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Abstract

Mine transportation through hydraulic pipelines is increasingly used by various industries around the world. In Mo-

rocco, this has been implemented for the case of phosphate transportation. This allows to increase the production and

reduce the transportation cost. Given the vital importance of phosphate in the global food security and regarding the

huge amount of phosphate rock reserves in Morocco, it is detrimental to assess the reliability, to optimize and to in-

crease its transportation in a safe manner. Usually hydraulic transportation of such fluids is fully quantified with a full

characterization of its rheology related to its non-Newtonian behavior. The rheology allows to know the viscous and

the elastic properties of a fluid exhibiting viscoelastic properties. In the case of water-phosphate slurry this behavior

is not well-documented and classical constitutive laws for the rheology are of limited used, because of the high vari-

ability of different physico-chemical components of the slurry. The present work aims at quantifying the sensitivity

of the water-phosphate slurry rheology to these components. In order to achieve this objective, a data-driven model

based on polynomial chaos expansions (PCE) is developed and investigated. The choice of this class of models is

motivated by the simplicity to conduct sensitivity analysis with the PCE and the limited amount of data available as

the water-phosphate slurry pipeline is very new. In order to alleviate further the impact of the limitation given by the

available data, we introduce the bagging technique which is an Ensemble based data-driven model using the PCE.

Results presented in this study demonstrate that the bagging allows to reduce the validation error of the model by up

to two orders of magnitude. Thus, it reduces considerably the variability on the estimation of hyperparameters in the

model. Moreover, the sensitivity analysis shows that the variability on the elasticity coefficient is mainly due to the

variability of the slurry density and the solid rate. Viscosity on the other side is not affected by the heterogeneity of

the granulation distribution.
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1. Introduction

Phosphate is a key element for the plant growth and other agricultural purposes, see for example [1]. Therefore,

it urges for phosphate industries around the world to increase their operations efficiency. The phosphate is a non

renewable resource and it is classically extracted from phosphate rocks. Authors in [2] analyzed the worldwide

reserve-to-production that determines the lifetime of phosphate rocks. The conclusion of this work shows that because

of the upcoming socio-economical stresses, the global phosphorous security will rely on a single country: Morocco.

In fact, Morocco holds 77% of global phosphate reserve in the world and needs to increase its production by around

700% by 2075 in order to meet with the global increasing demands. Achieving this productivity value in such time

would require to reach an optimal level of performance in every single operation within the industry. In Morocco, one

could classify the main activities of the phosphate production into the following four classes [3]:

1. Extraction and washing: This activity is mainly linked to extracting phosphate from rocks. The phosphate is

then enriched with water and other minerals in order to be transported.

2. Processing: This activity aims at transforming the crude phosphate obtained from extraction into phosphoric

acid or fertilizers.

3. Transportation: This activity aims at transporting the phosphate from the mine sites to the processing platforms.

4. Distribution and sales: This activity is responsible for distributing the phosphate-based products in the world.

Hence, the transport of phosphate is a major component in the industry. Historically, this was achieved by carrying the

phosphate over railways. However, for sustainability reasons, the industry moved to a transport logistic using slurry

pipeline. This allows to save 3× 106 m3 of water and to reduce considerably the carbon footprint of the country 1. Yet

this operation is far to be described as optimal for reliability reasons that ought to be detailed hereafter.

Mine transport has begun to receive much attention especially regarding their importance to reduce the cost of

processing in mining industry. The hydro-transport could be carried when mixing the minerals with water. The

resulting fluid can be then transported through pipelines. Such hydrodynamic process is mainly controlled by two

major features: the head losses and the flow friction. While it is easy to quantify such physical constraints for

classical fluids such as water, mineral slurry usually exhibits a non-Newtonian behavior that makes them very hard to

assess [4]. In fact, a mineral slurry could be classified as a visco-plastic fluid in such a way that it has a solid behavior

when the shear stress is under a threshold (the elasticity coefficient τy). Moreover, its apparent viscosity depends

on the time and the flow regime considered. Consequently, it is very hard to model the behavior of such fluids and

quantify their dynamics [5]. The study of such physical parameters is known in the literature as rheology. The study

of rheology for slurry allows not only to assess the head loss of the hydrodynamics but also to predict turbulent flows

[6]. In fact, the rheology of a fluid has an effect of slumping which can impact the transport of the mineral slurry. One

1Based on the information available on the website www.ocpgroup.ma

2

www.ocpgroup.ma


has to make sure that the hydrodynamic is sufficiently well establish to prevent sedimentation and not too over sized

to prevent pipe failure and unnecessary energy loss. Hence, modeling such hydrodynamics is a key tool to support

operational decisions. Selecting models that accurately describe the rheology of a slurry is of most importance in

order to initialize numerical simulation of non-Newtonian flows [7]. The literature provides a considerable amount

of rheological models known as constitutive models aiming at describing the behavior of a non-Newtonian fluid,

see [8, 9] among others. These equations allows to extrapolate the rheology estimated from measurements using a

finite set of experimental measurements or field data. In the case of mineral slurry, many previous works studied

the applicability of these constitutive models . These works revealed some major difficulties in the modelling and

numerical simulation of slurry flows. In the framework of phosphate slurry flow in pipelines, the use of classical non-

Newtonian models such as Bingham or Hershley & Bukley to represent the rheology has already been addressed in

[10] among others. Results show that these constitutive laws fail to correctly model the hydrodynamics for all ranges

of the flow, we refer the reader to [10] for more details. In fact, there are several reasons why fitting and extrapolating

some constitutive models to describe rheological behavior of a slurry is inaccurate. For instance, authors in [11] linked

the complex rheology of a cement slurry to the irreversible and temporal nature of the fluid. Moreover, several works

highlighted that rheological parameters are very sensitive to the physico-chemical composition of the fluid mixture.

For example, the study reported in [12] showed that the bottom ash slurry is sensitive to the chemical composition and

the solid concentration. The same conclusion was drawn for coking coal and water slurry in [13]. Similarly, authors

in [14] showed that the rheology of silica sand based suspension is primarily driven by the particle size and the solid

concentration. The recent work in [15] highlighted also the effect of the particle concentration, density, chemical

properties of the mixture, temperature and pressure on the rheology of a cement slurry.

