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Abstract

Segmentation is essential for medical image analysis to identify and localize

diseases, monitor morphological changes, and extract discriminative features

for further diagnosis. Skin cancer is one of the most common types of can-

cer globally, and its early diagnosis is pivotal for the complete elimination of

malignant tumors from the body. This research develops an Artificial Intel-

ligence (AI) framework for supervised skin lesion segmentation employing the

deep learning approach. The proposed framework, called MFSNet (Multi-Focus

Segmentation Network), uses differently scaled feature maps for computing the

final segmentation mask using raw input RGB images of skin lesions. In do-

ing so, initially, the images are preprocessed to remove unwanted artifacts and

noises. The MFSNet employs the Res2Net backbone, a recently proposed con-

volutional neural network (CNN), for obtaining deep features used in a Par-

allel Partial Decoder (PPD) module to get a global map of the segmentation

mask. In different stages of the network, convolution features and multi-scale

maps are used in two boundary attention (BA) modules and two reverse at-

tention (RA) modules to generate the final segmentation output. MFSNet,

when evaluated on three publicly available datasets: PH2, ISIC 2017, and

HAM10000, outperforms state-of-the-art methods, justifying the reliability of

the framework. The relevant codes for the proposed approach are accessible at
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(a) Raw dermoscopy image (b) Ground truth mask

Figure 1: Example of a skin lesion image and its ground truth mask.

https://github.com/Rohit-Kundu/MFSNet
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1. Introduction

Melanoma is the most severe and deadly type of skin cancer, causing more

than 13 thousand incidences globally. Though less prevalent than its non-

malignant counterpart, malignant melanoma is increasing at an alarming rate

of 4% per year. Research has shown its correlation with genetic and physical

variations. The primary cause of melanoma is long-term exposure to ultraviolet

(UV) rays. With the increase in greenhouse gases, the protective ozone layer

in the stratosphere is depleting rapidly, causing the harmful solar UV rays to

reach the earth’s surface. This causes the global incidence of melanoma to rise

rapidly. Fortunately, studies like Siegel et al. [40] show that early detection can

decrease the chances of fatality by 97%. Surgical treatment of melanoma is often

disfiguring and extremely painful, justifying the importance of early detection

of the disease. Dermoscopy is a non-invasive test for detecting and diagnosing

pigmented skin lesions and malignant melanoma in the early stages. It is often

considered the golden standard for melanoma localization. However, manual

labeling and reviewing are extremely grueling and cumbersome even for expert

clinicians, relying on their perceptions and vision. Therefore, to mitigate the

problem, Computer-Aided Diagnosis (CAD) systems have been widely preferred
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as a support system to aid clinicians in automated segmentation and analysis

of malignant melanoma.

Semantic segmentation refers to the pixel-level classification of the images.

Each pixel in an image is classified as part of the object class or background

class. This is beneficial for localizing the region of interest (ROI) from the raw

images for further analysis and thus is a vital preprocessing step in automated

disease diagnosis. Figure 1(a) shows an example of a raw skin-lesion image.

Its segmented image, called “ground truth," is shown in Figure 1(b). Here, the

image is classified into two classes, namely “lesion" and “background," which led

to the generation of a “binary mask" image. The task of semantic segmentation

is to generate a segmentation map like Figure 1(b) from raw input image similar

to Figure 1(a). To address this, extensive research attempts have been made

since the last decade to automate the segmentation of lesions, monitor their

growth, and aid physicians in making surgical decisions, thereby increasing the

clinical significance.

Segmentation of skin melanoma from non-invasive dermoscopy images relies

upon several emerging and traditional methods. Among them, segmentation

methods based on artificial intelligence have widely been explored and adopted

due to their excellent accuracy, robustness, and reliability. Extensive research

has been conducted in the last few years, using neural networks [4], fuzzy logic

[21], attention-gated networks [48], or their combinations with traditional image

processing methods to improve the segmentation performance. The significant

variations in texture, size, shape, the position of lesions, and obscure bound-

aries in dermoscopy images make it extremely challenging to obtain accurate

and prominent tissue-level segmentation maps for developing CAD systems.

