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HIGHLIGHTS

Workplace scenarios using explosives are analyzed with a Bayesian approach
based on artificial intelligence (Al)

Workers at different corporate hierarchies can engage with Bayesian modeling
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Uncertainty reduction is computed for accident risk groups
Latent class analysis can avoid cognitive biases in safety policy forml@
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Abstract

A probabilistic Structural Equation Model (SEM) based on a Bayesian network construction
is introduced to perform effective safety assessments for~technicians and managers
working on-site. Using novel Al software, the introduced methoadology aims to show how to
deal with complex scenarios in blasting operations, where typologically different variables
are involved. Sequential Bayesian networks, learned from the data, were developed while
variables were grouped into different clusters, representing related risks. From each
cluster, a latent variable is induced giving rise to afinal-Bayesian network where cause and
effect relationships maximize the prediction of the aceident type. This hierarchical structure
allows to evaluate different operational strategies;,as well as analyze using information
theory the weight of the different risk groups. Theresults obtained unveil hidden patterns in
the occurrence of accidents due to flyrock phenomena regarding the explosive employed or
the work characteristics. The integration“of,latent class clustering in the process proves to
be an effective safeguard to categorize the variable of interest outside of personal cognitive
biases. Finally, the model design“and the software applied to show a flexible workflow,
where workers at different corporate levels can feel engaged to try their beliefs to design
safety interventions.
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1. Introduction

Project-execution requires meticulous management of the numerous risks present at
the different operational stages. Recent works have underlined the need to evaluate
risks from a holistic point of opinion, where technical aspects are connected with
human and organizational factors [1,2]. Therefore, the challenge has been centered on
the formalization of models that merge these three realities. To this effect, the industry

has attempted to increase the process efficiency, improving accessibility, quality and



reducing the performance time under a framework committed to safety and the
environment. However, one of the main problems encountered is how to model the

propagation of uncertainty to the extent that the complexity of systems grows [3].

Complexity in the workplace has been furthered, in many cases, by abstraction and
lack of cohesion in the integration of corporate hierarchies [4]. Risk analysis results
obtained in the strategic levels are frequently hard to put through in practice, with
operational levels regarded as the chief culprits when the targets are not accomplished.
It has been demonstrated that labor responsibility affects decision making under risk
[5]. In work scenarios where technical complexity and high competitiveness prevail,

highly pressured managers and technicians prefer to take risk-averse decisions [6].

A particularity in complex systems is the impossibility to satisfactorily predict an
accident from the study of its components [7]. The whole system should be considered
in a deep evaluation of uncertainty and its network’s propagation. While these methods
deepen the understanding of the system, from-the perspective of risk analysis the focus
has always been on how to treat.uncertainty [8]. Many researchers, including Levenson
[9], Hollnagel [10] or Aven and Zie [11] have discussed the advantages and limitations
of the application of probability-based approaches in models such as the System-
Theoretic Model .and Processes (STAMP) or the Functional Resonance Analysis
Method (FRAM). Indeed, the lack of available information and the scarcity of resources
to create accurate models was the major drawback for the probability approach

acceptance [12].

Occupations regarded as dangerous increased notably this challenge. An example of
this is the mining industry, which is one of the industries with the highest scores of
occupational accidents worldwide [13,14]. Mining engineers are needed to assure the
success of operations deployed with the right decisions for working conditions

continuously changing. In the interim, occupational risk assessment in construction



sites was experiencing important advances during the last years, both in the
techniques [15-17] and in the prediction capabilities [18-20]. Particularly, a better
understanding was reached regarding the safe use of explosives to excavate the rock
mass. Additionally, the emergence of new models allowed to successfully predict the

environmental impacts associated with ground vibration or flyrock phenomena [21-22].

However, the results obtained thought theoretical models’ fitting, usually take a long
validation time, and thus, imposing a delay in the implementation of a warkday routine
[23-24]. This situation leads to the necessity of contrasting decisions, accordingly to the
changing business conditions. The problem is that the technical.staffis still resistant to
the incorporation of digital tools based on Al techniques as-the human creativity is not

required in the same degree to face the work challenges [25].