In the case of phosphate slurry, authors in [10] showed that despite the applicability of some constitutive models

to describe its rheology, these models lack generalization. The emphasis was on the great variability of the rheological

parameters using real data from the pipeline. An emerging idea to accurately model the rheological behavior consists

on using Machine Learning (ML) methods. Such methodology was implemented for Iron-Ore slurry using artificial

neural network, see [16]. The ML maps the nonlinear relationship existing between the apparent viscosity and the the

physical properties of the fluid with very high accuracy. The model allows also to derive the physical characteristics

allowing to understand the rheology and to assess the parameters to which the rheological parameters are sensitive.

There are several ML methods allowing to perform the regression analysis including the linear regression, neural

networks, kernel methods (such as Gaussian processes), support vector machine, graphical models, among others. We

also refer the reader to [17] for a full overview of these methods. Choosing an adapted regression method is often

a very hard task since these methods are still subject to open issues [18]. One common approach used in different

applications that allows to choose the appropriate ML tools consists on comparing different approaches and choosing

the method displaying the best accuracy based on a considered metric [19]. Another method that may be used is

through a deep knowledge of the problem nature, the quality of the data and the purposes for which the model will

be used. In the present study, the ML method is used to predict the rheology of phosphate slurry and to assess
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the sensitivity of this latter to different physico-chemical components of the slurry. This would lead to optimize

the operational management and to design future transportation models. In order to achieve these two objectives,

operating data have been made available. These data display some non-negligible uncertainty. Thus the selected ML

method should be able to handle and propagate the uncertain data [20]. It should be stressed that, the exploitation

of the phosphate pipeline started in 2014 but full data accompanied with rheological measurements are available

only for the period 2017-2018. This means that only few data are available to build the ML model. This is also a

well-known issue when building regression-based ML models [21]. Finally, the resulting ML model should be able

to carry sensitivity analysis for physical interpretation. Recent studies revealed that a ML regression model based

on data-driven polynomial chaos expansion (PCE) allows to overcome these previous challenges, compare [22, 23]

among others. The PCE has largely been used in the context of uncertainty quantification (UQ), see for example

[24, 25]. In the context of hydraulic simulations it allows to achieve good accuracies in quantifying the uncertainty of

the friction parameter, compare [26, 25]. In general, there are many ways a PCE could be built but the most common

consists on using it as a metamodel (a surrogate model, a surface response, etc) which allows to mimic the behavior of

a numerical model. Several numerical techniques allow to build a PCE surrogate, compare [27]. However, the most

appealing one and relevant with regards to its applicability in the ML context remains the regression method [28, 29].

The main objective of the UQ is to assess the propagation of uncertainty supposed on the inputs through a numerical

model on its response. The PCE allows to replace the expensive numerical model by a polynomial decomposition

following a spectral approach [30]. As it has been highlighted in [23], the main difference between the use of the

PCE in ML and in UQ is that the model is unknown in the case of the ML and the statistics of the model output are

available. Another issue with the use of the PCE in ML is that, the probability density function of the inputs should

be derived from the data rather than assumed as it is generally used in the UQ. Furthermore, when using a spectral

approach, the input parameters are supposed to be statistically independent. An assumption that could not be always

verified using the data. Hopefully, some recent studies succeeded in overcoming those two challenges. In fact, some

studies allowed to derive the probability density function from the data and therefore to build an appropriate PCE,

see [31, 32]. On the other hand, authors in [33] suggested a general framework to address dependencies in inputs

parameter using vine copulas. For all these reasons and based on the appealing results published in [23], the present

work addresses the prediction of the phosphate slurry rheology using data-driven PCE regression method as a ML

tool. Another advantage of the use of the PCE in the UQ context lies in the fact that the uncertainty information

could be derived analytically from the spectral coefficient, see [34]. One of the important information easily derived

from the PCE in the UQ context is what are the contribution of uncertainty of each input parameter on the resulting

uncertainty namely, the sensitivity analysis [35]. There are several purposes for which sensitivity analysis could be

run. An overview on sensitivity analysis methods and its application can be found in [36, 37]. For the present case,

the sensitivity analysis will help to determine what are the most important physico-chemical parameters that drive

the rheology of the phosphate slurry, as in [38]. This would help in the operational to control few parameters and

therefore, optimizing the transport of phosphate with a minimal cost. Indeed the variance-based methods aim at
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Figure 1: A general illustration of the phosphate slurry pipeline between Khouribga and Jorf Lasfar in Morocco.

quantifying the impact of the variation of parameters on the variation of a quantity of interest. In the present case,

sensitivity analysis would help to control few parameters whose variation have a considerable impact on the variation

of the rheology.

In the current work, a robust ML regression-based method is developed using a data-driven PCE to predict the

rheology of phosphate slurry. The present model is built using available field data and the use of PCE will help to

carry the sensitivity analysis. The objective of this study is to understand what are the physico-chemical parameters

whose variability drives the variability of the rheology. The results from the sensitivity analysis will be used to deliver

some recommendations related to the parameters which have significant impact on the variability observed in the

transport of the phosphate slurry in pipelines. This paper is organized as follows. In Section 2 we present details of

the phosphate slurry pipeline and the different data provided in the field. The ML model methodology along with the

PCE techniques are described in Section 3. Section 4 outlines the performance of the proposed method along with the

results obtained for the sensitivity analysis. Finally, concluding remarks are included in Section 5.

