the subjective treatment of interactions, usually

coincides with the frequency of those interactions. If the required frequency is

high, a single control system of the two hands will be required. If, on the other

hand, the frequency is low, separate controllers of each of the arms commanded

by an extra supervisor are an option (e.g. [39]). In the case of walking machines,

which are single robots with multiple effectors, usually a single hierarchic con-

troller is implemented, e.g. as in the case of quadrupeds BISSAM [44] and LAVA

[45, 46].

Coordination appears when a single control system governs the actions of

one or more effectors or robots as well as when separate controllers communicate

directly with each other to exchange coordinating information. Uncoordinated

systems are composed of robots with separately acting controllers. Coordination

can be continuous or sporadic. Continuous coordination is produced when two

or more subsystems are influenced by the coordinator in each control step (i.e.

at the system sampling rate), while sporadic coordination results when this

influence appears from time to time at a much lower frequency or completely

asynchronously. An example of continuously coordinated system is a position-

force controlled two-arm system [31].

Thus this classification parallels the classification of control system struc-

tures. A system composed of a set of separately controlled robots is treated as

uncoordinated. A system composed of many robots interacting externally (thus

infrequently) is treated as sporadically coordinated. Such systems can have a su-

pervisor, but this is not a necessity. Sporadic coordination can arise also when

several effectors of a single robot are controlled by their own control subsystems,

coordinated from time to time by a supervisor. Finally, a single-robot system

composed of many effectors interacting internally (thus frequently) is treated as

continuously coordinated by a supervisor.
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In control theory both centralised and decentralised systems are considered.

A system is considered to be centralised if there is a single decision entity gov-

erning the activities of the whole system, e.g. [40, 47, 42]. On the contrary,

decisions in a decentralised system are made in its subsystems and the overall

activity of the system either emerges as a result, e.g. [35] or the subsystems

directly communicate to establish the resultant behaviour, e.g. [24, 38]. This

implies that centralised systems are always coordinated (continuously or spo-

radically), while decentralised systems are either uncoordinated or sporadically

coordinated.

If the system is coordinated its subsystems communicate. Communication

can be realized in several forms: as peer-to-peer (one-to-one) or as broadcast

(one-to-many) as well as many-to-many. In the case of peer-to-peer, a one-to-

one direct communication link must exist, e.g [48] presents a system composed

of robots using one-to-one communication approach in multi-robot box-pushing

task. In the broadcast form the message producer dispatches it to many receivers

(e.g. [24, 49, 38, 50, 51]), who either utilize those messages at their will or

may even ignore them. The many-to-many communication can be organized

as e.g. a blackboard system [52] or by stigmergy [53] — this is an indirect

form of communication. In the case of stigmergy the robots can sense the

changes in the environment or observe of the actions of other robots (from

the point of view of the observer in this case other robots are treated as part

of its environment). For example [35] describes robots communicating using

infrared sensors, [54] presents robots communicating using traction forces, [55]

describes robots communicating indirectly using on-board visual sensing, while

[56] reports on the system composed of 20 e-puck robots pushing three different

objects based on inputs from infrared proximity sensors.

Robotic systems (single- or multi-robot) can be also looked at from the point

of view of the interaction between the effectors of the robots. An external ob-

server watching how the tasks are realized by one or several robots can expresses

the view on the type of cooperation. As the observer perceives the robots only

by looking at their effectors those devices are at the center of attention. Cooper-
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ation results from two or more effectors doing work together. They can act inde-

pendently of each other, cooperate loosely or tightly. Tight cooperation results

when the effectors are coupled directly or indirectly (through an object, possibly

even a virtual object), e.g. two manipulators transferring a single rigid object

together over a specified trajectory [40, 47], object-pushing task [48, 56, 36],

two rovers carrying a beam fixed to them [51], several quadrocopters flying in

a specified formation [41, 37, 57]. Obviously transfer of a flexible o flimsy object

also fall into that category, e.g. a two-handed robot folding a towel [58]. Spo-

radic cooperation appears when the effectors work together from time to time

in a common space (e.g. transfer an object from one hand to the other). Inde-

pendent work of the effectors is equivalent to non-cooperation or independent

operation.

Coordination and cooperation are distinct from each other. The former is

a white box view [59], where the observer knows what is the internal structure

of the control system, while the latter is based on a black box approach, where

only the external actions of the effectors can be observed. Thus the control

system perspective is associated with coordination and the interaction between

the effectors is associated with cooperation. Two uncoordinated robots can

cooperate, e.g. transferring a common object using stigmergy. If the two con-

trol systems agree as to the undertaken actions through direct communication

sporadic coordination results. The same is the result of a supervisor exerting

influence over the two control systems from time to time. On the other extreme

there are coordinated robots that do not cooperate, e.g. one executing welding

of two plates and the other polishing a cylinder, however both having a single

control system – rather a rare situation. Coordinated control systems produc-

ing tight cooperation are employed for e.g. two-handed manipulation of a single

rigid object [43]. Uncoordinated non-cooperating robots are most abundant

(e.g. separate assembly cells in a factory).

