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Abstract

In humanoid robotic soccer, many factors, both at low-level (e.g., vision and mo-
tion control) and at high-level (e.g., behaviors and game strategies), determine the
quality of the robot performance. In particular, the speed of individual robots, the
precision of the trajectory, and the stability of the walking gaits, have a high impact
on the success of a team. Consequently, humanoid soccer robots require fine tuning,
especially for the basic behaviors. In recent years, machine learning techniques have
been used to find optimal parameter sets for various humanoid robot behaviors.
However, a drawback of learning techniques is time consumption: a practical learn-
ing method for robotic applications must be effective with a small amount of data.
In this article, we compare two learning methods for humanoid walking gaits based
on the Policy Gradient algorithm. We demonstrate that an extension of the classic
Policy Gradient algorithm that takes into account parameter relevance allows for
better solutions when only a few experiments are available. The results of our ex-
perimental work show the effectiveness of the policy gradient learning method, as
well as its higher convergence rate, when the relevance of parameters is taken into
account during learning.
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1 Introduction

In order for robots to be useful for real-world applications, they must adapt
to novel and changing environments and situations. However, the ability to
deploy a fully autonomous robot in an unstructured, dynamic environment
over an extended period of time remains an open challenge in the field of
robotics. For this purpose, a popular research activity is the annual RoboCup
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competition, where different kinds of robots compete on standard reference
testbeds in soccer, rescue and @home scenarios. Among the RoboCup disci-
plines, we focus here on humanoid robot soccer, and among the capabilities
that a humanoid robot needs for playing soccer, walking is obviously the most
important. Consequently, the speed, stability and precision of the walking gait,
are crucial factors that determine the success of a team.

At first, gait improvements for legged robots centered around hand-tuning.
However, in case of a change of robot hardware and/or of walking surface
(e.g., the carpet, or the floor), the motion parameters need to be re-calibrated,
and this is a process that can easily take several hundred trials for an expert.
One alternative to hand-tuning a parameterized gait, while enabling the robot
to adapt to changes in its surroundings, is to use machine learning to auto-
mate the search for good parameters. In the past, various machine learning
techniques have proved useful in finding control policies for a wide variety of
robots, as reported in Section 2. In fact, machine learning approaches generate
solutions with little human interaction, and explore the search space of pos-
sible solutions in a systematic way, whereas humans are often biased towards
exploring a small part of the space.

Learning in the robotic soccer domain has to overcome several challenges,
such as a continuous multi-dimensional state space, noisy sensing and actions,
multiple agents (including adversaries), and the need to act in real-time. Nev-
ertheless, this approach has been somewhat fruitful: for example, since the
inception of the RoboCup legged league in 1998, the speed of the quadruped
robots has increased significantly [1]. In most cases, the knowledge achieved
in the Four-Legged League can be transferred to the Humanoid League [2].
Despite this growing interest, considerable work remains to be done, due to
the difficulties associated with applying machine learning in the real world.
Compared to other machine learning scenarios, such as classification or ac-
tion learning in simulation, learning on physical robots must be effective with
a small amount of data, and should converge in short time [1]. Indeed, it is
often prohibitively difficult to generate large amounts of data due to the main-
tenance required on robots, such as battery changes, hardware repairs, and,
usually, constant human supervision.

Following up on all these considerations, in this article, we present a learning
method for humanoid walking gaits based on Policy Gradient [3]. We focus
on learning a specific humanoid robot task (namely, curvilinear biped walk-
ing), that requires, at the same time: a relatively small set of parameters, and
high precision from a control viewpoint. To learn this task, we compare Policy
Gradient with an extension that takes into account parameter relevance [4],
showing, through experiments on a 3D simulator, the higher convergence rate
of the extended policy gradient method and, through experiments on real
robots, the performance of Policy Gradient learning algorithms and the ef-
fective use of the results of learning on the simulator. While Policy Gradient
learning methods have been compared on a quadruped robot in [4], the main
contribution of the present article is the application of these algorithms to
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biped walking. We have successfully applied the presented learning method
in preparation of RoboCup 2008, within the Standard Platform League (two-
legged division) using Aldebaran NAO robots 1 .

The remainder of this article is organized as follows. Section 2 surveys existing
approaches for generating and optimizing legged gaits. Section 3 presents the
static parameterized biped motion control scheme that we used to generate
curvilinear trajectories with a humanoid robot. In Section 4, we describe the
policy gradient learning algorithms. Section 5 defines the learning scheme ap-
plied to curvilinear walking gait, while experimental results are discussed in
Section 6. We close with a discussion and possible avenues for future work in
Section 7.

2 Related Work

In this section, we provide a brief survey in the field of legged robot gait
learning. In particular, we focus on two aspects: gait generation (in particular,
we focus on biped gaits), and gait learning. For each aspect, we first review
the existing literature, and then outline the original contribution of our work.

2.1 Gait generation

The design of controllers enabling biped robots to walk autonomously on un-
even and variable terrains in a robust way, e.g. in daily life, remains a crucial
research topic in robotics. Recent works in the field of legged robot gait mod-
eling and control have been surveyed in [5,6]. In summary, two main classes
of methods have been used for biped gait control: static and dynamic control
approaches.

The most commonly used dynamic approaches are based on the zero moment
point (ZMP). ZMP refers to the location within the base of support of the
center of pressure of the floor reaction force. By controlling this location, the
robot may induce forward motion while maintaining dynamic balance. In the
dynamic walking pattern used in [7], for instance, ZMP is used during the
double support phase to guarantee stability. In [8], ZMP is integrated in a
whole body cooperative dynamic biped walking, that includes trunk motion
to compensate for the moment generated by the motion of the whole body
(lower, as well as upper limbs). For a survey of the history and characteristics
of ZMP, the reader is referred to [9].