2. Data for the phosphate slurry

Minerals slurry pipeline is of an increasing interest as it aims to transport minerals hydraulically instead of the

traditional railway transportation. Thus, it allows to decrease considerably the cost of supply chains in the corre-

sponding industry. Morocco has for example, implemented such technology to transport phosphate in the form of
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phosphate-water slurry. First the phosphate is mixed with water then transported in pipelines from the head station

at Khouribga city to the terminal station at Jorf Lasfar port over 187 Km, see Figure 1. It is worth mentioning here

that the head station is also fed with phosphate through secondary pipelines from the washing station. Indeed, the

three operational mine sites are located at 50 Km away from the head station (see Figure 1). The phosphate is then

gathered in one location before the transport happens. This system allowed to increase the phosphate production with

a minimum investment. Although the economic value of this process and its impact on the supply chain was highly

appreciated by the industry, the transport has still not achieved its optimized form. The principal reason behind this

statement is mainly due to the huge variability in the rheology of the slurry mixture. In fact, one of the main features

driving the motion of such fluid is its rheology, especially for the non-Newtonian fluid like phosphate slurry [39]. In

the framework of fluid mechanics, the rheology governs the ability of the fluid to go against its motion. Generally,

the classification of a fluid (Newtonian or non-Newtonian) is made based on the dependence of the viscosity µ to the

mechanical properties of the material constituting the fluid. The viscosity defines the relation between the shear stress

γ̇ (normal stresses on all the fluid sides) and the the shear rate τ (deformation due to the fluid motion). In practice,

when this relationship is linear the fluid is referred to be Newtonian and therefore, the viscosity is assumed to be a

scalar coefficient. However, when the relationship is nonlinear the fluid is categorized as non-Newtonian and in this

case the viscosity is no longer a single coefficient but needs to be identified with a function of the velocity and refereed

to as a constitutive equation.

In general, standard approaches to derive a constitutive law for the rheology consists on fitting some well-known

equations using some finite numbers of experiments [40, 41]. Usually, the viscosity is measured using a viscometer

by filling the fluid in an annular thin space between two concentric cylindrical surfaces. The cylinder located inside

the container rotates with an adjustable speed and the viscosity is then obtained using the information about the torque

imposed on the cylinder and the angular velocity. We refer the reader to [5] for more details on the viscometer. In many

situations, the viscometer is also equipped with some well-established constitutive equations where the experiments

are used to fit the hyperparameters of these equations. At the Khouribga site, the viscometer used to estimate the

rheology of the phosphate slurry is equipped with the Casson law defined as

√
τ =
√
τc +

√
µγ̇, (1)

where τc refers to the elasticity coefficient and µ is the viscosity. It is evident that the Casson law (1) is a nonlinear

equation that involves an elasticity coefficient which translates the limit of the exerted efforts from which the material

changes its behavior from solid to fluid. In the case of phosphate slurry, this experiment is carried out every day on

the fluid during two years, in order to determine the elasticity and the viscosity of the slurry before its transport in the

primary pipeline. All this database was made available for the purpose of the present work. It should also be stressed

that, results reported in [10] have shown that this constitutive equation is not suitable for the case of phosphate slurry

fluid. Other different constitutive equations known in the literature have also assessed in[10]. The authors conclude

that there is no a single equation that is able to model the rheological behavior of the phosphate slurry.
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Table 1: List of all physico-chemical parameters estimated before the transport of the phosphate slurry in the primary pipeline.

Parameter Designation

Al2O3 Allumine content

BPL Phosphate content

CO2 Carbon dioxide content

MgO Manganese content

SiO2 Sillice content

SiO2 R Residual Sillice dioxide content

< 37 µm Proportion of particles with a size lower than 37 µm

< 40 µm Proportion of particles with a size lower than 40 µm

< 44 µm Proportion of particles with a size lower than 44µm

< 53 µm Proportion of particles with a size lower than 53 µm

< 74 µm Proportion of particles with a size lower than 74 µm

< 160 µm Proportion of particles with a size lower than 160 µm

< 210 µm Proportion of particles with a size lower than 210 µm

< 250 µm Proportion of particles with a size lower than 250 µm

< 315 µm Proportion of particles with a size lower than 315 µm

< 400 µm Proportion of particles with a size lower than 400 µm

< 500 µm Proportion of particles with a size lower than 500 µm

SR Solid rate

ρ Density of the slurry

Volume Beni Amir Volume of phosphate token from Beni Amir washing station

Volume MEA Volume of phosphate token from MEA washing station

Volume Daoui Volume of phosphate token from Daoui washing station

Note that along with this experimental work, there are also several experiments that should be run before the trans-

port occurs for security reasons. The objective of these experiments is to identify the physico-chemical composition

of the slurry which includes the parameters identified in Table 1. Given the considerable variability in the estimation

of the constitutive equation for the phosphate slurry, we suggest in this study to use a Machine Learning (ML) based

algorithm that allows to predict the elasticity and the viscosity coefficients. The ML is trained from the available

field experiment results from the last two years in order to improve the accuracy in the estimation of the phosphate
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rheology. Since there is a direct link between the friction at the pipeline and the physico-chemical composition of the

slurry, we consider the parameters described in Table 1 as inputs for the proposed ML algorithm.

3. Data-driven polynomial chaos expansions

In this section we describe the general methodology used to develop a ML based model to predict the rheology of

the phosphate slurry. We briefly discuss techniques employed for data-driven polynomial chaos expansions. Details

on the application of these tools for predicting the rheology are also included in this section. In the current work, the

proposed ML tools are also used to derive sensitivity indexes.

3.1. Polynomial chaos expansions

The Polynomial chaos Expansion (PCE) has been intensively used as a surrogate model in the context of uncer-

tainty quantification. It aims at reproducing the global behavior of a simulation following a polynomial decomposition.

The multivariate polynomials that form the basis are chosen according to the probability density function of the con-

sidered stochastic input variables as defined for example in [42]. Indeed, the PCE is a spectral method designed to find

a certain deterministic function between the input random variables X ∈ Rd and a target random variable Y, where

d is the number of input parameters. In the present study, the variables contained in the vector X are the variables

described in the Table 1 whereas, Y represents the apparent viscosity and elasticity coefficients. Thus, one can write

Y =M(X) =
∑
α∈Nd

βαΨα(X), (2)

where βα are the spectral coefficients of the decomposition to be determined and (Ψα)α∈Nd are the polynomial basis.

Here, the component αi in the multi-index α ∈ Nd is the polynomial degree of (Ψα) in the ith element of X. Hence,

the total polynomial degree of Ψα is |α| =
d∑

i=1

αi. In order to ensure the convergence of the decomposition (2), all the

random variables considered in the study (including Y and all the components of X) need to be of finite variance, see

for instance [43]. Note that building a PCE requires three main ingredients: (i) choosing the right orthonormal basis,

(ii) truncate the infinite sum in (2) and (iii) compute the spectral coefficients.