Pre and post-processing are the other essential aspects and used in most of the

current segmentation methods [14] for effectively removing artifacts, enhancing

image quality, removing unnecessary noises in images for effective and accurate

segmentation of pigmented skin lesions from images. Beuren et al. [8] proposed

a series of morphological operations for image enhancement of image resolution

and denoising before segmentation. Later Chatterjee et al. [14] proposed the
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Fractal Region Texture Analysis (FRTA) method for quantification of texture

information integrated with Recursive Feature Elimination (RFE) and several

morphological operations as preprocessing before classification of dermoscopic

images. Verma et al. [46] showed that median filters and anisotropic diffusion

filters can be helpful in not only smoothing the images but also removal of thick

hairlines, preserving sufficient lesion edge information. Recently, morphologi-

cal operations and image inpainting methods have been modified and used in

research for dermoscopy image analysis [38]. In the preprocessing step, this re-

search has incorporated the image inpainting method for unwanted hair removal

from the input images.

In literature, the skin lesion segmentation methods are broadly classified into

the following categories: (a) edge detection and thresholding [31], (b) active con-

tour models [45], and (c) segmentation based on convolutional neural network

(CNN) [50, 7], etc. Symmetrical encoder-decoder architecture, also known as

U-Net, proposed by Ronneberger et al. [36], is widely used and considered as

the golden standard for several image segmentation tasks. It consists of a down-

sampling path that captures sufficient semantics and context, connected to an

expanding path for accurate localization of the ROI. Later Zhou et al. [57] pro-

posed a novel architecture UNet++ by redesigning the series of nested dense

skip connections to reduce the semantic gap between the feature representations

and the encoder-decoder sub-networks. Their proposed model outperformed the

previous U-Net architecture in multiple biomedical image segmentation tasks.

Weng et al. [51] proposed another modification in the U-Net backbone by incor-

porating neural architecture search (NAS), thereby improving the segmentation

performance significantly. SegNet [5] is a similar encoder-decoder model, for

instance, segmentation, that uses a VGG16 backbone followed by a decoder

path integrated with a pixel-wise classification layer. This is a well-known seg-

mentation model for binary or multi-class segmentation problems and has been

proven to produce state-of-the-art results in various domains. Yuan et al. [54]

proposed a fully convolution-deconvolution network that was able to produce a

dice similarity score of 76.5% on the ISIC 2017 dataset. Later Abraham et al.
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[1] proposed a novel Focal Tversky Loss function, then integrated with attention

U-Net, produced a state-of-the-art result on BUS 2017B and ISIC2018 datasets

with average dice scores of 80.4% and 85.6% respectively. Double U-Net [26],

another modification of U-Net that used two different upsampling branches in-

stead of one, was used to produce two different segmentation maps, slightly

different from one another. The paper reported an average dice score of 89.2%

on the ISIC 2017 dataset.

Recently meta-heuristic-based optimization algorithms have been explored

for thresholding-based segmentation and image enhancement operations in dif-

ferent applications. Aljanabi et al. [3] proposed an image thresholding method

by selecting an optimum threshold level using the artificial bee colony (ABC)

algorithm. The algorithm was able to produce segmentation maps with high

confidence on several widely known skin datasets. Attention mechanisms are

also widely known for boosting the performance of CNN-based models in dif-

ferent computer vision applications. Chattopadhyay et al. [15] proposed a

multi-scale attention mechanism which is inspired by the work of [9] for accu-

rate localization and segmentation of objects. The dual attention mechanism

was proposed by [19] adaptively integrates the local features with their corre-

sponding global dependencies. Though used in scene segmentation application,

it inspired several similar works in the biomedical domain [6]. Generative Ad-

versarial Networks (GAN) have also been instrumental for extensive research

for biomedical image segmentation recently [27].