To tackle this issue, a probabilistic SEM based_on Bayesian networks is developed
using the last Al software technology available. The aim is to provide an innovative
digital approach that also considers expert.knowledge as criteria to analyze different
scenarios and define strategies in a practical manner. This resolution is anticipated to
offer flexibility in the workplace and, at the same time, bring down the traditional

preoccupation of engineering’complex systems.

The great evolution of Al and the implementation of its techniques in many computer
applications span aj)new horizon, making feasible to perform tasks that were simply
impossible some 'years ago. This is the case of Bayesian networks, which have been
during decades an indisputable analytical element of human reasoning under
uncertainty. Yet, it is their current implementation in decision-support systems with
increasingly improved software estimation capacities [26] what makes possible to learn
them from data and thereby becoming an ideal tool for on-site workplace analytics.
Their precision together with their powerful graphical outputs allows orientation to the
analysis and evaluation of possible scenarios and strategies, avoiding carrying out

arduous programming tasks [27].



This access is used to study the reasons why blasting accidents occur in complex
mining and civil works. The model built aims to unveil relevant contributions that help-
out technicians to design custom safety interventions. Additionally, this research is also
intended to promote Al in engineering applications, developing a renewed probabilistic
model that can obtain reliable results reflecting the difficult nature of the work context.
To that end, expert criteria are used as a solution and complement when there is
scarce information, including a new safeguard against the cognitive biases that
employees may induce. It is important to emphasize that the prometiontof these
characteristics could situate Al as a disruptive element in decision-making not only in
strategic phases but also in the operative parts of a project. Digital transformation in the
workplace is expected to make professionals adapt their.job tasks to Al as information
specialists [28]. This could have a great impact in_areas _such as the mining sector

where the incorporation of technology is slower in‘comparison to other industries [29].

The manuscript continues as follows: Section 2 explains the methodology employed to
build a probabilistic SEM based on the latent class clustering of a target variable.
Section 3 applies this methodology to the study of accident risks in the execution of
blasting operations usingwan innovative Al software tool. Section 4 includes a
discussion of the resultsiobtained and how they can contribute to the reduction of

accidents. Finally, concluding remarks and future prospects are made in Section 5.

2. Methodology for combining latent class clustering and Bayesian
networks in a probabilistic SEM

The methodology proposed is based on the principles exposed by Conrady and Jouffe
[30] about Probabilistic Structural Equation Models (PSEMs), which represent a
conceptual evolution from traditional SEMs. The origin of SEM dates back to 1918
when geneticist Sewall Wright developed path analysis [31]. From that moment on,

years of development were conditioned to the growing needs of both researchers and



social science practitioners to understand latent phenomena [32]. In 1973, Jéreskog
[33] exposed the maximum likelihood for estimating SEM with computer intensive
implementations. Since then, SEM has become very popular, continuing its
development during the 21°" with the adoption of multi-level and Bayesian approaches

[34], and the introduction of algorithms from Al.

In this research, PSEMs are based on a Bayesian network structure, partially:or fully
machine learned from data, where all relationships are probabilistic and nenparametric,
facilitating the incorporation of categorical variables. However, when.modeling complex
scenarios, it becomes extremely difficult to accurately define representative subgroups
of analysis. For this reason, latent class modeling is introduced as-=a powerful first step
to obtain meaningful segments of a specific attribute of interest to further PSEM

development and so, tailoring interventions accordingly to specific subgroups.

3.1 Latent Class analysis

Latent Class Clustering (LCC) isman unsupervised data mining task that involves the
identification of unobserved’ (latent)’segments within a population. The latent classes
are established by using theiresponses of the cases on a set of observed variables
(indicators). Cases in a specific latent class are homogeneous in their responses to
these indicators; “while cases within different latent classes present important
dissimilarities. In a formal approach, a latent class cluster model (LCM) is represented
by Kidistinct classes of a nominal latent variable X. The latent variable X is measured
with-‘arset of observed variables, Yi,..., Y, where one observation can only be a
member of one k class. Noting that P represents probability and Py, denotes the
probability of a certain observation being in a latent class (k=1, 2, ..,K), the