The selection of the orthonormal polynomial basis in the context of PCE is driven by the probability density

function of the inputs variables. Originally, this has been achieved by using homogeneous chaos theory considering

Hermite polynomials as the orthogonal basis because the inputs were considered to follow a Gaussian law, compare

[30] among others. Following ideas proposed in [44], the homogeneous chaos theory has been generalized for other

classical distributions, see for instance [42]. This approach is known in the community as the generalized polynomial

chaos (gPC). Yet, for many applications where data are available, their density probability functions do not follow

classical distributions. For this purpose, several research studies have generalized the PCE for arbitrary distributions

allowing therefore a data-driven PCE, see for example [45, 46]. Other methods used to derive data-driven PCE have
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also been intensively presented and discussed in [23]. In the present work and given the small size of the available data,

various distributions are derived from the data using a kernel density estimation allowing to have a non-parametric

probability density function as discussed in [47]. Indeed, for a given set of n observations
{
X(1)

i , . . . , X(n)
i

}
for a random

parameter Xi ∈ X, the kernel density defines an estimation f̂Xi of the probability density function fXi inferred from this

set as

f̂Xi (x) =
1

nh

n∑
j=1

k

 x − x(i)
j

h

, (3)

where h is an appropriate bandwidth and k(·) is the kernel function. There exists many kernel functions used in prac-

tice but only the Gaussian kernel is used in the present work as it has been demonstrated to fit correctly complex

probability density functions. Once f̂Xi is given for each component of X, one can build a corresponding orthogonal

polynomial basis
(
φ(i)
αi

)
αi∈N

with respect to the estimated probability density function using Stiltjes or Gram-Schmidt

orthogonalization, compare [31, 45] among others. Once the univariate polynomial basis is obtained for each compo-

nent of X, the multivariate polynomial basis is reconstructed using the tensor product of the d univariate polynomials

as

Ψα(X) =

d∏
i=1

φ(i)
αi

(Xi) . (4)

Note that this results comes from the fact that all the random variables are independent. This assumption should be

verified upon building the PCE and in the case of mutually dependent inputs, the PCE could still be achieved, we refer

the reader to [23] for a deep discussion about these methods. In practice, the sum in (2) is truncated to a finite series

as

Y ≈
∑

α∈Ad,p⊂Nd

βαΨα (X) . (5)

Here, the setAd,p is usually defined based on a total polynomial degree threshold such that the total polynomial degree

of the sum in (5) does not exceed the value p. The classical way to define this set is

Ad,p =
{
α ∈ Nd : |α| ≤ p

}
. (6)

Note that, when defining the set of the multi-indices following this strategy and for a fixed value of the maximum

polynomial degree p, Ad,p contains
(

d+p
p

)
elements following the binomial law. The main issue with this truncation

scheme is that when the value of p is increased, many terms are needed compared to the very few available data which

will lead to overfitting. Alternatively when the value of p is too small this may lead to underfitting. Fortunately, a

hyperbolic truncation technique as defined in [29] could be applied to overcome this drawback. Following this method

the setAd,p is redefined as

Ad,p,q =

α ∈ Nd : ‖α‖q =

 d∑
i=1

α
q
i


1/q

≤ p

 , (7)

where q ∈ [0, 1]. Note that this truncation scheme is especially useful when only few interactions influences the re-

sponse and it helps to achieve a sparse polynomial expansion. Thus, estimating the right value of the hyperparameters

q and p is achieved using a cross validation algorithm as in [29].
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3.2. Estimation of the spectral coefficients

The determination of a PCE is therefore conditioned by the estimation of the spectral coefficients βα. In the context

of uncertainty quantification, there exist many methods used in the literature to compute the spectral coefficients, we

refer the reader to [48, 24, 27] for detailed discussions on these methodologies. However in the context of ML, only

the regression method is considered, see [23]. One can also use the most efficient sparse decomposition when the

value of d is very high (d ≤ 5). The regression method is based on solving a least-square (LS) minimization problem

in some `2-norm to estimate the coefficients yαi , see for instance [49, 28]. In practice, we begin by defining an error

ε as the distance between the known value of the parameter to be predicted (the training set of Y) and the PCE using

the training set of X. Here, we suppose that the size of the training set is Nls and we define

ε = Y − β>Ψ, (8)

where Y =
(
Y(1), . . . ,Y(Nls)

)>
is the vector of the output parameters in the training set. We also define β =(

βα0 , . . . , βαNPC−1

)>
as the vector of the NPC = Card

(
Ad,p,q

)
unknown coefficients (where Card(X) is the number of el-

ements in the set X) andΨ is the NPC ×Nls-valued matrix assembling the values of all orthonormal polynomials at the

input training values Ψik = Ψi

(
ζ(k)

)
, with i = 0, 1, . . . ,NPC−1 and k = 1, 2, . . . ,Nls. Estimating the set of coefficients β

following the ordinary least-square functional (8) which is equivalent to minimize the following function

J(β) = ε>ε =
(
Y − β>Ψ

)> (
Y − β>Ψ

)
. (9)

This yields a standard well-established linear algebraic solution as

β =
(
Ψ>Ψ

)−1
Ψ> U. (10)

Note that the equation (9) has a solution only when Nls ≥ NPC and the solution given by (10) is the solution of the

problem:

β = argmin
β̃

J(β).

It has also been proven that in the context of PCE, solving this problem may add a lot of coefficients while their

respective values are negligible and a sparse regression is preferred in this case, see for instance [29]. Indeed, one can

write the previous problem into its regularized form

β = argmin
β̃

J(β) + λ
∥∥∥β̃∥∥∥1 .

Notice that the last term of this equation forces the regression to put all the samples energy such that only the most

meaningful coefficients are retained. Thus, a sparse expansion is achieved and yet, the coefficient λ needs to be

estimated. The Least Angle Regression (LAR) is an algorithm that allows to solve the previous equation without

requiring an explicit optimization with respect to λ, see for example [50]. In the present study, as only few hundreds
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Figure 2: A schematic representation of the principles used for bagging in machine learning.

of samples of data are available, the LAR is considered along with a hyperbolic truncation strategy in order to estimate

the spectral coefficients as described in [29].