In static approaches, instead, some a-priori definition of the desired trajectories
to follow is used. Standard and ad-hoc control techniques have been developed

1 See www.tzi.de/spl/ for details on the League.
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to cope with model uncertainties, obstacles and disturbances, in order to pre-
vent the robot from falling. The desired (also called reference) trajectories can
be either obtained from the capture of human motions, or purely computer-
generated. In the second case, the usual approach includes two steps. First, a
set of output variables (generally, the 3D coordinates of a few selected points
on the robot) with adequate dimension is chosen. Second, after parametriza-
tion (e.g., under the form of splines) the desired trajectories of these variables
are computed, for every phase of the gait. Computer-generated trajectories
have been used in [10–13]. In [14], the trajectories are designed using Central
Pattern Generators, similar to bio-inspired self-oscillating systems.

In this work, we utilize a static parameterized biped gait model to control the
legs and arms in order to make NAO track arbitrary curvilinear trajectories.
We have decided to adopt a static gait model, since no accurate dynamic model
of NAO is available at this time. The trajectories are defined by the requested
velocity command (v, ω) ∈ R2, with v the forward linear velocity, and ω the
angular velocity, as for non-holonomic (e.g., wheeled) robots. Our gait model
is similar to the one presented in [11]. The model is based on arbitrary param-
eterized joint trajectories, and does not explicitly consider stability aspects;
hence, the gait model performance can be assessed through its practical ap-
plication. However, in contrast with most of the aforementioned works, which
focus uniquely on pure rectilinear walks (with the exceptions of [11] and [12]),
the motion control scheme that we propose is valid for generic curves of ra-
dius R = v/ω. This includes the particular cases of pure rectilinear (ω null,
thus R = ∞) and pure rotational (v null, thus R = 0) walks. With this ap-
proach, our walk reproduces a natural-looking human walk. Indeed, the close
relationship between the shape of human walking paths in goal-directed move-
ments and the kinematics model of a non-holonomic mobile robot has been
shown in [15] (humans ’do not walk sideways’). From a comparative analysis,
the authors of [15] infer that some constraints (mechanical, anatomical...) act
on human bodies restricting the way humans track trajectories, and that the
trunk can be considered as a kind of steering wheel for the human body. Fol-
lowing up on these considerations, and on the fact that the NAO trunk is not
actuated, we utilize the arms to add momentum for rotation, in contrast with
the other (rare) curvilinear motion control schemes presented in the literature
([11] and [12]), which exploit only the lower limbs for rotations.

2.2 Gait learning

Robots should be able to respond to changes in the surroundings by adapting
both their low-level skills (e.g., vision or motion control parameters) and the
higher-level skills (e.g., the behaviors) which depend on them. Such adapta-
tion should occur as autonomously as possible. However, in all cases where the
complete analytical model is unknown, this is not trivial. Thus, machine learn-
ing techniques have been used in many robotic applications, both for finding
optimal parameter sets of specific behaviors (parameter learning), and for de-
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termining the best choice of behaviors required to accomplish a task (behavior
learning), whenever the model cannot provide an optimal solution to such
problems. Clearly, one of the primary application areas of parameter learning
is robot motion control, since the mathematical model is approximated, and
traditional optimization methods cannot be used. In particular, gait optimiza-
tion for legged soccer robots is not straightforward: creating effective motions
is a challenging task, since there are many parameters to be set, and since
successful motions strongly depend on many factors, which cannot be mod-
eled with precision: playing surface, robot hardware, and game situation. For
these reasons, in recent years, machine learning techniques have been used to
find optimal parameter sets for legged gait optimization.

Hexapod robot walk generation has been solved in [16], with a Genetic Al-
gorithm. Similar methods have been used for optimization of the vector of
quadruped walk parameters, while avoiding the need for gradient approxima-
tion in [17–19]. Kohl and Stone, from the University of Texas at Austin [20],
empirically compared four different machine learning algorithms for quadruped
walk optimization, and in [21], genetic algorithms were extended in order to
improve omnidirectional gaits by switching and interpolating between vec-
tors of parameters. A common feature of these approaches is that the robots
time themselves walking across a known, fixed distance, thus eliminating the
need for human supervision, other than battery changes. Parameter learning
has proved very effective for improving other motion control tasks, such as
robot grasping. This task is achieved in [22] by applying the layered learn-
ing paradigm [23]: grasping parameters rely on previously learned walk pa-
rameters. Similar approaches have been used for learning on humanoid plat-
forms. Humanoid walk parameters are automatically learned using: various
evolutionary strategies in [11], a particle swarm approach in [13], and Rein-
forcement Learning (RL) in [24]. Sato and others [14] design a new RL algo-
rithm for central pattern generators, in order to improve biped gait stability.
A method for optimally generating stable bipedal walking gaits, based on a
Truncated Fourier Series Formulation, with coefficients tuned by a Genetic
Algorithm, is presented in [25]. Policy gradient RL, and particle swarm opti-
mization are compared in [26] for improving a biped gait. Morimoto and Atke-
son [27] present a model-based RL algorithm for biped walking, in which the
robot learns to appropriately modulate an observed walking pattern. In [10], a
method for acquisition of highly energy-efficient walking, based on a two-stage
genetic algorithm, is presented: in the first phase, the fitness function consists
of a walking distance (longer is better), whereas in the second phase, the fit-
ness function consists of a walking distance (longer) and energy consumption
(less). Fundamental soccer skills for a real humanoid robot are improved, by
extending standard RL with imitation of a teacher, and reevaluation of past
experiences, in [28]. A humanoid robot, able to learn how to interact with the
environment, and how to develop its perceptual, motor and communication
capabilities, has been designed in the research project RobotCub [29]. Re-
searchers at the University of Padova have developed an interface for teaching
new motions to humanoid robots through touching, by directly manipulating
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the limbs of the robot [30].

Following up on these works and on our previous work on the Sony AIBO [4,31],
in this article we propose an original parameter learning approach for improv-
ing curvilinear biped walks. In [31], we have shown the effectiveness of the
layered learning approach [23], that is suitable with the large dimensions of
the search space in complex robot learning scenarios. We have also studied
how to use a 3D simulator for speeding up robot learning, and we have shown
that the learned low-level parameters are strongly related to the desired be-
havior. In [4], we have proposed an extension of the policy gradient algorithm
introduced in [3], that has been successfully used to optimize quadruped gait
of AIBO robots. Our approach guarantees a higher convergence rate than the
standard policy gradient, by exploiting additional information on the system
properties, such as the contiguities between strategies, and the relevance of
the behavior parameters. As reported in [4], the extended policy gradient has
been tested in the application example of an attacker robot in the RoboCup
Four-Legged League. Referring to the cited works, the original contribution of
this article, from the learning point of view, is the experimental comparison
between the policy gradient from [3], and the extended version introduced
in [4], carried out for the first time on a biped platform. Moreover, in contrast
with the algorithm presented in [4], in this article we only exploit parameter
relevance, and not strategy contiguity, since the article focuses on parameter
learning rather than behavior learning.