expression of an LCM is given by
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where P yjxr) is the conditional probability of obtaining a case with a response pattern
Yi=(y1,.-.yn), given its belonging to the k class of a latent variable X. The model
parameter estimation is normally carried out with iterative numerical methods. In this
study, the criterion of maximum likelihood is used, although recent research in the area
is starting to implement Markov Chain Monte Carlo (MCMC) and Gibbs sampling [35].
When the LCM is computed every case is classified to their most likely, latent class.
This is directly achieved using Bayes’ theorem to obtain the posterior-probability of a

case membership in a certain k class

Pyiixiy Poxr

P(thYi) = 2

Py iy

The goal of LCC is to obtain the number.of clusters that best represent reality. There
exist different possibilities to assessithe model fit. The rise of information theory during
the last years has displaced traditional methods sometimes questionable because of
their strong assumptions [36]. For this reason, different information criteria were
calculated to determine the optimum number of discrete and non-overlapping latent
classes. Concretely, three representative parsimony indices widely found in the
literature were used: (i) Akaike information criterion (AIC) [37]; (ii) Consistent Akaike

information/criterion (CAIC) [38]; and (iii) Bayesian information criterion (BIC) [39].

3.2 Unsupervised Bayesian learning
The PSEM starts with the creation of a global Bayesian network. For that purpose,
unsupervised learning is an extended first step in machine learning applications when a

human expert is insufficient to build a model that accurately represents reality. To carry



out this, the variable of interest, previously segmented with LCC, is excluded from the
rest of the covariates. The temporary excluded variable constitutes the target node of
the probabilistic SEM and it is undesired that becomes part of the Bayesian network
structure that it will be used for discovering hidden patterns. Granted the importance of
getting a robust network from which later perform posterior analyses, divers set of
unsupervised learning algorithms are proven to create different network structures. The
network whose structure offers the best performance is selected, increasingithe

probabilities of obtaining the optimal resolution for the topic under study.

3.3 Network variable clustering

The purpose of this step is the identification of relevant'groups within the variables
used in the unsupervised Bayesian network computation. For this purpose, hierarchical
agglomerative clustering was performed using.a minimum arc force value, below which
clusters are not merged. For computing the arcforce, the Kullback-Leibler Divergence
(Do) is used to measure the strength of.a direct relationship between two nodes. In the
context of machine learning,/the Dy is often called the information gain [40], which
compares two joint probability distributions (JPDs) P and Q. For probability distributions

of a discrete random.variable X, the Dg_is defined as

P
Dis(Pr110:) = ) Prloga - 3

which, constitutes the expectation of the logarithmic difference between P, and Q.. The
stop threshold and the maximum cluster size depending on the purpose of variable
clustering. If the goal is exclusively dimensionality reduction, cluster size should have a
high value to obtain a few groups of interest. Nonetheless, when building PSEMs, a

value between 5 and 7 is advisable [30] to obtain latent variables with a meaningful and



manageable number of manifest variables. This approach is highly dependent on policy
makers who have here the opportunity to evaluate different clustering strategies.

3.4 Model completion

The target node, excluded in the second step, was introduced in the Bayesian network
together with the manifest variables and their respective latent factors. This action
completes the PSEM generating a final Bayesian network where the latent factors and
the target node conform an overall representation of the study domain; To the
accomplishment of an authentic SEM-type network structure, the constraint of all the
links to the target node occurs directly with the latent factors, was introduced. In this
manner, the manifest variables keep connected exclusivelyto their latent factors

depicting two differentiated levels of complexity.