It should be stressed that it is very common when using small data size, the accuracy of a ML method is very

sensitive to the training sample. In these cases, when a change in the training sample gives ML outputs that are

significantly different, the so-called bagging principle could be very useful, see [51] among others. In the present

work, we propose to apply a bagging method over a data-driven PCE predictor. The main idea of this method is

illustrated in Figure 2. First, multiple training sets are formed by making bootstrap replicates from the initial training

sample. For each new training set, a predictor is obtained using the data-driven PCE. Finally, the ensemble predictor

is estimated by aggregating the multiple versions of the predictors. This class of techniques has helped to define some

highly accurate ML models such as the random forests which are basically regression trees to which bagging has

been applied [52]. In the present work, the aggregation phase is obtained by averaging the results for the different

predictors. Note that the selection of this method is motivated by its suitability for the operational requirements given

its straightforward implementation.

3.3. Sensitivity analysis

In the uncertainty quantification, the Sensitivity Analysis (SA) is usually used to assess the relative importance of

each input parameter on the output. There exist two different methods to assess the sensitivity namely, the local SA and

11



the global SA. The local SA aims at estimating the sensitivity when the value of the parameter is slightly perturbed.

This is mainly achieved using the gradient or the adjoint methods. Alternatively, the global SA aims at assessing the

resulting sensitivity when the input parameters are subject to the uncertainty. Only the global SA is retained for the

purpose of this work. Again, there are several methods reported in the literature to assess the global SA of parameters,

see [53] and further references are therein. The variance-based SA remains the most popular method. In fact, it is

based on the analysis of the variance, also known as ANOVA. Hence, we write

Var (Y) = V
(
Y

∣∣∣X1
)

+ · · · + V
(
Y

∣∣∣Xn
)

+ V
(
Y

∣∣∣X1, X2
)

+ · · · + V
(
Y

∣∣∣Xn−1, Xn
)

+ V
(
Y

∣∣∣X1, · · · Xn
)
, (11)

where V
(
Y

∣∣∣X1
)

denotes the variance part of Y explained by the regressor X1. Basically, this equation means that the

variance of Y could be explained by adding a different contribution of different factors which we denote them by U.

Moreover, the total variance is the sum of principals and the different interactions of the factors. Therefore, one can

define a Sensitivity Index S I for a single or multiple factors as

S IXU =
Var

(
Y|XU

)
Var (Y)

. (12)

It is evident that the sensitivity index S I is bounded by 0 and 1 because the variance explained by a single or a set of

factors is lower than the total variance of Y. It is also clear that following (11), the sum over all indexes is equal to 1.

The factors with the highest value of S I are the factors that have the highest impact on the responseY. Consequently,

these factors are used for monitoring as they are the most important in the ML model. Generally, when computing the

sensitivity index one can either include only the principal effects of XU (in this case the sensitivity index is referred to

as a first order sensitivity index) or it could be computed using all the interactions in which XU contributes (in this case

it is referred to as a total sensitivity index). We refer the reader to [54] for a full review on the sensitivity index and on

the methodologies used for their estimations. In the current study, in order to analyze the sensitivity we use the Sobol’

indices [55]. The choice of this method is motivated by the fact that the spectral coefficients of the PCE allow to

compute analytically the Sobol’ indices as reported in [34, 56]. In fact, the spectral coefficient of the PCE can account

for direct statistics of the model under study. Therefore, using some finite combinations of the spectral coefficients

one can read the Sobol indices as well, see for instance [34]. Finally, since a data-driven PCE with bagging is used in

this study, one expects to have as many estimations of the sensitivity indexes as the available predictors in the bagging,

see Figure 2. In this situation, the estimation of these indexes follows the same aggregation rules as those used for

the model. Therefore, the obtained sensitivity indices are the average of the Sobol’ indices analytically obtained

from each predictor. Here, we make use of the sensitivity analysis in order to emphasize the main factors from the

physico-chemical composition of the phosphate slurry whose variation are driving the variation of the rheology and

therefore, the uncertainty in its hydrodynamical properties. Once correctly estimated, these parameters need to be

controlled during the transport of phosphate. It should stressed that all the computations used here were performed

using UQLAB library [57] which allows to perform probabilistic and statistical modeling.
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Figure 3: Correlation matrix between the different inputs in the present work.

4. Numerical results and discussions

We present results obtained for the available data with only 592 samples collected on the pipe for the past two years

for the 25 features reported in Table 1. At the operational site, only one measurement is taken every day which explains

the reduced number of the data available for the present study. These data are generally described as unbalanced data

and may lead to the well-known problem of overfitting, see for example [58]. In this case, the selection of features

and vectors is of utmost importance to build cost-effective models, compare [59] among others. Here, building a

data-driven PCE using the LAR method to compute the spectral coefficient would guarantee an automatic vectors

selection. In order to improve the machine learning method further, the selection of features is used here. Literature

provides different methodologies used for the selection of features, see [60] for an overview. It is worth mentioning

here that this topic is still subject to many open questions. However, given the small size of data used in this study, we

choose to focus on the Spearman correlation coefficient. Indeed, the correlation analysis has been proven to provide

relevant features in the case of machine learning, see for instance [61]. The choice of the Spearman correlation rather
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Figure 4: Spearman correlation coefficient for each of the features described in Table 1 computed for the elasticity (top plot) and for the viscosity

(bottom plot) parameters as an output. Here, red lines represent the considered threshold for the feature selection.

than the Pearson is due to the fact that the relationship between the rheological parameters and the physico-chemical

components is rather nonlinear. First the correlation between the different features is examined for the considered data

and Figure 3 depicts the correlation matrix between the different inputs. Generally, the features could be considered

as independent variables except for the grain size description.

In Figure 4 we present the results obtained for the Spearman correlation coefficient in both the elasticity and

the viscosity parameters. Here, 60% of the selected features to predict the elasticity regression have a correlation

coefficient higher than 0.2, while only 31% of these parameters have a correlation coefficient higher than 0.2 for the

viscosity coefficient. This suggests that the ML models would work more efficiently for the elasticity than the viscosity

coefficients. Furthermore, this analysis allows to reduce the number of features that one can use as regressors for the
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Table 2: The selected features for each of the considered output parameters along with their values of the Spearman correlation coefficient.