The control system is responsible for the activities of the system, regardless

whether it is single- or multi-robot. Those activities are undertaken to execute

the task. It can be quite simple or very complex with many facets – this is
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not relevant here. What is important is at what stage and by whom the task

has been formulated. The task can be embedded in the controller at its design

stage and thus becomes its internal imperative to act. On the other extreme

the controller can have an embedded interpreter of a specialized language and

by using this language the user conveys the task to the controller – this is

employed in the case of industrial robots. Thus the internal imperative is created

at runtime (from the point of view of the controller) and, moreover, by the

user not the designer. Obviously in-between those extremes exist intermediate

solutions, where the designer and the user coproduce the imperative to act – the

designer produces a parametrized system and the values (numeric or symbolic)

are delivered by the user. Regardless of those cases the structure of the controller

is fixed by its designer – it does not change at runtime. The interpreter or the

variables holding the parameters had been delivered by the system designer.

The above mentioned abundance of classification criteria causes that there is

a plethora of differing control system architectures. However they have one com-

mon feature. Their architectural structure is set at design-time. Such systems

have an invariant architectural structure at runtime. The system presented in

this paper is a single-robot multi-effector one. Its subsystems (agents) are spo-

radically coordinated. It uses direct communication of peer-to-peer type. Due

to its variability it can be treated as decentralized, however at any one time

there is a single decision entity governing the activities of the whole system.

Thus at any particular instant of time one can point out a single decision unit,

but at different instants those decision units will change.

Nevertheless variable structure robot control systems were produced in the

past. Those could acquire new modules or dispose them, but the supervisor

was always the same, e.g. [60]. In this case although the modules were added or

deleted while the system was running, this was done by the system developer,

not by the system itself.

The benefits of using dynamic variability of robot control software was also

recognised in [61]. Due to the necessity of optimizing the use of robot resources

or adapting the robot behavior to changing environmental context the capability
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to add or remove software modules was treated as an asset. Dynamic variability

stems from the concept of dynamic software product lines [62] addressing the

problem of designing runtime configurable software systems. This concept is

being extended to context variability to produce context-aware and self-adaptive

systems. The non-context features of the robot, such as its hardware structure,

can be taken care of at software design time. Task context features such as

accommodation to, e.g. type of carried load, must be addressed at runtime.

Thus adding or removing (exchanging) software modules was proposed to deal

with such contextual changes. However the supervision of the system did not

switch.

On the sideline of this discussion, to avoid misunderstandings, it should be

noted that in control theory there exists the term: variable structure control

(VSC), e.g. sliding mode control [63, 64]. This has nothing in common with

variable structure control architectures discussed here. VSC refers to switchable

control law, which changes the structure of the mathematical model of the

system. This mathematical model is expressed in terms of differential equations

whose terms differ in different areas of the system state space. In those systems

the architecture remains fixed. In the case presented here the focus is on variable

structure of the system architecture not the variable structure of the control law.

The possible variability of the control law is embedded in low-level hardware

drivers.

Moreover, there is still another popular dimension in the subdivision of robot

control systems that should be mentioned as it is customary to deal with it

whenever one writes about robot control system structures, although it is not

directly relevant to the treated subject. It pertains to how the robot makes

decisions as to the action that should be undertaken. It is either based on the

world model and symbolic representation used to formulate the plan of actions

or on direct coupling of sensoric data obtained from the environment to the

effector. In the former case the system layers where allotted distinct functional

tasks: perception, world-modelling, planning action execution – an architecture

used for instance by the Shakey robot designed in the 1960s [65]. In the latter
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case usually the coupling is implemented by a layered network of computational

elements acting concurrently and producing partial decisions which eventually

undergo arbitration to produce the desired behavior [66, 67]. The first approach

was favoured by classical artificial intelligence and was initially named sense-

model-plan-act (SMPA) [68] and later more briefly sense-plan-act (SPA) [18].

The second approach was termed as the behavioural approach, because the par-

tial decisions produced by the distinct layers of the control subsystem suggested

specific behaviours. The structure of the SPA system assumed separate mod-

ules devoted to perception, association of percepts to symbolic representations

in the world model, decision making relying on planning and finally execution

of the thus elaborated action. The modules primarily processed the data se-

quentially, however feedback loops existed. In the behavioural case each layer

of the structure was connected both to sensors and actuators, thus it produced

a suggestion of a certain behaviour. Lower layers had less competence, so the

suggested behaviours were more rudimentary. Upper layers could inhibit the

outputs of the lower layer components or substitute their own suggestions for

theirs, thus improve upon their actions. Nevertheless, subsequently it turned

out that both approaches, i.e. SPA and behavioural, are compatible and can

be merged into a hybrid form [69] with the lower control layer being reactive

(behavioural) and the upper one being deliberative. It should be noticed that

the problem how the decisions are formed strongly depends on the task to be

realized. The architectural structure of the system should not constrain the

designer of the system to implement the task in a way most suitable to it. In

this paper this criterion will not be used, as it presents a structure where the

task is encoded in a user delivered Dynamic Agent. The proposed architectural

structure does not constrain the designer to use any of the above described

approaches.
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Receptorcommands ReceptorreadingsEffectorstateEffectorcontrol