3. Engineering application

3.1. Data description

In this case study a total of 163 records, of‘accidents from blasting operations, that took
place in complex mining and_civil engineering activities between 2009 and 2014, was
used. The dataset was gathered from accident reports supplied by the companies.
However, further information was collected through personal interviews and
questionnaires seonducted to prevention technicians and relevant employees. This
allowed to-adequately register the effects of adverse weather conditions, poor blasting
designs, and.deficient communications as key elements for the complexity of blasting

operations’

All the data available was used to specify a set of variables that illustrate the broad
range of conditions existing when an accident happens. In effect, this approach opens
the possibility to the internalization of the “accident risk”, which stands for the
probability of a certain accident’s typology to occur. In total, 28 variables were outlined,

having each variable two or three possible outcomes representing the characteristics of



the accident. The variables can be grouped in two categories: (i) General variables:
these include risk factors widely discussed in the literature [41,42] as common causes
of accidents at work (e.g. Operator training, machinery age or order and cleanliness)
(ii) Specific variables: these represent factors that are associated exclusively with the
activity developed (e.g. explosive conditions or state of haul roads). See in Appendix |

a description of all the variables employed in this study.

3.2. Segmentation of blasting accidents

As the final variable and target node of the PSEM, the accidentyrisk=is introduced
describing the cause of why workers suffered an accident."A total of 11 different
accident typologies were identified (Table 1). To obtain representative groups of study,
the latent class analysis was carried out using XLSTAT=LG/2018 excel add-in. To find
the optimal number of clusters AIC, CAIC and BIC€_information criteria were estimated

through the generation of 10 evaluation models”(1 to 10 clusters).

These information criteria favor a model.that produces a high log-likelihood value using
relatively few parameters, where a lower value represents a better fit. The growth in the
number of clusters diminishes the criteria values, but a high number of clusters also
provoke more complexity.yThus, it is necessary to determine the best tradeoff between
complexity and’statistical fit. In Fig. 1. goodness of fit is illustrated according to the
clusteringstructure; showing the three criteria its lowest value when the number of
clusters is 5=This is consistent with Depaire et al. [43] who adopted the model for
which "CAIC and BIC stabilize their improvement. In this regard, De Ofia et al. [44]
stressed the importance of ignoring a marginal improvement in a statistical fit if this

implies a notable increase in the complexity.

10
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Fig. 1. Estimation of AIC, CAIC, and BIC increasing the model number of clusters.

Once the number of clusters is ascertained, “it, iswrequired the correspondent

characterization. Indeed, accidents involving objects are almost entirely found in cluster

1, representing 92% of accidents for t¢his group. An exception is an entrapment

between objects which constitutes 41%"of.cluster 4, been linked to accidents related to

overexertion (38% of cluster 4)”Forcluster 2, it was found that 96,5% of the accidents

occur due to falls from the jsame or different height. Projection of fragments and

particles constitute 87%, of the accidents in cluster 3. Lastly, thermal, electrical or

chemical exposures are primarily found in cluster 5 and corresponding to 79% of the

cases in this.group. A worldwide overview of the newly obtained clusters is represented

in Table.1.
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Table 1

Accident typology and cluster definition for latent class analysis.

Accident typology Cluster  Characterization Size %

Detachment or falls of loose objects

Stepping on objects

C1 . . . . 67.82%
Coallisions with mobile or stationary objects Collisions or falls involving objects
Blows from objects or equipment
Falls from the same/different height Cc2 Falls from the same/different height 12.07%
Projection of fragments and particles C3 Projection of fragments and particles 8.62%
Entrapment between objects

C4 Entrapment and overexertion 5.75%
Overexertion
Thermal contact
Exposure to electrical contacts C5 Exposure to physical or-chemical agents 5.75%

Exposure to caustic and corrosive substances

3.3. Initial Bayesian design

The 28 variables defined, excluding theraccident risk, are used to create a primary
unsupervised Bayesian model. For network modeling, BayesialLab software version 8.0
was used. This Al platformyprovides a modermn environment for machine learning
through a wide range of structural learming. All unsupervised learning algorithms in
BayesialLab are based on the Minimum Description Length (MDL) [30], which is a two-
component score’widely used in Al applications that must be minimized to obtain the
best|structure in terms of bits required for representing the model, DL(B), and its

underlying data, DL(D|B). Formally, the MDL is expressed as

MLD(B, D) = aDL(B) + DL(D|B)

where a represents the network structural coefficient. Therefore, for each possible
Bayesian network the MDL score is computed, where minimizing the score implies

assessing the quality of each candidate network with respect to the available data. By

12



comparing the MDL score of the resulting unsupervised networks, the one built with
Maximum Weight Spanning Tree (MWST) algorithm (Fig. 2) produces an MDL score of
2,742.277, slightly lower than the other algorithms performed, such as Taboo, EQ or

SopLEQ whose values range from 2,791.554 to 2,981.634.