Elasticity Viscosity

Parameter Correlation coefficient Parameter Correlation coefficient

Volume Beni Amir 0.12 Volume MEA -0.14

ρ 0.46 ρ 0.11

SR 0.38 SR 0.13

MgO 0.25 S iO2 0.2

Al2O3 0.29 MgO 0.14

< 400 µm -0.1 Al2O3 0.13

< 315 µm -0.18 S iO2 R 0.20

< 250 µm -0.22 < 160 µm 0.12

< 210 µm -0.24 < 150 µm 0.13

< 160 µm −0.24 < 74 µm 0.25

< 150 µm -0.24 < 53 µm 0.28

< 74 µm -0.16 < 44 µm 0.28

< 53 µm -0.11 < 40 µm 0.28

D20 -0.11 < 37 µm 0.28

D80 -0.24 D20 -0.18

D80 -0.10

PCE. It should also be noted that these regressors are different depending on the output parameter considered. Here,

the selected features are those whose the absolute value of the Spearman coefficient exceeds 0.1, represented in Figure

4 by the red lines. In the case of the elasticity parameter, only 15 features are retained instead of the 25 described

in Table 1. For completeness, these features are summarized in Table 2 with their corresponding correlation values.

For the viscosity coefficient, only 16 features are retained instead of the 25 initial features and they are also included

in Table 2. The results of this feature selection step was compared to the modern HISC method investigated in [62]

among others. The obtained results reveal that the elasticity coefficient depends on 9 parameters namely: Volume

Daoui, Volume Mea, Volume Beni Amir, ρ, MgO, Al2O3, S iO2 R, < 500 µm, < 37 µm, D20. On the other hand,

the viscosity coefficient depends on the parameters: Volume Daoui, Volume Mea, Volume Beni Amir, SR, CO2,S iO2,

MgO, Al2O3, S iO2 R, < 500 µm, < 37 µm, D20. Overall, the results are comparable with those obtained using

the Spearman correlation. However, the absence of the density for the viscosity coefficient and the solid rate for
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the elasticity coefficient is something not reasonable from a dynamical perspective. This may be due to the lack of

sufficient data. For this reason we choose to continue the present analysis with the feature selected using the Spearman

correlation coefficient.

Since the PCE relies on the probabilistic description of the input parameters, the probability density function is

estimated using the kernel smoothing technique in (3) for all the selected features given in Table 2. Note that evaluating

these probability density functions helps in identifying the most suitable orthogonal polynomial basis for which the

PCE is performed. These probability density functions are shown in Figure 5. In the present case, these functions do

not have a common behavior such as the Gaussian or uniform measure (see the probability density function of Al2O3

and < 315 µm among others). This confirms that the ML techniques are very sensitive to the polynomial basis which

can lead to further overfitting problems. For this reason, arbitrary PCE are used to build the ML model.

4.1. The assessment of data-driven PCE

Next, we consider the ML tools for the selected features based on the data-driven PCE. Given the small size of

data available, we assess the sensitivity of different hyperparameters on the accuracy of the surrogate model. As

mentioned in section 3, the sparse polynomial representation is preferred using a LARS method. The feature selection

step helped reducing the number of hyperparameters needed here (including the spectral coefficients) but one of the

main drawbacks of the PCE is related to this point especially, when the dimension is relatively large. For example, in

the present step the feature selection helped into reducing the dimensionality to 15 and 16 for the elasticity coefficient

and for the viscosity coefficient, respectively. This means that, if a polynomial approximation of degree 5 is needed,

the total number of hyperparameters that needs to be estimated is 15, 504 and 20, 349, respectively. Given the small

size of the considered data (549), the use of sparse polynomial approximation is required. Furthermore, we employ

a hyperbolic truncation over the classical truncation scheme. This truncation scheme depends on the parameter q

which describes the level of hyperbolicity as described in section 3.2. Thus, decreasing the value of q allows to have

a sparse polynomial representation which help to overcome the problem of Overfitting. However, this means also that

interactions between the different features are negligible on the output.Estimating a good value of q is very important

as its value needs to be sufficiently high to include the complexity of the relationship and not too high to avoid the

problem of Overfitting.

In order to assess the level of hyperbolicity, four different tests are carried out using q ∈ {0.25, 0.5, 0.75, 1}. For

each test, the maximum polynomial degree is set using a cross validation by varying its values from 1 to 10. The

available samples are split randomly such that 70% are used for training and 30% are used for validation. Moreover,

each PCE is repeatedly built 20 times to assess the robustness of the model. The results of theses simulations are

reported in Figure 6. We used a box-plot in order to illustrate the different statistics given by the 20 models estimated

in each test. As discussed in section 3, two metrics of errors can be used to assess the accuracy of the model namely,

the validation error and the Leave-One-Out (LOO) error. Both metrics are used for this study and the obtained results
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Figure 5: Probability density functions for all the features selected as regressors of the ML for the estimation of both elasticity and viscosity

parameters in the present study.
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Figure 6: Sensitivity of the accuracy of the ML to the level of hyperbolic truncation using the validation error (bottom plot) and the LOO error (top

plot) for the estimation of the elasticity coefficient (left plot) and viscosity coefficient (right plot).

reveal that the variance in errors of the different models built is very high. This is mainly attributed to the small size of

data provided for this analysis. For the considered tests, the truncation norm q = 0.75 seems to give the most accurate

results but it also displays the most variance in the results. In addition, one can see that the validation error and the

LOO error seem to give the same error values. Finally, one can assess that the small size of the available data is real

challenge here as the variability of the errors is important. Therefore, in order to reduce this effect, we suggest the

use of the well-established Ensemble methods in the ML. More precisely, given the high value of the variance in the

model performances in the present work, we use the well-established bagging technique.