1.1. Overview and Contributions

To address the issues mentioned before, we propose a novel skin lesion seg-

mentation framework, called Multi-Focus Segmentation Network (MFSNet),

that produces the final segmentation map by focusing on image information

at multiple scales. Taking a clue from the standard clinical practice, we can say

that the area and boundary are the two essential aspects to produce the accurate

pixel-level segmentation map based on local appearance from a coarse localiza-

tion of the melanoma region. The proposed model generates a coarse segmen-
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tation map implicitly by aggregating image features at multiple levels, followed

by a series of reverse and boundary attention networks by iteratively learning

pixel-level information of area and boundary by explicitly using the coarse map

and ground truth the global guidance. We have evaluated the performance of

the proposed model on three publicly available skin melanoma datasets: The

PH2 dataset by Mendoncca et al. [33], the ISIC 2017 dataset by Codella et

al. [17] and the HAM10000 dataset by Tschandl et al. [42]. The proposed

model outperforms state-of-the-art models on the same datasets justifying the

reliability and robustness of the framework.

The contributions of the present research are as follows:

1. The use of differently focused segmentation maps in various stages of the

proposed MFSNet helps accurately map both the lesion’s coarse structure

and its fine edges.

2. Unlike the commonly used segmentation frameworks in literature, the

proposed model upsamples the encoded features in subsequent steps of

attention modules instead of coarse upsampling applied in U-Net type

architectures.

3. We evaluate the proposed MFSNet model on three publicly available

datasets: PH2, ISIC 2017 and HAM10000 datasets, and obtain dice sim-

ilarity coefficient values of 0.954, 0.987, and 0.906 respectively on the

datasets, outperforming state-of-the-art methods on the same datasets.

2. Proposed Method

This section describes the architecture of our proposed MFSNet, which com-

bines the high-level semantics and the low-level edge information by using a

series of RA modules, BA block, and a PPD module. We propose a hybrid loss

function that integrates the widely used Binary Cross-Entropy (BCE) loss with

the Weighted IoU loss functions. The whole segmentation process is followed

by image inpainting and a preprocessing step for artifact removal, described in

Section 2.1.
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(a) Original Image (b) Grayscale Image (c) Blackhat Filtered

Image

(d) Threshold for In-

painting

(e) Final Inpainted Im-

age

(f) Original Image (g) Grayscale Image (h) Blackhat Filtered

Image

(i) Threshold for In-

painting

(j) Final Inpainted Im-

age

Figure 2: Outputs of the image inpainting method used for artefact removal on the PH2

dataset: (a) & (f)- Original images; (b) & (g)- Corresponding grayscale images; (c) & (h)-

Blackhat filtered images; (d) & (i)- Thresholding for the inpainting operation; (e) & (j)- final

preprocessed (inpainted) images.

2.1. Image Preprocessing

Dermoscopy images vary in terms of size, pixel intensity and may suffer

from unwanted artifacts in the form of noises or body hair. These artifacts

may lead to abrupt segmentation results in some images and may diminish the

overall model performance. Hence, to address these problems, we used standard

image preprocessing methods before segmenting the images. All the images

have been resized to a shape of 256 × 256 for faster convolution and resolving

excessive memory constraints. Next, we perform image normalization to resolve

the uneven image contrast issues. Finally, we introduce the image inpainting

method for hair removal.

Following the work of [41], we have used several morphological operations

for hair removal from dermoscopy images. First, the input RGB images are

converted to grayscale images, followed by blackhat transformation as proposed

by [47]. In this regard, we define a structuring element: a cross-shaped two-

dimensional array of shape 17× 17, i.e., an array whose middle row and column

are composed of 1’s and all other places contain 0.
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Similar to [47], closing is also performed to remove small hollows inside a

region while keeping the original region shape and size unaltered. Thus the

blackhat transformation results in an output image containing elements darker

than the surrounding pixel values, whereas smaller than the structuring element.