Column charge (type of ?
explosive) Shift duration
\ {
Type ogtonatnr

) Shifkwork Out’soﬂ‘r';:ing in the same
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Operator experience . g Time of the accident
O / ‘@ Operator age :
S - / .
Blasting prmoco‘r-—AO\ Operator seniority b
Signpastin}md Operator assistance Operator assigned work
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Detonatio%%n the é
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| X
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Flyrock occurrence

Machinery maintenance b
Measures against flyrock ”O
Water in the blast hole

State of haul roads

Fig. 2. Unsupervised Bayesian network using MWST algorithm with variable clusters coded in

colors

The network established is evaluated in terms of its probabilistic relationships between
the nodes:"The, BayesiaLab’s variable clustering algorithm identifies clusters of
variables by,using arc force as a probabilistic measure based on the Dy. (section 3.3).
Initially;.each manifest variable is taken as a distinct cluster where the DKL merges
gradually the closest variables into different groups. For building a comprehensible
PSEM, 5 clusters are selected with groups between 3 and 7 variables (Fig. 2).
However, this process offers the possibility of editing the proposed clusters at any time

according to expert criteria.
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3.4. Conception of multiple networks

All the variable clusters embedded in the initial Bayesian model are divided into
independent Bayesian sub-networks with the formalization of a new latent factor
variable for each structure. This procedure represents a key step in the PSEM due to
the possibility of disaggregating information for modeling specific conceptual frames
that are unknown beforehand. The only condition that is necessary to define®is the
number of states in the future latent factor. In this case, this parameter has:beenyset
between 2 and 5, allowing data clustering algorithm in BayesiaLab to determine the

optimal number of states for representing the JPD.

Upon completion of this process, the PSEM layout shows 5 Bayesian sub-networks
with the induced latent factors surrounded by their manifest variables (Fig. 3). These
new Bayesian models follow the same color code set\for the clusters defined in Fig. 2.
Each latent factor (white node) was characterizedyby a name representative of the
conceptual frame that embodies. For this, task, mutual information (I) between the
manifest variables and the latent factor was computed in order to identify the most

influential variables regarding-the knowledge of the latent factor.

14
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Fig. 3. Multiple Bayesian networks geénerated from variable clustering and arcs’ mutual

information analysis

In Fig. 3 the mutual information/analysis is displayed in a box over the networks’ arcs,
where the numbers/in the top reflects the | value. Nevertheless, to provide clarity in the
interpretation.<of jthe 'relative mutual information (RMI) is likewise presented. For
example,/in the gray sub-network (Fig. 3) the variable time of the accident shows the
highest Ml value (0.5417 bits). The blue number shows the RMI regards the child node,
whereas the red number refers to the parent node. Thus, the knowledge of the time of
the accident contributes to reducing the uncertainty regarding the latent factor by
70.63%. Conversely, knowing the latent factor the uncertainty is reduced for the time of
the accident by 40.66%. Other variables having strong predictive importance of this

sub-network are the day of the accident, shift work, and shift duration. Therefore, it is
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concluded that this sub-model could be denominated “Work characteristics”. The same

reasoning was given for the continuing sub-nets.

3.5. Final Bayesian structure

The last step in the PSEM building process incorporates the variable accident risk,
which becomes at this point available for machine learning. Given the objective of
obtaining a probabilistic network with an SEM typical composition, it is“necessary to
guarantee the creation of a final Bayesian model with a hierarchicalsstructure. Taboo
learning is an unsupervised algorithm in BayesiaLab that ensures thisyconstraint. This
algorithm has the capability to ascertain a new structure on top of-an existing network
and at the same time forbid new relations between the targetnode (accident risk) and
the manifest variables. This is possible due to‘.the adaptive memory of this
metaheuristic, which conducts the search method torescape the trap of local optimality
[45]. Taboo search employs a local or neighbarhood search procedure to move from
one potential outcome x to an improved solution x' until the stopping criterion is
fulfiled. The solutions accepted to the new neighborhood N(x') are selected using
memory structures, typically,Known as taboo lists.