3 Motion control

3.1 Outline

The robot used in this work is NAO from French manufacturer Aldebaran.
It has been selected for the soccer competitions of the RoboCup Standard
Platform League. NAO has a total of 21 degrees of freedom, shown in Fig. 1:
2 in the head, 4 in each arm, 1 in the pelvis (HY P ) and 5 in each leg. We
define the reference frame FR (also shown in the figure) with origin in the
robot center of mass, X axis in the sagittal plane and pointing forward, Y
axis orthogonal to the sagittal plane and pointing to the left side of the robot,
and Z axis orthogonal to the ground and pointing upwards. In this work, we
assume for simplicity that, throughout the gait, the robot center of mass stays
in a fixed position with respect to the robot trunk.

The control software of the robot is based on the OpenRDK software frame-
work 2 [32]. In the OpenRDK architecture, the MotionControl module is re-
sponsible for implementing all requested velocity commands, which are defined

2 openrdk.sf.net
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Fig. 1. The Aldebaran NAO robot with its 21 degrees of freedom, and reference
frame FR (X, Y, Z) (green).

as (v, ω) ∈ R2, with v the forward linear velocity along the X axis, and ω the
angular velocity around the Z axis (positive counterclockwise). In the rest of
this section, we describe the parameterized biped curvilinear gait model used
in the MotionControl module. Our gait model (which is inspired by the work
presented in [11]) has been designed in order to keep the number of parameters
(and consequently the search space dimension for parameter optimization) as
small as possible. It is based on arbitrary parameterized joint trajectories, and
does not explicitly consider stability issues; its soundness has thus been proved
in practical applications.

The act of biped walking involves, for each gait cycle (i.e., for each step), both
a single support (or swing) phase, and a double support phase. Therefore, two
fundamental parameters of the step, are:

• Ttot: the total duration of a step,
• ss% ∈ ]0, 1[: the ratio between single support duration and total step dura-

tion.

In the following, we describe the motion control task by dividing it in four
subtasks: the design of the foot trajectories in the X −Z plane, the design of
the center of mass trajectory in the lateral direction, the Hip Yaw/Pitch joint
control used for making the robot turn, and the arm control.
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Fig. 2. Right foot trajectory in the X−Z plane, and characteristic parameters. Left
to right: right foot swing, double support phase, and start of left foot swing. The
right shoulder pitch movement is outlined in orange.

3.2 Foot trajectories in the X − Z plane

Here, we present the foot trajectory design for rectilinear walks (v, 0). We
show in the following that generic curvatures can be obtained by combining
such trajectories with the appropriate Hip Yaw/Pitch control law necessary for
pure rotations (0, ω). Since we focus on rectilinear walks, the foot trajectories
belong to the X − Z plane. The legs move in two phases: the phase when
the foot (stance foot) is on the ground to push the body forward, and the
phase when the foot (swing foot) is in the air to prepare the next step. We
design the trajectory of the stance foot in FR as a straight line, and the
FR swing trajectory as a semi-elliptical trajectory (see Figure 2). The joint
angles required to enable the feet to track the rectilinear and semi-elliptical
trajectories shown in Figure 2 are calculated by means of inverse kinematics.
Since the trajectories belong to the X − Z plane, the three leg pitch joints
(hip, knee and ankle) are sufficient to control each foot during each phase.
As illustrated in Figure 2, the foot trajectories depend on the following 5
parameters:

• Xtot: the total length of a step, which is related to the requested linear
velocity v and to the step duration Ttot by equation:

Xtot = v Ttot (1)

• Xsw0: the FR abscissa of the swinging foot at the beginning of the single
support phase,

• Xds: the portion of Xtot covered during one double stance phase,
• Zst: the stance foot altitude in FR,
• Zsw: the maximum height from the ground reached by the swinging foot.
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Fig. 3. Characteristic parameters of the leg roll joint control used for moving the
center of mass sideways. (a) Top view, with qualitative trajectory of the projection
of the center of mass in the X − Y plane (green) and initially right foot (dotted
blue) swinging. (b) Rear view during single support (left) and double support (right)
phases.

3.3 Using the leg roll joints to control the center of mass and the robot trunk

In order to guarantee stability during the single support phase, the robot
must ’swing’ sideways during motion, as is commonly done in static biped
gaits [11,13]. This is done by shifting the center of mass of the robot in the
direction of the stance foot, which is still on the ground. A qualitative repre-
sentation of the desired trajectory for the projection of the center of mass in
the X − Y plane during rectilinear walks is shown in Figure 3(a). This tra-
jectory comprises a sinusoid above the stance foot area during single support,
and a linear trajectory during double support, which moves the center of mass
to the next swinging foot, in order to prepare the next step 3 . This trajectory
is obtained by moving the stance feet in FR. We have seen that gait stability
is also increased by letting the robot trunk roll around the X axis during the
gait; this is done using a sinusoidal time law of amplitude KR, which is driven
by the stance hip roll joints. We have designed the foot and trunk movements
by using the 6 parameters: Xtot, Xds, Yft, Yss, Yds, and KR. The first two
parameters have been defined in Section 3.2. The four other parameters are:

• Yft: the distance between the feet during the gait,
• Yss: the maximum FR ordinate of the feet during the single support phase,
• Yds: the maximum FR ordinate of the feet during the double support phase,
• KR: the amplitude of the trunk roll sinusoidal law.