A suitable threshold value is applied to the obtained output from the blackhat

transformation to obtain the hair-like artifacts.

Fast marching method [30] is widely used for segmentation purposes. In

this research, we have used this algorithm for image inpainting. We used the

thresholded image output from blackhat transformation and the original input

image and replaced the artifacts or hair structures with the neighboring pixels.

Figure 2 shows the image outputs from different intermediate steps of image

artifact removal.

2.2. MFSNet Architecture

Figure 3 shows the architecture of the proposed MFSNet. It consists of the

Res2Net as a backbone, which is a recently proposed CNN model [20], for feature

extraction combined with a series of RA branches, explained in Section 2.4. Only

five initial convolution layers of the network are used for this purpose. The first

three layers are used to extract low-level features with high resolution but very

little spatial information. The second and third level features, F2 and F3, with

important edge information, are fed to the BA module to improve melanoma

boundary representation. F2 and F3 are further used for two different purposes.

They are fed to the following two layers of the CNN, whose output is fed to the

PPD module to generate the global segmentation map OS , which is used as the

global map for coarse localization of melanoma segmentation. Secondly, they

are fed to the RA branches, along with OS , to be used as the global guidance for

the entire learning process of the network. The subsequent two layers of features

Fi; i = 4, 5 from the successive two consecutive layers of the CNN are fed to the

corresponding RA module to produce output OR(Fi),which is concatenated with

the upsampled OR(Fi+1) from the next branch, thereby ensuring the multi-level

feature representation. This results in the output Oi from each branch, which is
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Figure 3: Overall structure of the proposed MFSNet model for the segmentation of skin

lesions. The inputs to the boundary attention and reverse attention blocks have been shown

in different colored arrows. The inputs of BA1, BA2, RA1, and RA2 are marked using green,

red, pink and brown arrows respectively.

supervised with the ground truth G through a loss function (described in Section

2.7). Thus, by using the parallel RA and the residual connections between the

segmentation of multiple scales and the ground truth, the errors can be removed

by "larger-scale adaptability" [16]. Finally, the output O2 is passed through the

sigmoid activation function to produce the final segmentation map S.

In general, the error between the input and output of the RA unit is mi-

nor (zero in the extreme case), thus making the learning comparatively easy

with very few parameters. Hence, the network can be very effective in region

segmentation with fewer parameters. As the learning procedure of the network

is focused on generating multiple levels of outputs from multiple branches, the

network is named as MFSNet.

9



2.3. Workflow of the MFSNet

As shown in Figure 3, the proposed model consists of a series of convolution

operations, RA branches, and BA modules. For the convenience of the readers,

we have described below the flow of information from the input image through

the layers and branches to produce the segmentation output finally.

1. The input image is initially passed through a series of convolution layers

for feature extraction using the Res2Net backbone, where downsampling

is performed. Among those, only the features of the second and third

Convolution layers are considered useful for edge guidance of the learning

process because the low-level features preserve sufficient boundary infor-

mation [55]. Hence they are used for the BA module that explicitly learns

the boundary information. Upsampling is performed in the PPD module.

2. The BA module simultaneously takes input from the global segmentation

map (output from PPD) and the shallow features from the convolution

layers. By performing a series of distance transformations and other math-

ematical operations, an enhanced boundary map is obtained, further used

by the RA modules. The detailed algorithm and workflow of BA are

described later in Section 2.5.

3. The RA module takes the features from the corresponding convolution

layer, BA module, and the upsampled segmentation map from the next

layer. The RA module uses two separate input branches to learn features

to produce segmentation masks associated with two different classes - fore-

ground and background. Thus the RA module generates a per-class mask

to amplify the reverse-class response in the regions that contain high-level

semantic information shared between two adjacent classes. Finally, the

prediction of these two branches is fused to generate the segmentation

output from the RA branch. The detailed workflow of the RA module is

explained in Section 2.4.
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Figure 4: Architecture of the RA module used in the proposed MFSNet model.