In order to use a bagging based data-driven PCE as a ML tool, it is import to assess the ensemble size, referred

to as N in Figure 2. Figure 7 exhibits the validation error function of the number N. One can see that the optimal

Ensemble size is achieved for N = 20 since the error starts to have an oscillatory behavior after N = 20 which can be

justified by the small size, the strong non-linearities or the heterogeneities of the available data. In general, bagging
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Figure 7: Sensitivity of the model accuracy to the ensemble size for the estimation of viscosity and elasticity coefficients.

allows to improve the accuracy of the ML model. In the case of elasticity estimation, bagging decreases the error by

three order of magnitudes (around 0.5 in Figure 6 without bagging and nearly 10−3 in Figure7 with bagging) while,

for the viscosity estimation it allows a decrease of two order of magnitudes (around 0.5 in Figure 6 without bagging

and nearly 10−2 in Figure7 with bagging). It is also clear that the error for the viscosity coefficient is larger than the

error for the elasticity coefficient. This supports our conclusions regarding the results on the selection of features as

from the provided data, the correlation indicates a higher rate for the elasticity than the viscosity. It should also be

noted that one way to improve the accuracy in this study is by the mean of increasing the observations. This yields to

study the characterization of the rheology in the next section.

4.2. Sensitivity analysis of rheology

In this section we turn our attention to the sensitivity analysis of both hyperparameters of rheology namely, the

elasticity and the viscosity, to the features selected above. Results of the Sobol’ index are presented in Figure 8.

Here, the top figure presents the first order Sobol’ index while the bottom plot represents the total index. As it can be

seen from this figure, both results exhibit similar behaviors which confirm that there are no significant effects due to
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Figure 8: First-order Sobol index (top plot) and the total index (bottom plot) for the elasticity coefficient.
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Figure 9: First-order Sobol index (top plot) and the total index (bottom plot) for the viscosity coefficient.
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the interactions of the features. Furthermore, this sensitivity analysis demonstrates that the variation of the elasticity

coefficient is mainly due to four parameters namely, the density of the fluid, the solid rate, the concentration of MgO

and the concentration of Al2O3. Based on this analysis, one can state that the variability observed in the elasticity

coefficient is mainly due to the variability in the density and the solid rate in the second position. In fact, the elasticity

coefficient translates the dynamic effort needed to change the slurry from a solid phase to a fluid phase. This also

explains the variability of the elasticity due to the variation of the density, the solid rate and the concentration of

metal-based chemical elements. For the particular case of the Phosphate slurry, increasing the density by injecting

more solid particles and the solid rate will lead to recover a solid mechanical behavior. In summary, the sensitivity

analysis shows that to ensure a fluid dynamic like motion it is important to monitor the density and the solid rate of

the slurry.

Similar sensitivity analysis is performed for the viscosity parameter and the obtained results for the first-order

Sobol index and the total index are shown in Figure 9. As in the analysis of the elasticity coefficient, there is no

significant change between Sobol index and the total index for the viscosity coefficient. These results demonstrate

that the impact of the interaction between the physico-chemical parameters is negligible in the variability on the

viscosity parameter. Unlike the previous case, there is no serious impact of a single parameter over the others that

drives the variability on the viscosity coefficient. However, it is evident that the sensitivity indexes for the physical

and the chemical parameters are more important than the granular structure of the slurry. As the viscosity parameter

represents the loss of the dynamic due to the pipe friction, the chemical constitution of the fluid along with the

density and the solid rate drive the energetic cost of the water-phosphate slurry. The present work paves the way into

improving the understanding of complex fluids flows in pipelines. There are many ways one could think of in order

to improve the results suggested in the present work. For instance, one can for example use the ML model as tools to

predict the rheological laws and couple it with a hydrodynamic model. This will allow to understand how the other

fixed parameters impacts the flow fields, such as the size of pipelines, the pipeline materials, the hydraulic machinery

used at the operational site. Despite the results of the other rheological laws allowing to represent a non-Newtonian

fluid and especially for the Phosphate slurry (see for example [10]), one could build the ML model based on these

laws. Finally, a direct approach to improve the present work consist on looking for other parameters that are described

with some stochasticity and were not taken into account here as added features in the ML model.

5. Conclusions

In the present work, a data-driven model has been used to study the variability impact of different physico-chemical

parameters on the rheology of phosphate slurry in pipelines. The obtained results help to understand and identify the

main components driving the dynamics of the phosphate slurry. Two rheological parameters were considered namely,

the elasticity and the viscosity coefficients. In the presence of fluid with suspension, two mechanical behaviors can

arise: fluid and solid. Elasticity parameter helps to define the threshold that makes the behavior move from solid to
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fluid dynamics whereas, the viscosity parameter helps to understand the constraints that the fluid imposes to itself

during the dynamics. Hence, studying these two properties is of enormous importance to optimize the transport of

phosphate in pipelines and to reduce the energy cost as well as the water demand needed for the slurry. In order to

achieve these objectives, a polynomial chaos based data-driven is built using a set of 512 samples subject to 25 features

with their corresponding estimation of the elasticity and the viscosity as measured in the experimental laboratory at the

industrial site. This constitutes a major challenge as the number of samples is very limited to build reliable data-driven

models. First, the selection of features is carried out in order to reduce the number of important features using the

Spearman correlation identification. Next, in order to further reduce overfitting, a vector selection is used to reduce

the number of hyperparamters to the data-driven model using the least angle regression with a hyperbolic truncation

scheme. This leads to build sparse polynomial expansions and yet, the results demonstrate that despite using all these

advanced methods, the data-driven model exhibits tremendous variability on the output results. For this reason we

introduced bagging which is a well-established ensemble method used in Machine Learning. This method is known to

be efficient and easy to implement technique to reduce models variability. The introduction of bagging in the present

case has helped to achieve reliable data-driven model and the validation error decreased by two orders of magnitude

for the case of elasticity estimation and one order of magnitude in the case of viscosity estimation. This is mainly

attributed to the fact that the viscosity is a very variable parameter and it also depends on the fluid dynamics occurring

in the pipeline.

A sensitivity analysis has also been performed in this study supporting the selection of the PCE data-driven model

over other ML methods. The sensitivity analysis is carried out for the considered data and the Sobol indices are

analytically computed from the spectral coefficients. The computed results show that the variability of the elasticity

parameter is mainly explained by the fluid density, the solid rate and the heavy metal chemical components (Magne-

sium and Allumine). For the viscosity parameter, there is not a single element that outperfoms the others regarding the

sensitivity analysis. However, one major conclusion here is that the variability of this parameter is not highly affected

by the variability in the granulometry distribution. In summary, this work paves the way towards understanding the

dynamics of the phosphate slurry in pipelines. It should also be stressed that while the results of the present study

seem to be encouraging, having more data will surely reduce the volatility of the ML tools. There are several ways

in order to improve the current model when additional data are obtained such as the use of reinforcement learning.