3.4 Exploiting the NAO Hip Yaw/Pitch joint for turning

In order to implement rotational motions around Z (i.e., in order to realize
velocity requests with ω �= 0), we utilize the single NAO Hip Yaw/Pitch

3 Sinusoidal trajectories have been chosen here (and elsewhere in our gait model)
for their smoothness and energetic efficiency.
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Fig. 4. Bottom view showing how the NAO Hip Yaw/Pitch joint is used for turning
at ω < 0 over two steps (the swinging foot is dotted blue). Left to right: double
support, right swing, double support, left swing, double support. The verse of the
angular momentum induced by shoulder pitch movement is outlined in orange.

joint HY P (see Figure 1). The movement is done by alternatively increasing
and decreasing the joint value during consecutive single support phases (see
Figure 4), and locking it during the double support phases. The rotational
movement is designed directly in the joint space, as opposed to the movements
described previously, which were designed in the cartesian space, and then
mapped to the joint space via inverse kinematics.

Consider two consecutive steps. During the first swing phase, the Hip Yaw/Pitch
joint value is increased smoothly (using a cosinusoidal law) from 0 to a fixed
value HY PM , whereas, during the following step, the yaw pitch joint value is de-
creased (again, using a cosinusoidal law) to restore parallelism (i.e., HY P = 0)
between the feet. Since the rotation axis of the NAO Hip Yaw-Pitch joint is
the bisectrix of the Y and Z axis, the total angular width of a double rotation
step driven by the above time laws is HY PM√

2
. Thus, HY PM is related to the

requested angular velocity ω and to the step duration Ttot by:

HY PM = −2
√

2 |ω| Ttot (2)

Note that the sign of HY PM is always negative. The sign of ω is determined by
the initial foot swing (e.g., in Figure 4, negative ω is obtained by swinging the
right foot first). To countervail the effect of the NAO Hip Yaw-Pitch joint value
HY P (t) on the foot trajectories in the X − Z plane, we subtract, throughout

the gait cycle, HY P (t)√
2

from the hip pitch joints calculated with the method

described in Sect. 3.2.

3.5 Arm control

As the human walk shows, arm movement synchronized with leg movement can
improve gait performance. Similarly to leg yaw-pitch control, we have decided
to design the arm movement directly in the joint space. We only consider the
pitch shoulder joints, and lock the 4 elbow and the 2 shoulder roll joints (see
Figure 1). Since conservation of angular momentum implies that for rotating
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bodies, a decrease in the radius is accompanied by an increase in the angular
velocity (e.g., the ice skater spins faster when the arms are drawn in, and slower
when the arms are extended), we lock the shoulder and elbow roll joints to
the zero positions, and fix the elbow yaw joint to 90◦.

We design shoulder pitch movements coupled with the leg movement and
symmetric with respect to the vertical downward arm position. Two different
arm control laws are designed for pure rectilinear walks and pure rotations, and
the linear combination of such laws is used for curvilinear walks. For rectilinear
walks, the angular momentum induced by the arms must cancel the undesired
momentum around the Y axis generated by leg swinging. We use a sinusoidal
time law during the swing phases, and lock the shoulder pitch joint, during
the double support phases. The arm corresponding to the swinging leg moves
backward and viceversa , as shown in Figure 2. Instead, for pure rotations,
the angular momentum induced by the arms should enhance the momentum
around Z that is used to rotate. We use sinusoidal time laws during both
phases. During the swing phase, the arm movement generates a momentum
with the same verse of ω, while during the double support phase, the arms
are moved back to prepare the next swing phase (see Figure 4). For all walks,
i.e., for all velocity commands (v, ω), the arm is controlled by one parameter:
the amplitude KS of the shoulder pitch joint sinusoids.

4 Policy Gradient Learning

In this article, we experiment learning techniques for improving the genera-
tion of walking behaviors, using the motion control scheme described in the
previous section. In particular, we focus on Policy Gradient methods, that are
recalled in this section. As in any robot learning problem, the applied method
should minimize time consumption, which is often related to ’hardware con-
sumption’ in real robot applications. Hence, the algorithm must converge to
the best solution (or to a good solution) after as few experiments as possible.
When experimenting learning techniques for humanoid robots, this issue is
even more demanding, since bad walking behaviors can cause the robot to fall
to the ground and possibly damage itself.

To overcome this problem, we start from this observation: during the learn-
ing process, the relevance of the parameters (i.e., their impact on finding an
optimal solution) is not constant. In particular, in many cases, some of the
parameters reach good or optimal values after few experiments, while other
parameters need many experiments. If we are able to appropriately reduce
the search space by removing the directions for which we have already found
an optimal value (i.e., the directions that are not relevant anymore for de-
termining the optimal solution), the number of experiments needed could be
reduced, without losing the quality of the solution.
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Unfortunately, this choice cannot be made in an ideal manner, and in practice
reducing the search space implies a reduction in the quality of the solution.
On the other hand, reducing the search space also involves that with the same
number of experiments it is possible to explore the search space more in depth.
Consequently, there should be a balance between the number of experiments
and the quality of the solution.

In this article, we want to verify that reducing the search space by removing
irrelevant parameters during the learning process may lead to an optimal
solution after few experiments. In order to verify this statement, we adopt the
Policy Gradient learning method, which has been successfully used for robot
learning [3,31] and is suitable for a modification that takes into account the
relevance of parameters [4], and apply it to biped curvilinear walk.

In the remainder of this section, we recall the Policy Gradient algorithm and
its extension that takes into account relevance of parameters, while in the
following section, we describe how these methods have been applied to learning
curvilinear humanoid gaits.

4.1 Policy gradient

The learning problem considered in this article is formulated as a policy gra-
dient reinforcement learning problem [3], that considers each possible set of
parameter assignments, and defines an open-loop policy that can be executed
by the robot. Assuming that the fitness function (or objective function) F (X)
is differentiable with respect to each of the parameters, the Policy Gradient
(PG) algorithm estimates its gradient in the parameter space X ∈ Rk, and
follows it toward a local optimum X∗.