The emerging model.delivered after completing the learning process is shown in Fig. 4.
As it turs out/in_a first layer the manifest variables are connected to their respective
latent factors, and,/in a second layer all the latent factors are linked to the accident risk

according torthe new relations discovered.

16
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Fig. 4. Final PSEM structure with two distinctlevels of complexity built using Taboo algorithm

The final structure elucidates ‘that the accident risk is directly linked to work
characteristics, blasting. design’ and corporate accountability. However, in order to
analyse the influence of all the latent factors in the occurrence of accidents, it was
assigned manually the probabilistic relation between accident risk with machinery and,
order and cleanliness (red lines in Figs 4, 5). In Fig. 5. arcs’ mutual information was
computed exclusively between the latent factors and the accident risk. The results
obtaified show the multicausal nature of accidents. Blasting design is the factor that
provides a higher reduction of uncertainty regarding the accident risk by 2.52% on
average, which is like corporate accountability and work characteristics, with 1.82%
and 1.42% respectively. Finally, machinery together with order and cleanliness have
the lowest influence, which justifies that these arcs were not added to the network built

by the Taboo algorithm due to its weak probabilistic relationships.
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3.6. Model validation

Validation of the built PSEM is of capital importance to sustain the matching between
the obtained results and reality. In this study, two types of validation tests are
considered to assess the reliability -6fsthe. model: data perturbation and contingency
table fit (CTF). The data perturbation algorithm implemented in BayesialLab consists of
of performing cross-validation, adding random noise to the weight of each observation
of the original dataset/This disturbance is generated from a normal distribution with a
mean of 0 and an, initial standard deviation of 1. To examine the robustness of the
models, the, networks” MDL score is analyzed. Upon realization of this algorithm, it is
found that the,/ score has changed from 55,986.204 to 54,828.156, although no
variations are perceived for the probabilistic relationships of the model (Fig. 4). Hence,
this/validation process has allowed escaping to a local optimum, obtaining a final model

with a lower MDL that offers reasonable confidence.

The CTF is a useful metric to measure the quality of the induced factors. The main
benefit of using CTF in BayesiaLab as a quality measure is that offers normalized

values ranging from 0% to 100%. A higher CTF value implies a good representation of
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the JPD. A common alert threshold below which the factor should be relearned is 70%,
but in those cases, including more than 5 manifest variables per sub-network, this level
should be reduced [30]. In Table 2 are shown the CTF values obtained for the latent
factors induced at the conception of multiple networks stage. Only work characteristics
are below the alert threshold but given that this group holds 7 manifest variables this

result seems totally acceptable.

Table 2

Performance indices of induced factors during multiple clustering

CTE Mean Hypercube

Induced Latent Factor Purity cells per state
Work Characteristics 65.44% 98.61% 106.02
Machinery 96.26% 99.88% 23.10
Corporate accountability 79.97% 100.00% 172.74
Order and cleanliness 96.49% 100.00% 5.14
Blasting design 100.00% 100.00% 6.00
Mean 87.63% 99:69% 62.60

4. Results and discussion

The completion “of the PSEM implies that the integrative modeling process that
conceptualizesithe accident risk is available to carry out causal inference. A major
advantage of creating a probabilistic SEM using Bayesian networks is the possibility of
computing /the posterior probabilities of all nodes in the network omni-directionally,
regardless of arc direction. This potentially allows exploiting to the informative content

of the model for policy analysis.
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4.1. Design of safety interventions

The design of safety interventions that minimize future accident risk in blasting
operations is a fundamental pillar of this study. As an application example, in Fig. 6 is
shown the latent factor blasting design together with its corresponding manifest
variables. The factor induced is labeled with 3 cluster state representatives of the JPD
generated during the multiple cluster algorithm application (section 4.4). Given the
marginal distribution of the states, Cluster 2 constitutes the most frequent, scenario
across the manifest variables. Electric detonators, emulsion as column, charge and
difficult terrain with soft rock constitute a common pattern (91.95%) in blasting
accidents. This becomes obvious when hard evidence is ;set.for Cluster 2 (Fig. 6).