Figure 1: Internal structure of an embodied agent

3. Agents

The RAPP system architecture is described in terms of agents. It uses two

kinds of agents: embodied agents (fig. 1) and computational agents. The former

are composed of: a control subsystem, one or more virtual effectors and zero or

more virtual receptors. The control subsystem is responsible for the realisation

of the task of the agent, while the virtual entities serve as device drivers for real

effectors and real receptors – the hardware constituting the agent. The con-

trolled hardware constitutes the body of the agent, hence an embodied agent.

Computational agents, which do not posses effectors and receptors contain just

the control subsystem. Thus embodied agents are a generalisation of computa-

tional agents. So the activities of both kinds of agents are described in the same

way. One robot can be controlled in conjunction by several agents.

The control subsystem as well as the virtual effectors and receptors are spec-

ified in terms of FSM (Finite State Machine) defining sequences of behaviours

[70, 71, 14]. The behaviours themselves are defined by transition functions and

terminal conditions. Each transition function takes as arguments the input

buffers to the subsystem and the contents of its internal memory and produces

the values of output buffers and new values of the memory. This is done it-

eratively at subsystem sampling rate until the terminal condition is fulfilled.
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Terminal condition is a predicate taking as arguments the contents of input

buffers and the memory. Iterations of the same transition function until the

satisfaction of the terminal condition are called a behaviour. The FSM switch-

ing its internal state switches the behaviours associated with those states, i.e.

switches different transition functions.

4. RAPP system structure

As the structure of a RAPP system changes over time, it is best presented as

a sequence of system structures evolving in stages. The system is composed of

a RAPP Platform and one or more robots. We assume that the RAPP Platform

exists from the onset and robots know how to connect to it, but at initiation

the RAPP Platform and the robot are separate entities (fig. 2a). To simplify

the presentation a one robot structure will be considered here. Each robot is

delivered with a Core Agent acore controlling it, thus at first it has to establish

communication with the RAPP Platform (fig. 2b).

(a)

acore

Core
Agent

aplat

Platform
Agent

astore

RAPP
Store

RAPP Platform

Robot

(b)

acore

Core
Agent

aplat

Platform
Agent

astore

RAPP
Store

RAPP Platform

Robot

Figure 2: (a) RAPP system initial structure, (b) Connection of the Core Agent acore to the

RAPP Platform aplat

Initially the RAPP Platform is composed of two agents: the Platform Agent

aplat and the RAPP Store managed by the agent astore. When the robot user

commands it to perform a certain task the Core Agent acore contacts the RAPP

Store astore, which provides a Dynamic Agent adyn capable of executing this
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task. The Core Agent acore installs the Dynamic Agent adyn on the robot

control computer (fig. 3a). At this stage the Dynamic Agent adyn assumes the

supervisory responsibilities over the system. The Core Agent acore becomes

the command server for the Dynamic Agent adyn. If the execution of the task

requires the Dynamic Agent adyn to directly access the services provided by the

Platform Agent aplat a connection between the two is established (fig. 3b).

(a)

acore

Core
Agent

adyn

Dynamic
Agent

aplat

Platform
Agent

astore

RAPP
Store

RAPP Platform

Robot

(b)

acore

Core
Agent

adyn

Dynamic
Agent

aplat

Platform
Agent

astore

RAPP
Store

RAPP Platform

Robot

Figure 3: (a) Download and creation of the Dynamic Agent adyn, (b) Connection of the

Dynamic Agent adyn to the Platform Agent aplat

In specific cases the services required by the Dynamic Agent adyn from the

Platform Agent aplat might form a complex sequence, or other specific services

might be required, which do not exist in the RAPP Platform. In such cases

instead creating such services in the Dynamic Agent or invoking them directly

by adyn it is reasonable to create one or more Cloud Agents acloud in the RAPP

Platform (for the sake of simplicity of the presentation, in this paper it is as-

sumed that just one such agent is created – this does not preclude the generality

of the presentation as the interaction between the Dynamic Agent and the Cloud

Agents is always the same and no direct interaction between Cloud Agents is

asumed). The Cloud Agent will execute the required services autonomously

and just provide the results to the Dynamic Agent adyn. Hence the Platform

Agent aplat upon a prompt from the Dynamic Agent adyn downloads the re-

quired Cloud Agent acloud from the RAPP Store astore, and initiates it in the

RAPP Platform (fig. 4a). Once the Cloud Agent acloud is created the Dynamic
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Agent adyn establishes a connection with it (fig. 4b).
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aplat