The parameter optimization approach based on Policy Gradient starts from
an initial parameter set X0 and proceeds to estimate the partial derivative of
F (X0) with respect to each parameter. From the initial set X0, p randomly
generated policies mX0 (m = 1, . . . , p), near X0, are evaluated. The number of
policies p is proportional to the search space dimension: p = Λk. Each of the
p policies is generated as: mX0 = X0 + [ρ1, . . . , ρk]

T , and each perturbation ρj

is chosen randomly in the set {−εj, 0, +εj}. Each mX0 is grouped into one of
three sets for each j: G−ε,j, G0,j or G+ε,j depending whether its jth parameter
was obtained by adding −εj, 0 or +εj. After evaluating the fitness function at
each policy mX0, average scores F̄−ε,j, F̄0,j, and F̄+ε,j are computed for G+ε,j,
G0,j and G−ε,j, respectively. These scores are used to construct an estimate
of the gradient �X0, which is then normalized, multiplied by a scalar step-
size, noted η, and added to X0, to determine X1 and begin the next iteration
(i = 1, . . . , Niter). The step-size η is fixed to a constant value throughout the
learning process.

The algorithm usually terminates after a predefined number of iterations Niter,
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and it is proved to converge to a local optimum X∗ if a sufficient number of
iterations are performed. In practice, at each iteration of the algorithm, p
experiments must be executed to evaluate the fitnesses of the p policies neces-
sary for estimating the gradient �X. Hence, the total number of experiments
necessary to complete Niter iterations is:

NPG = pNiter = ΛkNiter (3)

4.2 Extended policy gradient with parameter relevance

Although effective, the method described above does not consider the vari-
able relevance of parameters during the learning process. Here, we present an
extension of the method, which takes into account relevance of parameters to
fasten the learning process. The algorithm presented in this section is derived
from the one described in [4], by considering only the relevance of the param-
eters, and not the contiguities among strategies, since strategies are not taken
into account in this article.

Let us define the following metric for measuring the relevance of the parame-
ters.

Definition. Relevance of parameter j at iteration ī �= 0 is the norm of the
weighted average of the jth gradient component of vector X:

Rī(j) =

∣∣∣∣∣
ī∑

i=1
λī−i � X i

j

∣∣∣∣∣
ī∑

i=1
λī−i

where 0 < λ < 1 is a forgetting factor, that operates as a weight diminishing
for the more remote data.

The above definition of relevance is used to estimate how much the parameter
can contribute to find an optimal solution. Small values of the relevance imply
that the estimated gradient varies ’slightly’ along the jth component during
the learning process: hence, we assume that the corresponding parameter has
little relevance on the system performance, and that it is not necessary to
search in this direction anymore.

The Policy Gradient with Parameter Relevance (PGPR) algorithm is shown in
Figure 5. The algorithm is similar to Policy Gradient, with the main difference
that policies are computed only on the relevant parameters. More specifically,
we denote with J i ⊆ {1, . . . , k} the subset of relevant parameters at iteration
i (i.e., parameters j with ’high’ Ri(j)). After PRstart iterations, J i is updated
at each step during the learning process, depending on the values of Ri(j)
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POLICY GRADIENT with PARAMETER RELEVANCE

INPUT: X0, η, Niter, Tr, PRstart

OUTPUT: X∗

1 begin
2 initialize X ← X0, J0 ≡ {1, . . . , k}
3 for each iteration i = 1 to Niter

4 generate pi−1 random policies mX i−1 near X i−1 onJ i−1

5 evaluate F (X) at all pi−1 policies mX i−1

6 J i ← ∅
7 for each parameter j ∈J i−1

8 evaluate F̄−ε,j, F̄0,j, and F̄+ε,j

9 if F̄0,j > F̄−ε,j and F̄0,j > F̄+ε,j

10 �X i
j ← 0

11 else
12 �X i

j ← F̄+ε,j − F̄−ε,j

13 endif
14 evaluate Ri(j)
15 if (Ri(j) > Tr or i < PRstart)
16 J i ←J i ∪ j
17 endif
18 endfor %parameters

19 �X i ← η × �Xi

|�Xi|
20 X i ← X i−1 + �X i

21 endfor %iterations
22 return X∗

23 end

Fig. 5. Pseudo-code for Policy Gradient with Parameter Relevance algorithm.

(lines 14-16). At each iteration, policies are computed only in the directions
given by the relevant parameters, i.e. only by the parameters in J i (line 7).
Correspondingly, at each iteration, the number of policies generated is also
updated according to the number of relevant parameters: pi = Λ|J i|.

Fig. 6. Examples of application of the PGPR algorithm.

An example of application of the algorithm is outlined in Figure 6. The figure
presents two cases of parameter search for the drawn 2D fitness functions. In
each figure, the light (green) colored dots show the values of X i computed
at each step (starting from the leftmost one), while the dark (red) colored
dot indicates the solution X∗ found after a few iterations (Niter = 6 in the
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figure). The horizontal dotted blue line shows the search direction after one
of the parameters (the one corresponding to the vertical axis) is fixed. In the
left picture, the advantage of the algorithm is clear: after a few iterations the
parameter corresponding to the vertical axis is fixed and the search continues
only on the horizontal axis (dotted line), rather than on the entire 2D space.
This obviously speeds up convergence and improves the quality of the solution
when considering a small number of trials. The right picture shows a case
where the algorithm does not behave in an optimal way. Here, after some
iterations, the parameter associated to the vertical axis is fixed to a value
such that the consequent 1-D search does not guarantee to find the optimal
solution. However, even in this case, if we consider only a limited number of
experiments, the extended algorithm provides a better solution than the classic
algorithm. In fact, during the PGPR learning process, since the number of
relevant parameters (i.e., |J i|) is reduced progressively, the number of policies
pi = Λ|J i| also diminishes. Hence, the total number of experiments necessary
to complete Niter iterations, is:

NPGPR =
Niter∑

i=0

pi =
Niter∑

i=0

Λ
∑ |Ji| (4)

Thus, if we assume that at least one parameter is considered irrelevant and
therefore discarded during the learning process (otherwise, the two algorithms
will behave identically) and if we fix the number of iterations Niter of the
algorithm (i.e., the number of times the gradient is estimated), it is obvious
from equations (3) and (4) that NPGPR < NPG.

This shows the main characteristic of the proposed PGPR algorithm: although
it does not guarantee to reach a local optimum (as in the example on the right
in Figure 6), in many cases it requires less experiments to compute the same
solution (in other words, it tends to find good solutions as early as possible).