Cluster 1 and 3 represent scenarios much less likely to eccur.

[BLASTING DESIGN] [BLASTING DESIGN]
4 60% Cluster 1 0.00% Cluster 1
91.95% Cluster 2 100.00% Cluster 2
3.45% Cluster 3 0.00% Cluster 3
Type of detonator Type of detonator
2.30% Electronic 0.00% Electronic
1.72% Non-electric 0.00% Non-electric
95.98% Electric 100.00% Electric
Column charge (type of explosive) Column charge (type of explosive)
5.75% ANFO 2.50% ANFO
89.66% Emulsion 97.50% Emulsion
4.60% No column charge 0.00% No column charge
State of the drilling floor State of the drilling floor
3.45% Hard rock, good conditions 0.00% Hard rock, good conditions
96.55% Soft rock, difficult terrain 100.00% Soft rock, difficult terrain

Fig./6. Probability distribution results for “blasting design” sub-network

The” PSEM group assessment offers valuable insight into the necessary actions to
implement aiming the reduction of blasting accidents. Nevertheless, future prevention
programs are thought to put a premium on priorities [46]. By using mutual information
blasting design was identified as the most influential factor regarding risk accident (Fig.
5). This can be extremely useful when companies must sacrifice resource allocation in

priority rankings due to budget constraints. The PSEM developers can contribute to
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going through strategic planning that promotes efficient interventions by maximizing the

yield on investment (ROI).

4.2. Training and accident analysis

A classic challenge in blasting operations is flyrock phenomena. The fierce and
uncontrolled projection of rock fragments due to the energetic effects of the blast is one
of the main accident risks (Table 1). To contain the outcomes of these issues has
always been a major topic for engineers. In order to address this issue, Bayesian
inference is carried out to analyze the causes behind accidents due to the projection of
fragments and particles, which are a direct consequence of flyrock. The posterior
probability computed is shown in Fig. 7 for several nodes in the model that represent a
special interest in flyrock occurrence. It was found that signposting and signaling are
insufficient in 84% of these accidents, whereas a blasting protocol with a defined blast
area security is followed just by 13.91% of the accidents. This lack of involvement of
operators and contractors with the protocols can be reflected when assessing the
measures undertaken against flyrock. Special protection systems were only adopted in
8.42% of the accidents, being a common unsafe practice the use of machinery

(82.36%) as a protective element.

Regarding geology and rock structure, a total of 88% of accidents occurred in soft rock,
where difficult terrain with the existence of joints and fissures favors the release of
energy contributing to flyrock generation. In this regard, blasthole overloading is a risk
factor to prevent and emulsion correct charge must be brought into consideration (Fig.
6). Lastly, the work execution deadline is also found to be linked with the projection of
fragments in blasting operations. The highest ratio (88.80%) of delayed works is a

precursor to get around restrictions on occupational health and safety.
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Accident Risk

0.00%
0.00%
100.00%
0.00%
0.00%

16.00%
84.00%

;

-/
e, VGG SF](}(¢]P§]°”

Signposting and signalling

C1 Falls from the same/different height

C2 Collisions or falls involving objects

C3 Projection of fragments and particles
C4 Entrapment and overexertion

C5 Exposure to physical or chemical agents

Good and clear
Insufficient

Blasting protocol

;

13.91%
86.09%

Yes
No

State of the drilling floor

?

12.00%
88.00%

Hard rock, good conditions
Soft rock, difficult terrain

11.20%
88.80%

!

Works execution deadline

On time
Delayed

Measures against flyroc

8.42%
9.22%

k

Special protection systems
Natural barriers and facilities

?

Fig. 7. Inference results in some variables when hard evidence is set for “Projection of
fragments and particles” in accident risk

82.36% Machinery

These results are a powerful source of\information about training courses about the
safe use of explosives. Having a trained workforce with knowledge about occupational
risks is critical to reduce blasting accidents. However, there are differences in how
workers perceive risks [47]»"The reasons why this is happening can be establish in the
failure of training programs and communication. Many of these programs are based on
regulations which deal with general aspects of the design and execution of blasting
operations. Traditionally, the purpose of this approach is the diminution of the
accident’s risk by ensuring workers' commitment to safety regulations. Inevitably, over
theyryears, this has failed to owe to the lack of adaptation and capacity required to

explain how the different risks interact in a complex system like this.