Platform
Agent

acloud

Cloud
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RAPP
Store

RAPP Platform

Robot

(b)

acore

Core
Agent

adyn

Dynamic
Agent

aplat

Platform
Agent

acloud

Cloud
Agent

astore

RAPP
Store

RAPP Platform

Robot

Figure 4: (a) Creation of the Cloud Agent acloud, (b) Connection of the Dynamic Agent adyn

to the Cloud Agent acloud

This structure of the system persists until the task is finished. Once that

happens, the Dynamic Agent adyn informs the Platform Agent aplat that the

Cloud Agent acloud is no longer necessary, thus it can be destroyed (situation

in fig. 3b is reestablished). It also informs the Core Agent acore that the task is

completed, thus the Dynamic Agent adyn can be destroyed. At this instant the

Core Agent acore ceases to be a command server for the Dynamic Agent adyn

and resumes its responsibilities as a supervisor of the system, thus the situation

presented in fig. 2b is restituted. Now the cycle can be repeated upon a new

command from the user. The RAPP system contains a repository of RApps

(RAPP applications), which are the code for executing specific tasks that the

user of a robot might require. It should be noted that RApps at execution time

are equivalent to adyn. RApps are created by developers and stored in astore

internal memory (repository). Subsequently they are retrieved from the RAPP

Store astore by the Core Agent acore.

5. Functions of the agents

The article [72] presents the distribution of system functions between par-

ticular RAPP agents and theirs subsystems. Next, the functions of the agents
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are presented, starting with the agents located in the robot controller and then

those located in the RAPP Platform.

5.1. Core Agent

s1 Initialization

s2 Register with aplat and astore

s3

Listen to
the user

s4
Interpret the
recorded command
using aplat

s5
Interpret

command

s6 Load adyn from astore

s7 Activate adyn

s8 Wait for command from adyn

s9 Execute command from adyn

s10 Destroy adyn

s11
Unregister
from aplat
and astore

s12 Finish

s13

Record command

s14

Inform the user

Isolated word

Task finished

Failed

Abort

Long command

Failed

Figure 5: Graph of the FSM governing the behaviour of the Core Agent acore

Each robot included in the RAPP system contains a specific Core Agent acore

delivered by its manufacturer. This agent is responsible for communication with

the user, downloading the Dynamic Agent adyn from the RAPP Store astore and

providing to the Dynamic Agent the interface to the robot’s hardware – directly

through its control subsystem and indirectly through its virtual effectors and

receptors that are specific to particular robots. The activities of the Core Agent

acore are described by the FSM in fig. 5. In reality this are the activities of the

control subsystem ccore of the Core Agent acore, but as in this paper, besides
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this subsection, the other subsystems will not be addressed, the agent and its

control subsystem will not be distinguished. Computational agents contain only

their control subsystems, thus this distinction in that case is not necessary as

well. After initialization acore registers itself with the RAPP Platform by con-

necting to the Platform Agent aplat and the RAPP Store astore and subsequently

starts to listen to the user’s commands, which can be expressed in one of the

two forms: as an isolated keyword or a long command. In each of those cases

interpretation is different. The isolated keywords are known to acore and so it

decides which Dynamic Agent should be downloaded from the store in response.

The long commands are only recorded by acore and then sent for interpretation

to aplat. The Platform Agent aplat decides which Dynamic Agent should be

downloaded by acore. Successfully interpreted user’s command results in down-

loading and activating the adequate Dynamic Agent adyn. Herein, for brevity,

different Dynamic Agents are not distinguished by an additional subscript. If

interpretation of the command fails, acore returns to listening to the user. After

adyn has been activated, acore waits for its commands and subsequently executes

them. Once adyn has completed its task it notifies acore about that. This results

in acore destroying adyn. Subsequently acore goes back to listening to the user’s

commands.

The Core Agent acore acts as a service provider for the Dynamic Agent adyn.

Whenever adyn needs the resources of the robot, i.e. its effectors or receptors, to

carry out the task it must request a service from acore, which waits for commands

in the FSM state represented by the graph node s8 (fig. 5). Each such service is

represented as a sub-FSM symbolised by the double encircled node s9. It should

be noted that all real-time critical services are provided by fig. 5 in its state s9,

so the delays introduced by the communication with adyn and acloud may slow

down the activities of the system as a whole, but will not affect the real-time

performance of the robot hardware.
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5.2. Dynamic Agent

The Dynamic Agent adyn is responsible for the execution of the task com-

manded by the user and is dynamically initiated on the robot with the start

of the task. The graph of the FSM representing the required sequence of be-

haviours depends on this task. The Dynamic Agent communicates with other

agents using a standardized API. The Core Agent has to be organized in such

a way as to execute all of the API functions invoked by all the Dynamic Agents,

hence the detailed implementation of the API functions in the Core Agent as

well as the robot hardware do not affect the task formulation in the Dynamic

Agent.