As shown in the next sections, the application of this algorithm is very suitable
for robot learning tasks, where experiments are expensive and a non-optimal
solution obtained with few experiments is often preferred to an optimal solu-
tion that requires a larger number of experiments.

5 Learning configuration

5.1 Parameters

The objective of the learning process is to learn the optimal parameter vec-
tor X∗ that ensures the best performance (i.e., the maximum value of fitness
function F (X∗)) for any curvilinear walking gait (i.e., for arbitrary veloc-
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ity requests (v, ω) ∈ R2). The vector X is composed of the following eleven
parameters (detailed in Section 3):

• ss%: the ratio between single support duration and total step duration,
• Xtot: the total length of a step,
• Xsw0: the FR abscissa of the swinging foot at the beginning of the single

support phase,
• Xds: the portion of Xtot covered during a double stance phase,
• Zst: the stance foot altitude in FR,
• Zsw: the maximum height from the ground reached by the swinging foot,
• Yft: the distance between the feet during the gait.
• Yss: the maximum FR ordinate of the feet during the single support phase,
• Yds: the maximum FR ordinate of the feet during the double support phase,
• KR: the amplitude of the trunk roll sinusoidal law,
• KS: the amplitude of the swinging shoulder movement.

Note that in the above list of parameters to be learned, we have not considered
Ttot and HY PM since equations (1) and (2) show that these parameters are
constrained respectively to v and Xtot, and to ω and Ttot. Moreover, we decided
to fix Ttot allowing for different velocities, obtained by varying Xtot.

Although these parameters allow for a curvilinear walking gait, assigning:

Xtot = Xds = 0 Xsw0 = X̄sw0

where X̄sw0 is the Xsw0 value that guarantees zero moment around the Y
axis (i.e., that the ZMP is the projection of the robot center of mass on the
ground), turns the gait into a pure rotational walk.

Moreover, all the parameters are box-constrained by the gait designer, due
to the physical characteristics of the system, and we call ∆j the range size
for parameter j. Hence, a candidate solution of the optimization problem for
curvilinear walk is:

X = [ss% Xtot Xsw0 Xds Zst Zsw Yft Yss Yds KR KS]T ∈ Θ ⊂ R11 (5)

Subsets of these parameters can then be used for pure rotational walks.

5.2 Fitness function

The appropriate choice of the fitness function for optimization is fundamental.
Here, we evaluate the quality of a walking gait by taking into account the speed
and the precision of the robot motion with respect to the desired trajectory.
Hence, we adopt the following function:

F (X) = λLL (X) + λP P (X) (6)

16



Fig. 7. Relevant variables used to compute the fitness of a parameter set X. The
robot center of mass is indicated with a green circle. The ideal and real trajectories
are represented respectively by the black and green dashed curves.

where L (X) and P (X) are metrics indicating respectively the length of the
path covered in a fixed amount of time, and the precision with respect to
the desired trajectory at the end of the experiment, measured for parameter
set X. The positive weights λL and λP indicate the importance of these two
measures. Here, we simply report the derivation of L and P in the case of
circular trajectories (i.e., case of finite, non-null R), without considering the
cases of pure rotation and pure rectilinear walks. To test parameter set X,
we make NAO walk, for a fixed period of time, along a circular trajectory of
radius |R| (i.e., we apply a motion request (v, ω) such that v = ωR). Refering
to Figure 7, we note e (X) the euclidean distance between NAO’s final position
and the circumference, and dre (X) the signed distance covered by the robot
during the experiment. The sign of dre is positive if NAO walked in the correct
verse (i.e., if the average radius during the real walk had the sign of R). Then,
the variables introduced in (6), can be computed as:

L (X) = dre(X)
v

P (X) = 1 − e(X)
|R|

Note that F (X) can become negative for bad parameter sets. Note also that,
although this formulation of the fitness function does not take directly into
account robot falls, it does reward ’late’ falls, with respect to ’early’ ones.

6 Experimental results

The objectives of the experiments reported in this section are: 1) demon-
strating that the Policy Gradient algorithm is adequate for learning optimal
parameters of the curvilinear walk described in this article; 2) evaluating the
approach based on parameter relevance and assessing its advantage when only
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a limited number of experiments is available. The experiments have been per-
formed both on the Webots 3D simulator and on real NAO robots.

For the experimental evaluation described in this section, we took advantage
of a result from our previous work [31]: the utility of using a 3D simulator
for speeding up the learning process. In [31], we had shown that simulated
learning can be used in a layered approach as a starting point for learning
on the real robot. Moreover, simulations are in general less biased by noise,
and require less resources (both in terms of human operators and in terms
of hardware) than real world experiments. On the other hand, running very
long runs on the simulation does not guarantee better parameters for the real
robot. In fact, we found out that after a certain number of learning iterations
we obtained too specialized solutions for the simulator that do not correspond
to good solutions for the real robot. Therefore, the length of the experiments
in simulation have been maintained limited to 20-25 iterations.

In the following, we will thus present first a set of learning sessions using
Webots simulator and then sessions on the real NAO. Simulations provide in-
formation about the convergence of the algorithms for a robot learning appli-
cation, while real world experiments are used to show that learning is effective
also on real robots.

In both simulated and real experiments, we have focused on learning the best
parameter set with a fixed Ttot, so with a variable velocity (thus depending
from the step length Xtot), aiming at maximizing (with a combined fitness
function) both velocity and precision in executing a curvilinear walk.

6.1 Experiments with Webots Simulator

For performing quantitative measures of the proposed learning approaches,
we made use of the Webots 3D simulator 4 , that includes an official model of
the NAO humanoid robot. The learning task described in the previous section
has been performed several times, and we report here some relevant results
that highlight the characteristics of the Policy Gradient (PG) and the Policy
Gradient with Parameter Relevance (PGPR) algorithms. Referring to the 11
parameters shown in (5), we have decided to fix parameters ss%, KS and Yft

to hand tuned values, and learn the remaining parameters (thus, k = 8). The
number of policies used to estimate the gradient is set to 16 (i.e. p = Λk, with
Λ = 2.

With this configuration, we performed two series of experiments: 1) running
several learning sessions starting from the same initial parameter set to eval-
uate the learning rate of PG vs. PGPR, attenuating the effects of the ran-
domized choices of the algorithms; 2) running different learning session for

4 www.cyberbotics.com
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different initial values to evaluate the different performance of PG vs. PGPR.