In the herein case study, the introduction of Al solutions at the formative process stage
constitutes an example of how disruptive technologies can be used to reduce blasting

accidents. In Fig. 8 is shown the inference simulation for collaboration between workers
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and its impact on work execution deadline and, signposting and signaling. When an
operator has assisted, the works improve their execution time by 17 percentage points
having a good signposting and signaling now over half of the time (52.63%). Indeed,
the possibility of using this kind of tools can provide the responsible entities with a

better understanding about safe practices and uncertainty propagation.

Works execution deadline Signposting and signalling
10.92% On time 13.22% Good and clear
89.08%) Delayed 86.78% Insufficient
Works execution deadline Signposting and signalling

27.00% On time 52.63% Good and clear
73.00%) Delayed 47.37% s Insufficient

Operator assistance

10.92% Yes, other workers help
89.08% No

Operator assistance

100.00% [ © Yes, other workers help
0.00% No

Fig. 8. Intercausal reasoning for the analysis of “operator assistance” impact in blasting
operations

4.3. The power of clustering networks

Despite the great advances in machine learning during the last years, cluster analysis
still represents a versatile technique that incorporated in new Al software systems
allows unifying the best of the old with the best of the new. In this study, two different
clustering techniques were applied in the development of the PSEM. First, LCC offered
a meaningful segmentation of blasting accidents in statistical terms, where 5 major
groups were identified (Table 1). This procedure avoids cognitive biases that expert

criteria can include providing a solid foundation for the construction of the PSEM.

In the second place, a hierarchical agglomerative clustering using the Kullback-Leibler
Divergence was created to find out relevant groups of interest between the variables in
the model. For this study, 5 variable clusters were selected from which 5 Bayesian sub-
models were generated (Fig. 3). The validation metric CTF with a mean of 87.63%
(Table 2) shows that little information was lost by inducing the latent variables.
Therefore, this represents a good balance between conceptual gain and information

loss.
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Network variable clustering has the advantage of involving engineers and analyst
teams so they can assess their expert judgement. Consequently, a broad range of
stakeholders, regardless of their quantitative skills, can engage in an easy way with
Bayesian network modeling and contribute with their expertise to produce value-based
decisions. This may include policy-related considerations of risk and safety that are not

covered by the PSEM.

5. Conclusions

This article describes the construction of a probabilistic SEM by using Bayesian
networks in order to analyze the risk of accident in complex blasting operations. The
methodology proposed counts as an innovating element with the incorporation of LCC
as an initial step in the modeling process to reduce the cognitive biases that engineers
intrinsically make when designing the strategic planning of safety interventions. The
model built combines two hierarchical structures where a total of 28 manifest variables
representative of accident occurrences is grouped into 5 sub-networks with a latent
factor representing its conceptual frame. Each latent factor induced is machine learnt to
the accident risk where information theory is used to assist the analyst about which

factors have a higher impact on the accident occurrence.

The functioning of the model exhibits its potential to quantify the uncertainty associated
with the causes of accidents, offering policy-makers the possibility to infer multiple risk
scenarios that shed light about the strategies that are more likely to succeed. The Al
software employed to set up the model shows a smooth workflow with highly
sophisticated graphical results. This implies the evolution of Bayesian networks and
many Al platforms, which have improved their existing visualization tools decreasing
the challenge that supposed in the past to explore complex systems and their
unmanageable structures for non-statisticians. Finally, the introduction of PSEM into

safety policy design can boost the level of resilience for an organization responding in a
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more flexible way to threats, anticipating better potential risks. Future research requires
the implementation of solutions like the one proposed to solve complex problems in
different domains that seemed to be intractable until very recently. This scenario
suggests the necessity to keep bringing unstructured data into play creating Al

solutions based on real experiences that have response capacity.
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