The Dynamic Agent FSM is designed by the RApp provider. An exemplary

Dynamic Agent adyn responsible for the execution of a hazard detection task

will be presented in section 7. Its graph is presented in fig. 16 in that section.

5.3. Platform Agent

The Platform Agent aplat presents its computational capabilities to the Core

Agent acore and the Dynamic Agent adyn as a set of services that can be grouped

into few general subsets. Communication services currently enable the robot

to perform automated speech recognition (using either Sphinx [73] or Google

libraries), speech synthesis as well as sending and receiving e-mail messages [74].

Those services can be used directly by the Core Agent to recognize the command

produced by the user, when the robot is not capable of recognising the command

using only the on-board skills. Another large subset of services is responsible for

image processing and object detection. To recognize people, there are human

detection as well as face detection and recognition services. Other services enable

scene recognition and object detection. The light checking and door-opening

estimator makes it possible to create applications automatically assuring user

safety. The navigation subset contains map management services and enables

global localization (initially based on QR codes and currently doing without

them). Using global obstacle map, the path between two points can be planned.

A set of information services (geolocalization, news and weather) and ontology
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(Knowrob) supplements the platform capabilities. Fig. 6 presents the general

structure of the FSM governing the agent aplat.

s1
Wait for service request
from adyn or acore

s2
Provide the service requested
by adyn or acore

Figure 6: Graph of the FSM governing the behaviour of the Platform Agent aplat

5.4. Cloud Agent

A Cloud Agent must be compatible with its respective Dynamic Agent – it is

created by the RApp developer as a part of a particular application. It is meant

to be available only to this one application, and its lifetime is similar to the

lifetime of the Dynamic Agent, i.e. when the Dynamic Agent is launched, the

corresponding Cloud Agent is launched too, and both terminate their existence

at the same time.

The Cloud Agent is responsible for the execution of tasks, that are too

computationally expensive to run them on the robot controller, yet not general

enough to be implemented as platform services. The Cloud Agent can be also

used as a macro-service, calling multiple platform services and returning the final

result to the Dynamic Agent, allowing it to run other tasks in parallel without

time-consuming back-and-forth communication and dealing with intermediate

service results.

5.5. RAPP Store

The RAPP Store caters to: robot owners, RApp developers and the Core

Agents controlling the robots. Every new robot owner registers with astore.

The Core Agents register with astore and aplat and thus gain access to the

RAPP infrastructure. From the point of view of the Core Agent acore the

most important service provided by astore is the ability to download RApps,

i.e. the Dynamic Agents adyn required by the user. The RAPP Store astore is

19



also responsible for providing services to the RApp developers for building and

submitting RApps. Its obvious responsibility is storing RApps. The RApps are

hosted in the form of precompiled binaries of Dynamic Agents represented by

adyn.

6. Implementation

Implementation of the RAPP infrastructure follows the agent-structure, de-

picted in fig. 4b. As the RAPP system is rather complex, an in-depth description

of the implementation of every single component is beyond the scope of this pa-

per, for obvious reasons – rather the general idea and the main concepts will be

explained. This section is organized in top-down manner, describing top-level

modules and communication between them first and then going deeper into each

submodule and service.

6.1. Communication between agents

Figure 7 presents the same blocks as fig. 4b, however from a different perspec-

tive, focusing on the communication between the top-level entities, i.e. agents.

Apart from the Dynamic Agent, every other module exposes its services (or, in

general, capabilities) to the public. To make possible the use of them by the

others, every agent has an API prepared for that purpose.

6.2. RAPP Store

The RAPP Store exposes just a few services to be used mostly by the Core

Agent. Those are available using the REST API (HTTP request-response). It

enables the listing of available applications, searching for a specific one, gath-

ering information about the selected application and downloading a compiled

package to run as a Dynamic Agent. Internal structure of the Store is presented

in fig. 8.

The RAPP Store is responsible for the whole process of application prepa-

ration. Every developer can create many git repositories, each containing the
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Figure 7: Overall architecture of the RAPP infrastructure

source codes of one RApp. When the code is ready, the programmer can re-

lease his/her application for use by the selected robotic platforms. The RAPP

Store is responsible for RApp compilation (if necessary) and packaging. There is

a separate virtual machine for each available robot. It is used as a build server.

The whole interaction between the developers and the Store is possible using

web interface.