6.1.1 Experiments with the same initial value

In the first set of experiments, we have performed many learning sessions
starting from the same initial parameter set, in order to reduce the randomness
of the results. The main objective of this simulation is to analyze the relevance
of parameters, and to compare PG and PGPR in terms of both the number
of experiments performed and the quality of the solution.

The experimental procedure is the following:

• choose an initial parameter set that is the same in all runs;
• perform 5 complete learning sessions using PG algorithm for a fixed number

of iterations (Niter = 20) and analyze the variance of the results (for the
fitness values as well as for the final sets of parameters);

• identify the parameters with low relevance during the PG learning process;
• start PGPR learning processes starting from intermediate results of the PG

learning process and fixing the parameters with low relevance
• evaluate the reduction in the number of experiments and the differences in

the quality of the solutions between PG and PGPR.

The results of the simulations are summarized below. Further details are given
in www.dis.uniroma1.it/∼iocchi/RobotExperiments/HumanoidLearning.

• The fitness increases in a regular way and there is low variance between the
5 simulations (see Figure 8). The learning process allows for an increase of
performance from policies with fitness 1.55 ± 0.05 at the first iteration to
final results of 2.34 ± 0.06.

• Not all the solutions converge towards the same parameter set (see Table
1). In particular, some parameters converge towards the same values (low
variance in the final solutions), while others tend to assume different values
(high variance). This can be explained by the fact that in the simulator
some parameters are less relevant and do not contribute in a significant
way to the optimal solution. For example, the height of the foot from the
ground Zsw does not affect the quality of the solution since the model of
the simulator is not precise enough to take into account uneven floor and
frictions between the foot and the ground.

• Between iteration 10 and iteration 20 between 3 and 5 parameters are con-
sidered not relevant. As shown in Table 2, some of them are different in
the 5 simulations and they stabilize at different iterations. In almost all the
cases, parameters that in the final set of the PG learning process have high
variances (i.e., Zsw, Xds, Kr) have been identified by PGPR as not relevant.
This confirms the ability of PGPR algorithm to early detect non-relevant
parameters.

• Applying PGPR algorithm from iterations where non-relevant parameters
have been fixed allows for a decrease in the number of experiments between
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Fig. 8. Learning curve for the 5 learning sessions.

7 and 17 % with respect to PG. The best fitness between PGPR and PG is
within ±5%.

Run X F (X)

1 [0.158 0.059 0.053 0.001 0.168 0.289 0.239 0.026] 2.407

2 [0.159 0.060 0.053 0.008 0.163 0.310 0.250 0.018] 2.378

3 [0.161 0.059 0.055 0.006 0.165 0.287 0.243 0.022] 2.402

4 [0.156 0.062 0.050 0.003 0.154 0.294 0.243 0.030] 2.296

5 [0.153 0.056 0.051 0.006 0.170 0.267 0.203 0.028] 2.289

Average [0.157 0.059 0.053 0.005 0.164 0.289 0.236 0.025] 2.354

Std.dev. [0.003 0.002 0.002 0.003 0.006 0.015 0.019 0.005] 0.058

Std.dev. % [1.8% 3.6% 3.3% 55.9% 3.8% 5.3% 7.9% 18.8%] 2.45%
Table 1
Final parameter sets [Zst Yds Yss Zsw Xtot Xsw0 Xds Kr] .

6.1.2 Experiments with different initial values

In the second set of experiments we repeat the approach described before, but
running different learning processes starting from different initial parameter
sets. We started with PG algorithm and when the relevance of a parameter is
below the given threshold Tr, we split the learning task in two: 1) we continue
with PG algorithm; 2) the irrelevant parameter is fixed and learning is pursued
with the remaining parameters (we call this run PGPR-1). While running
PGPR-1, when the relevance of a parameter is below the threshold, we split
again in two learning tasks: 1) we continue with PGPR-1 algorithm; 2) we fix
this parameter and start a learning session with the remaining ones (we call
this run PGPR-2). And so on, until a fixed number of iterations is reached.

In the following tables, graphs and descriptions we use the terms PG, PGPR-
1, PGPR-2, ... to refer respectively to the result of the standard PG algorithm,
to the PGPR with 1 parameter fixed, to the PGPR with 2 parameters fixed,
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Run 1

Kr = 0.024 (10)

Xds = 0.250 (15)

Xsw0 = 0.285 (15)

Zsw = 0.002 (16)

Yds = 0.056 (17)

NPGPR = 266 (-17%)

Run 2

Zsw = 0.005 (14)

Xds = 0.245 (15)

Kr = 0.018 (20)

Yss = 0.051 (20)

NPGPR = 298 (-7%)

Run 3

Xds = 0.250 (11)

Zsw = 0.004 (14)

Kr = 0.021 (14)

Yds = 0.054 (17)

NPGPR = 272 (-15%)

Run 4

Zsw = 0.005 (13)

Kr = 0.027 (14)

Xds = 0.241 (16)

Zst = 0.159 (20)

NPGPR = 286 (-11%)

Run 5

Yss = 0.049 (14)

Xsw0 = 0.274 (17)

Kr = 0.026 (18)

NPGPR = 298 (-7%)

Table 2
Non-relevant parameters: values and iteration in which they have been fixed.

etc. Thus, the PG run corresponds to the standard PG algorithm, the PGPR-
(n) run (with n being the maximum value reached during the procedure)
corresponds to the PGPR algorithm proposed in this article (Figure 5), while
the runs PGPR-(i) (1 ≤ i ≤ n − 1) represent intermediate processes where
only a subset of the irrelevant parameters have been fixed.

This procedure aims at verifying the effectiveness of the choice of fixing non-
relevant parameters at a certain iteration of the PG algorithm. It is important
to notice here that after the learning process is split, the two sessions proceed
in parallel with different randomized choices. Therefore, it is not possible to
directly compare the results of the two sessions independently from the random
choices that are taken during them.