OB : Output from the BA module; Ui+1: Upsampled output from the next layer; OR(Fi):

Output of the RA block.

2.4. Parallel Reverse Attention branch

In medical diagnosis, clinicians go for a rough estimation of skin melanoma

before looking into the tissue-level finer details for proper localization and la-

beling. Though, it is not easy for a network to learn residual refinement for

saliency detection without proper supervision, leading to inaccurate segmenta-

tion results. As most of the existing methods heavily rely on image classification

networks, fine-tuned for responsiveness to very few discriminatory regions in im-

ages, it deviates from the requirement of exploration of pixel-wise prediction of

dense regions. We propose a two-stage segmentation method using a parallel

RA unit to mitigate this problem and replicate the real-world clinical approach.

The deep layers of the CNN produce coarse-level and a rough estimation of

the melanoma region, with small structural details [13]. Next, followed by the

idea of progressive erasing of the foreground region [49], we mine discriminative

melanoma regions using the RA unit. Instead of aggregating features from all

the CNN layers, [16], our proposed RA model guides the learning of the whole
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network, starting from the coarse saliency map produced by the deepest CNN

layer, containing the highest semantic confidence, by sequentially discovering

new information about complementary melanoma regions from the side-output

of the last three layers only. Figure 4 shows the architecture of the RA module

used in the proposed MFSNet.

Let us consider the last two layers of the CNN have features Fi; i = {4, 5},

the BA module has output OB , and the RA mask of the ith level is Mi
RA,

then the RA output OR of the ith level is given by Equation 1,where D is the

downsampling operation, ⊕ is the concatenation operation of downsampled OB

with the ith level feature set Fi, Con is the operation of passing the feature

through a couple of convolutional layers with filter size set to 64, and � is

the element-wise multiplication of the concatenated feature with the RA mask

MRA.

OR(Fi) =Mi
RA � Con[Fi ⊕D(OB)], (1)

Chen et al. [16] defined the RA mask as in Equation 2, where ε is the

operation of forming a 64-channel tensor by repeating the single-channel output,

to match the dimension, 	 is the subtraction operation, Softmax indicates the

sigmoid activation, Si+1 is the segmentation mask obtained from the (i + 1)th

layer of the CNN, U is the upsampling operation.

Mi
RA = ε[1	 Softmax{U(Si+1(j)}], (2)

2.5. Boundary Attention

Edge information can guide the task of feature extraction for segmenta-

tion by providing helpful supervision with fine-grained boundary constraints as

shown in [56]. Hence, being inspired by the Edge Guidance Module (EGM), pro-

posed by [55], we have used a BA module along with the parallel RA branches

for extracting accurate boundary information. Based on the fact that only

low-level features contain substantial edge information, we have fed the shallow

feature F2 from the encoder network to the BA module as shown in Figure 5.
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Figure 5: Architecture of the BA module used in the MFSNet model.

Ui: Global map output from PPD module; Si: Segmentation Map; S̄i: Inverted Segmentation

Map; DT (x): Distance Transform; Mi
B : ith level boundary mask; OB : Boundary Attention

output

The BA module helps the network capture important boundary information,

which is complementary to the amplified reverse class response for the regions

of shared semantic information extracted by the RA module. This additional

edge information acts as a helpful signal to confusing segment regions near the

lesion boundaries. The ith level feature Fi from the encoder, when fed to the BA

module, produces an output OB , given by Equation 3, where � is the element-

wise multiplication of feature Fi and the ith level boundary maskMi
B , which is

obtained by formulating the binary segmentation map Si given by Equation 4,

where j is the pixel position index, Ui denotes the ith level upsampled prediction.

OB(Fi) =Mi
B � Fi, (3)

Si(j) =

1, if σ[Ui(j)] > 0.5

0, otherwise
, (4)

The value of i is set to 2, 3, i.e., we only consider the second and third level
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features from the CNN to feed into the BA module. σ is the softmax activation

function given by the Equation 5.