6.3. RAPP Platform

The RAPP Platform [75] provides its services as web services, implemented

using HOP [76, 77]. Some robots such as NAO can recognise only a limited set

of commands. Others, such as the Elektron mobile robot do not have the recog-

nition capability at all. The client uses the Platform API (available for Python,
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Figure 8: Internal structure of the RAPP Store

C++ and Java Script) to invoke Platform services, thus releasing the applica-

tion developer from the tedious task of managing the network communication

and making the platform services almost as easy to use as local functions.

The Platform API, among others, is responsible for authentication – each

call to the platform is supplemented with a user token. Based on it the user

status is ascertained (e.g. it is verified whether the selected service is available

for the given user or not) as well as adequate data storage is selected (e.g. each

user has a personal set of face images to be recognised, maps for navigation

etc.).

If the service is rudimentary, such as file upload or database query, it can

be implemented directly in HOP. More complex algorithms need the RAPP

Improvement Center (RIC), which uses ROS [78, 79]. Each node provides one or

more services, which are called from HOP using rosbridge websockets server [80].

ROS enables many possibilities of node implementation. The majority of the

RAPP system modules is implemented using either C++ or Python. Internally,

each ROS node runs multiple processing threads, so that it can process calls

from many clients simultaneously. Taking into account how ROS threads are

handled, it becomes apparent that ROS nodes that are purely functional (i.e.
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do not posses an internal state or a back-end procedure) have no problems with

simultaneous calls. On the other hand, nodes such as the Knowrob Wrapper or

the Sphinx4 ASR system, which depend on the deployment of other packages,

need special handling. In the case of RAPP Platform, it was decided that only

the Sphinx4 ASR ROS node is in need of such service handling, since this will

be the most frequently invoked one. The assumed solution involves the creation

of several back-end Sphinx4 processes, along with a handler, which accepts the

requests and decides which process should serve them. At any time, the handler

monitors the processes to keep track which of them are occupied and what are

their current configurations. Thus if, for example, a speech recognition invo-

cation occurs with a specific configuration, the pool of unoccupied processes is

tested to find out whether any of them is already configured as requested. If
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this is the case, the handler proceeds directly to the speech recognition process,

or if not, the handler selects a random unoccupied process and performs both

configuration and recognition. This approach was chosen, because the configu-

ration process is quite time consuming and requires significant resources, thus

it should be avoided whenever possible.

The RAPP Platform contains the RAPP database which can be accessed

by:

• the RAPP Store, to keep track of the user accounts and the submit-

ted/downloaded applications and

• the RAPP Improvement Centre to provide machine learning/statistical

data gathering and data acquisition – this is done via a ROS MySQL

wrapper, providing interfaces to all the nodes in need of stored data.

6.4. Core agent

6.4.1. Robots

As it has been said in section 5.1, the Core Agents implementation is de-

pendent on the hardware it controls. On the other hand, the set of functions

available for the Dynamic Agents to call must be known in advance and, as

much as possible, independent on the particular robot. In social robotics, in

particular in tasks for which RAPP is designed, those functions can be divided

into three main groups: communication, vision and navigation skills.

Communication is required by the Core Agents main automaton – interaction

with the user is done using spoken commands and synthesized replies. Thus,

at least two skills should be present: say – to synthesize a sentence; and word

spotting – listen to and recognize words. Other useful functions are capturing

and playing back audio files.

As the sight is one of the most important human senses, and one giving the

most information, also robots vision services plays a key role in whole system

design. Main function in this group is responsible for capturing pictures, and

a few helper functions should also be created for changing camera parameters,
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reading current settings and calibration etc. Robot should also be able to look

at given point in space, to look for specified object for example.

Last, but not least, in order to cooperate with people and to be able to move

around in a home, the robot should possess some kind of navigation capabilities.

Those should permit, at least, motion with with a predetermined speed, self-

localization relative to the starting point (based on odometry) and motion to

a specified point (with respect to a local coordinate frame).

Ultrasonic sensors

Upper camera

Legs

Touch sensors

58 cm

Lower camera

Arms

Figure 10: NAO robot: description of relevant components

Those skills can be implemented in many robots. To show versatility of

the proposed solution two different robots have been included into the RAPP

system: NAO humanoid robot (fig. 10) and Elektron mobile robot (fig. 11).

Those robots are very different in their capabilities. NAO is a humanoid –

this implies that it can execute holonomic motion, i.e. walk in any direction;

while Elektron having wheels and a differential drive is non-holonomic. NAO is

equipped with two medium quality cameras on a moving head, while Elektron

has one high quality moving camera and two fixed Kinect sensors. Table 1

compares the relevant components of each robot.
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Figure 11: Elektron robot: description of relevant components

6.4.2. Implementation details

Implementation of the Core Agent is composed of two main parts (fig. 12).

First, control subsystem, managing the FSM (fig. 5) is almost independent of

a particular robot. The control subsystem is written in the C++ programming

language, as a ROS node, thus any robot which is ROS-enabled and has basic

abilities record and playback sound. If the robot has no built-in capabilities

to recognize spoken text and transform text to speech (as is the case of the

Elektron robot), the Core Agent can send the recording to the Platform Agent

for recognition.