The use of the PCE based methods on arbitrary distributions relaxes the challenges given by heterogeneous data, the

use of advanced methods of bagging can also definitely help into tackling this issue. One of the main perspectives of

the present study includes the coupling of this data-driven model with hydrodynamical models in order to represent

the flow taking into account the operational settings (such as the air compressibility, the pipe material and the pipe

diameter among others). These parameters were not taken into account in the present model as they do not exhibit

aleatory behavior. Furthermore, the present methodology could be adopted in several industrial activities such as met-

allurgy, plastic-based industry, food-processing, mine extraction, etc. Especially when data in materials, properties,

parameters, exhibit a considerable amount of stochasticity. Data-driven PCE could be adopted in order to control the
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stochastic parameters whose variability considerably impacts the variability of the quantity of interest.
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Mechanics/Revue Européenne de Mécanique Numérique 15 (1-3) (2006) 81–92.

[29] G. Blatman, B. Sudret, Adaptative sparse polynomial chaos expansion based on Least Angle Regression, Journal of Computational Physics

230 (6) (2011) 2345–2367.

[30] R. G. Ghanem, P. D. Spanos, Stochastic finite elements: a spectral approach, Courier Corporation, 2003.

[31] C. Soize, R. Ghanem, Physical systems with random uncertainties: Chaos representations with arbitrary probability measure, SIAM Journal

on Scientific Computing 26 (2) (2004) 395–410.

[32] S. Oladyshkin, W. Nowak, Incomplete statistical information limits the utility of high-order polynomial chaos expansions, Reliability Engi-

neering & System Safety 169 (2018) 137 – 148.

[33] E. Torre, S. Marelli, P. Embrechts, B. Sudret, A general framework for data-driven uncertainty quantification under complex input dependen-

cies using vine copulas, Probabilistic Engineering Mechanics 55 (2019) 1 – 16.

[34] B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliab Eng Syst Safety 93 (7) (2008) 964–979.

[35] S. Dubreuil, M. Berveiller, F. Petitjean, M. Salaün, Construction of bootstrap confidence intervals on sensitivity indices computed by polyno-

mial chaos expansion, Reliability Engineering and System Safety 121 (2014) 263 – 275.

[36] B. Iooss, P. Lemaı̂tre, A review on global sensitivity analysis methods, in: Uncertainty management in simulation-optimization of complex

systems, Springer, 2015, pp. 101–122.

[37] E. Borgonovo, E. Plischke, Sensitivity analysis: A review of recent advances, European Journal of Operational Research 248 (3) (2016) 869

– 887.

[38] O. Asserin, A. Loredo, M. Petelet, B. Iooss, Global sensitivity analysis in welding simulationswhat are the material data you really need?,

Finite Elements in Analysis and Design 47 (9) (2011) 1004 – 1016.

[39] D. Barthés-Biesel, A. Acrivos, The rheology of suspensions and its relation to phenomenological theories for non-newtonian fluids, Interna-

tional Journal of Multiphase Flow 1 (1) (1973) 1–24.

[40] E. Hinch, L. Leal, Constitutive equations in suspension mechanics. part 1. general formulation, Journal of Fluid Mechanics 71 (3) (1975)

481–495.

[41] A. Leonov, Constitutive equations for viscoelastic liquids: Formulation, analysis and comparison with data, in: D. Siginer, D. D. Kee],

R. Chhabra (Eds.), Advances in the Flow and Rheology of Non-Newtonian Fluids, Vol. 8 of Rheology Series, Elsevier, 1999, pp. 519 – 575.

25



[42] D. Xiu, G. E. Karniadakis, The wiener–askey polynomial chaos for stochastic differential equations, SIAM Journal on Scientific Computing

24 (2) (2002) 619–644.

[43] O. G. Ernst, A. Mugler, H.-J. Starkloff, E. Ullmann, On the convergence of generalized polynomial chaos expansions, ESAIM: Mathematical

Modelling and Numerical Analysis 46 (2012) 317339.

[44] R. Askey, J. A. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Vol. 319, American Mathe-

matical Soc., 1985.

[45] X. Wan, G. E. Karniadakis, Beyond wiener–askey expansions: Handling arbitrary pdfs, Journal of Scientific Computing 27 (1) (2006) 455–

464.

[46] H. Lei, J. Li, P. Gao, P. Stinis, N. A. Baker, A data-driven framework for sparsity-enhanced surrogates with arbitrary mutually dependent

randomness, Computer Methods in Applied Mechanics and Engineering 350 (2019) 199 – 227.

[47] E. Parzen, On estimation of a probability density function and mode, The annals of mathematical statistics 33 (3) (1962) 1065–1076.

[48] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, 2010.

[49] S.-K. Choi, R. V. Grandhi, R. A. Canfield, C. L. Pettit, Polynomial Chaos expansion with Latin Hypercube Sampling for estimating response

variability, AIAA journal 42 (6) (2004) 1191–1198.

[50] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least angle regression, The Annals of Statistics 32 (2) (2004) 407–499.

[51] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123–140.

[52] L. Breiman, Random forests, Machine learning 45 (1) (2001) 5–32.

[53] R. Ghanem, D. Higdon, H. Owhadi, Handbook of uncertainty quantification, Vol. 6, Springer, 2017.

[54] C. Prieur, S. Tarantola, Variance-based sensitivity analysis: Theory and estimation algorithms, Handbook of uncertainty quantification (2017)

1217–1239.

[55] I. M. Sobol’, On sensitivity estimation for nonlinear mathematical models, Matematicheskoe modelirovanie 2 (1) (1990) 112–118.

[56] T. Crestaux, O. L. Matre], J.-M. Martinez, Polynomial chaos expansion for sensitivity analysis, Reliability Engineering & System Safety

94 (7) (2009) 1161 – 1172, special Issue on Sensitivity Analysis.

[57] S. Marelli, B. Sudret, UQLab: a framework for uncertainty quantification in MATLAB, in: Proc. 2nd Int. Conf. on Vulnerability, Risk

Analysis and Management (ICVRAM2014), Liverpool, United Kingdom, 2014.
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