Starting from a manually coded initial parameter set 0X(with a fitness of
1.607 in the first iteration), 14 iterations of PG have been executed on all the
parameters, reaching a fitness value of 1.865. Then one parameter has been
fixed, because of its low relevance, and the learning process has been split in
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two: one execution with all the parameters, one execution with one parameter
less (PGPR-1). At iteration 18, the values of the fitness were 1.954 for PG and
1.985 for PGPR-1, thus showing a slight increase of performance for PGPR.
At this iteration a second parameter was below the relevance threshold and
we split the execution again: we continued with PGPR-1 and we started a
PGPR-2 session. At iteration 25 we stopped the learning process. The final
fitness values for PG, PGPR-1, and PGPR-2 were respectively 1.935, 2.029,
and 2.049, while the maximum values reached during all the executions were
respectively 2.104, 2.161, and 2.241.

Initial parameter set F0 PG PGPR-1 PGPR-2

1 1.607 2.104 2.161 (14) 2.241 (18)

2 1.497 1.895 1.986 (13) -

3 1.107 1.814 1.998 (12) -

4 0.698 1.584 1.640 (10) 1.589 (17)
Table 3
Results of simulation 1.

Three additional learning processes, starting from different initial policies,
have been run in Webots. The maximum fitness values obtained by each ex-
ecution of the algorithm in the four runs have been summarized in Table 3.
The value F0 in the table reports the fitness function computed at the first
iteration, and indicates how good the initial parameter set was. As shown in
the table, the initial sets used in the runs have been chosen in order to evaluate
the effectiveness of the approach when starting both from good parameters
(high values of F0) and from bad ones (low values of F0). The first irrelevant
parameter was detected/fixed respectively at iteration 14, 13, 12 and 10 for
runs 1 to 4 (values in parenthesis). A second irrelevant parameter was detected
only in runs 1 and 4, respectively at iteration 18 and 17. Different final results
in the table mostly depend on the initial parameter set and on the randomness
of the algorithms.

As shown in the table, the general trend is that, PGPR outperforms PG, and
PGPR-(i+1) outperforms PGPR-(i). However, there are also cases in which
this is not confirmed (for example, with initial set 4). One reason is certainly
the randomness of the algorithm. A second reason is that when starting from
an initial set that is far from the optimum, fixing a parameter may be more
risky, since it can lead to worse solutions.

Moreover, some parameters have been fixed early in the runs that start from
lower quality initial policies. This is explained by the fact that when starting
from a low fitness solution, some of the parameters contribute in a more sig-
nificant way to the increase of the fitness (i.e., the derivative of the learning
curve is higher), causing the other parameters to be fixed at earlier stages.
As already mentioned, some of these choices may not be optimal (see again
PGPR-2 in the fourth experiments).
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The overall results of the experiments reported in this section are that 1)
Policy Gradient methods are effective to improve performance of the walking
gait described in this article, 2) PGPR method generally guarantees better
solutions with respect to PG, since in most cases where the relevance of a
parameter is low, fixing this parameter value allows for speeding up the search
toward the optimal solution.

6.2 Experiments with the real robot

The main objective of this work is to implement an effective walking gait on
the real NAO robot, exploiting the results obtained in simulation. Obviously,
since the model of the NAO in the simulator is only approximated, the pa-
rameter sets that return best results in simulation do not guarantee the same
performance on the real robot. However, simulated tests still help to discard
bad values of the parameters, to further limit the parameter ranges and to
estimate the directions in which the fitness function tends to increase. More-
over, the implementation of the learning algorithms has been fundamental to
improve important aspects of the robot gait, such as stability and precision
with respect to the desired trajectory.

One important issue we have considered when moving to experiments on the
real robots is the lack of simmetry in the response of the motors. While with
the simulator it is possible to consider the same set of parameters for driving
both the left and the right leg, with the real robot we needed to split some
of the parameters in order to differentiate the control of the left and the right
leg. Moreover, we also noticed different behaviors of our four robots with the
same parameters; this is again due to the different responses of the motors.

The experiments on the real robot have been performed as follows.

(1) The best solutions obtained in the simulator have been tested on the
real robot and we have observed the different behavior of the robot with
respect to the simulator.

(2) We have chosen a ”good” initial set of parameters by visual inspection,
evaluating mostly the walk stability.

(3) We have considered a rectilinear walk, and have adapted the computation
of the fitness function to the real robot, on which we do not have a GPS-
like device determining the real position of NAO. In practice, the fitness
score is given by a combination of the performed distance and a stability
value assigned by an operator that visually supervises the experiment.

(4) We then apply the PG algorithm considering only the parameters that
have shown to be more relevant during simulated experiments.

The results of two sessions of PG algorithm on two different real robots are
reported here. In the first experiment (Nao-34), six iterations of the learning
process have increased the fitness of the best policy from 45.75 to 57.00, while
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in the second experiment (Nao-40) the increase of performance in 3 iterations
has been from 55.0 to 64.5. Moreover, we have verified that the parameters
learned for the rectilinear walk can be effectively used for curvilinear walk as
well.
Details on the experiments and videos are available at:
www.dis.uniroma1.it/∼iocchi/RobotExperiments/HumanoidLearning.

7 Conclusions

In this article, we have compared two learning methods for humanoid walking
gaits based on Policy Gradient. In contrast with most works in the field of
biped gait generation and biped gait learning, we have focused on curvilinear
trajectories. We have shown that the PGPR algorithm, by taking into account
parameter relevance, allows for better solutions than classic policy gradient,
when only a few experiments are available, since it reduces the search space
size during learning. The experimental results confirm the effectiveness of our
biped motion control scheme, the performance of Policy Gradient reinforce-
ment learning methods, and the higher convergence of the PGPR algorithm
with respect to classic PG. In fact, we have applied this learning task to biped
walking obtaining, both in a simulated environment and on real robots, notable
improvements in the execution of walking gaits, even after a limited number
of experiments. These results are fundamental in robot learning applications,
where time and hardware consumption is a major issue.

Future work will consist of using PGPR to identify the parameters character-
izing pure rectilinear and pure rotational gaits. We also plan to estimate the
dynamic model of the NAO robot and to exploit its sensing capabilities in
order to develop a ZMP gait controller, whose parameters could also be tuned
using PGPR.
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