The FSM, after successful recognition of the user command, downloads

a compressed archived file with the selected RApp and unpacks it. As the

Dynamic Agent can be developed in one of three possible languages: C++,
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Table 1: Comparison of components of the robots

Function NAO Elektron

Say Internal sentence synthesizer N/A

Word spotting Internal ASR service N/A

Recording Four microphones One microphone

Playback Speakers Speakers

Capture image Two RGB cameras

1280x960px, wide angle

One RGB camera

1280x1024px, narrow angle

Two Kinect RGB-D sensors

640x480px, wide angle

Mobility Two legs, holonomic movement Differential drive, non holonomic

Speed ?? Up to 0.25m/s

Python or JavaScript, the RApp developer has to prepare the deployment script,

responsible for correct start of the application (in the simplest case just calling

the executable). This script is initiated by the Core Agent as a new process

(fork–exec procedure). Task is treated as finished when this process dies – the

Core Agent monitors its state and detects this event.

Download
application

Launch
Dynamic

Agent

Launch
Cloud Agent

Cloud
Agent

service
invocation 

Core Agent

Robot FSM

Core Services
 

move_to, take_predefined_pose,
look_at, take_picture,
say, word_spotting, ... Robot API

Platform
service

invocationRobot
service

invocation

Dynamic Agent

robot_api client library
(C++/JS/Python)

platform_api client l ibrary
(C++/JS/Python)

cloud_agent client library
(up to application programmer)

cloud_agent control library
(C++/JS/Python)

Figure 12: Internal structure of the RAPP Core and Dynamic Agents
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Underlying services, provided by the two aforementioned robots, are imple-

mented as ROS nodes. In the case of the NAO robot the virtual effectors are:

ecore,body that is responsible for the motion of all of its limbs and the head, and

ecore,ls that governs the loudspeakers and executes text to speech transforma-

tion. The NAO virtual receptors are: rcore,cam that is responsible for acquiring

images by the camera, rcore,sonar that detects obstacles using ultrasonic sensors,

rcore,touch that detects obstacles using micro-switches located in the feet of the

robot, and rcore,mic that detects sound using microphones and recognizes words.

All those virtual effectors and receptors are commanded by the control subsys-

tem ccore (fig. 13). Those subsystems are implemented in Python. The virtual

effectors and receptors contact the hardware via the NAOqi client library (pro-

vided by the robot manufacturer), thus this library is treated as a part of real

effectors and receptors.

Core Agent (NAO)

ccore

ecore,body

Upper
camera

Body + head Loudspeakers
Lower

camera
Sonar

sensors
Touch

sensors
Microphone

ecore ,ls rcore,cam rcore,touchrcore ,sonar rcore,mic

Robot API

Figure 13: Core Agent of NAO robot

The virtual effectors of the Elektron robot are: ecore,base that is responsible

for the motion of the mobile base, ecore,head controlling the movements of camera

supporting head and ecore,ls that governs the loudspeakers. Virtual receptors

are responsible for gathering images from multiple cameras: rcore,rgb from RGB

camera, rcore,kin_top and rcore,kin_botfrom Kinect sensors. Laser scanner is man-

aged by rcore,laser, and rcore,mic records sounds using microphone (fig. 14). The

Elektron robot software was implemented in C++ as a set of ROS nodes.
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Kinect
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Figure 14: Core Agent of Elektron robot

6.5. Cloud agents

Cloud Agent part of the application is uploaded by the developer to the

RAPP Store along with the Dynamic Agent. The communication with the

Cloud Agents has two aspects. First, there is an API for spawning and con-

trolling the execution of the Cloud Agents. The Dynamic Agent, using those

functions, can command the Platform Agent to launch a specific Cloud Agent.

When requested, the Platform Agent first checks in the Store whether the de-

sired package is available, then downloads it and builds using scripts provided

with the package. After successful build, the created application is deployed

on a new Docker container (lightweight software virtualization [81]) instance

and the identifier of the created Cloud Agent is returned to the calling Dy-

namic Agent [82]. This identifier is then used when calling services provided

by the Cloud Agent. Those services form the second part of the Cloud Agent

communication mechanism, and are strictly dependent on the application, i.e,

RApp.

7. Experiments

Forgetfulness is a typical problem for elderly people suffering from MCI.

For instance, leaving the house they tend to forget shutting windows, balcony

doors, leaving open refrigerator doors or lights switched on. Detection of such
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hazards can be handled by equipping the home with a multitude of sensors,

however elderly people usually dislike any modifications to their homes and

subsequent maintenance of the resulting system. Thus a different remedy can

be recommended. A robot can detect all potential risks by exploring the home.

In our experiments two different robotic platforms have been employed to carry

out this task, the NAO humanoid robot and Elektron wheeled mobile robot

(fig. 15). Besides the locomotion mechanism these robots differ in their onboard

sensory systems.

(a) (b)

Figure 15: Robots performing hazard detection: (a) NAO humanoid robot, (b) six-wheel

Elektron robot

The scenario is the following. Upon request from the user or executing

a scheduled task the robot searches the house, locating all hazards and subse-

quently reports them to the user, ensuring his or her safety, thus supporting

independent living. To perform this task the robot control system (the Core

Agent namely) downloads and initiates an appropriate RApp from the RAPP

Store. This RApp is installed in the robot control system in a form of a Dy-

namic Agent, thus the Core Agent and the Dynamic Agent share the control

computer.

The graph of the FSM governing the actions of the Dynamic Agent realising

the hazard detection task is presented in fig 16. To execute the hazard detection

task, first the robot has to get the map of the environment and the associated list
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from the RAPP Platform
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s3
Send the current robot pose
to the RAPP Platform

s4
Retrive the path from
the RAPP Platform

s5 Execute the path
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s7
Notify the Core Agent
about the task termination

Figure 16: Graph of the FSM governing the behaviour of the Dynamic Agent adyn realising

the hazard detection task

of possible hazard locations. This is done by the behaviour associated with the

FSM state (graph node) s1. Next, the robot must localize itself on the map with

respect to the global coordinate frame using a self-localization strategy based

on visual landmarks. This is done by a subFSM, hence the double encirclement

of the node s2. Self-localization enables the Dynamic Agent to obtain the robot

global pose, which is required in the following stages of the RApp execution.

Once the robot global pose is computed, the Dynamic Agent sends this pose and

the requested hazard pose to the RAPP Platform agent to gather a collision-free

path to the pose suitable to analyse the particular hazard. This is done by the

behaviours associated with states s3 and s4.

Once the path is obtained its execution commences. The robot moves to

the way-points located along the path; however not in each of them it has to

look for hazards. At each way-point the robot has to self-localize. All this is

done by a subFSM symbolised by s5. The performed experiments show that

the robot localizes itself with good accuracy (for the NAO robot the localization

error is ±10 cm and for the Elektron is ±7 cm. This enables better tracking of
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the desired path. The robot follows the desired path with adequate accuracy.

The maximum path tracking error is 15 cm for the Elektron robot and 20 cm

for the NAO. This is a satisfactory result for such a simple robot. In general,

path execution strongly depends on the robot effectors and sensors, and its Core

Agent abilities.

Hazard detection depends on the type of hazard and on the object it is

associated with. We use monocular vision to collect hazard information. In

locations where potential hazards may occur, the Dynamic Agent requests the

Core Agent to orient the robot’s camera to point at the possible hazard point,

e.g. lamp, door. In the case of open-doors detection the state of the doors is

based on image analysis process that starts with looking for all sufficiently long

linear segments, that are further categorized into vertical and horizontal ones

(white or gray as shown in fig. 17). From the horizontal lines, two are selected,

that form wall/floor and door/floor intersections. Those are selected as the

longest lines with an inclination closest to the horizontal line. The algorithm

is prepared in such a way, that the found lines are always localized on opposite

sides of the picture (left and right). Finally the door-opening angle estimation

is made by simply calculating the angle between the two found lines (marked in

black in the pictures in fig. 17).

(a) (b)

Figure 17: Sample images for door-opening angle estimation

In the case of searching for the lights that had not been turned off, the
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robot moves its camera to look at the place that the lamp is located in. Then

an image is captured and image processing is performed to detect an intensive

light. Light status is checked by analyzing the picture taken with low exposure,

while looking directly at the light source (as presented in fig. 18).

(a) (b)

Figure 18: Sample images for light checking

Light level is calculated as a ratio between the average intensity of the cen-

tral rectangle in the image and the average intensity in surrounding rectangles.

Size of the rectangles is selected in such a way, that the central one is the most

important, while surroundings form a rough approximation of a circle. The re-

sult is normalized to the range [0..100], where 0 means that the light is probably

turned off and 100 maps to the light turned on without doubt.

Next the Core Agent is notified about the detected hazards, so that it can

report them to the user – the behaviour associated with state s6 is responsible

for that. Finally the Dynamic Agent informs the Core Agent that the task is

done, so that it can destroy adyn – this is done by the behaviour associated with

s7.
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8. Conclusions

Besides the hazard detection task, which was tested both on the NAO and

Elektron robots, the RAPP system has been tested on several other benchmark

examples, e.g.: voice e-mail via NAO [74], [83], NAO the weather reporter,

news explorer via NAO, playing cognitive games with NAO. The multiplicity of

both the robots used and the tasks executed convince that the assumed control

architecture is fully functional. The proposed architecture solves the problem

of high computational requirements versus limited resources.
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