σ(xi) =
expxm∑
n
expxn

(5)

Next, distance transformation [18] is applied over Si to fill each pixel posi-

tion of the melanoma region with the distance to the melanoma boundary. Con-

versely, the distances of the pixels of non-melanoma regions can be obtained by

simply transposing Si followed by distance transformation. The overall distance

map is produced by normalizing and summing up these two distance maps as

given by Equation 6, where Si is the transpose of segmentation map Si which

can be obtained as Si = 1− Si.

Di =
DT (Si)

maxj DT [Si(j)]
+

DT (Si)

maxj DT [Si(j)]
, (6)

In Equation 6, Di has values equal to 0 and 1 at the melanoma boundary

and the farthest point from the boundary, respectively. Here, we define the ith

level boundary maskMBi as

MBi = 1−Di (7)

Finally, we calculate the boundary map GB from the ground truth using

its gradient, which is constrained by the BCE loss to measure the dissimilarity

between the produced boundary map OB with the actual boundary map GB

given by Equation 8.

LB = −
∑
j

[GB log(OB) + (1−GB) log(1−OB)] (8)

The overall architecture of the BA module is shown in Figure 5.

2.6. Partial Parallel Decoder module

As suggested by [52], low-level features contribute very little toward the fi-

nal prediction map with a massive requirement of computation due to their
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Figure 6: Architecture of the Partial Parallel Decoder module used in the proposed framework.

The convolution layers 4 and 5 denote the 4th and fifth layer respectively of the Res2Net CNN

backbone used in MFSNet.

high spatial resolution. However, in literature, most of the existing models like

[57, 23] are designed to aggregate both high and low-level semantics, leading

to unnecessary wastage of resources and inefficient segmentation map. To mit-

igate this problem, we have used a PPD module to capture the global context

information, being inspired from the Receptive Field Block (RFB) module by

[29].

Specifically, we have used the first five convolution layers of the Res2Net [20],

among which the first three layers are considered as the low-level features and are

discarded for the decoder module. To accelerate the feature propagation, we add

a series of convolution and batch normalization operations as shown in Figure 6.

Short connections are added in the PPD module, similar to the original RFB

module. After obtaining different discriminating features from different layers,

we finally multiply them to reduce the gap between multiple feature levels. Thus,

the PPD module produces a global segmentation map OS through a series of

element-wise multiplication and concatenation operations, serving as the global

guidance of the parallel RA branches. Proper downsampling and upsampling
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operations are performed throughout, whenever required, to match the feature

dimensions before concatenation. Finally, the generated segmentation map is of

a similar dimension as that of the input of the MFSNet.

2.7. Deep Supervision

To supervise the segmentation performance, we have used a hybrid loss func-

tion in this research. For the BA module, we have used the standard BCE loss

function, shown in Equation 8. However, for the supervision of segmentation, we

have used a mixing loss function for effective global and local supervision to en-

hance both image-level and pixel-level segmentation, respectively. The proposed

loss function involves the weighted BCE loss function LwBCE and weighted IoU

loss function LwIoU , given by Equation 9, where δ is the weight, set to 0.9 in

our case experimentally.

LS = δLwBCE + (1− δ)LwIoU , (9)

The experimental analysis is shown in Figure 7. The LwIoU and LwBCE

are effective to increase the weights of the hard pixels rather than giving equal

weights to each pixel like the standard IoU loss and BCE loss functions.

The side outputs from the CNN are upsampled to form segmentation map

OUP
i ; i = 4, 5 of the same size of the ground truth G. Thus, the overall loss

function is extended to Equation 10.

L = LS(G,OS) +
∑
i=2,3

LB(GB , OB,i) +
∑
i=4,5

LS(G,O
UP
i ) (10)

3. Results and Discussion

This section evaluates the proposed framework on three publicly available

datasets of skin lesion segmentation, using 5-fold cross-validation. We discuss

the significance of the obtained results and compare the model with other state-

of-the-art models to justify the superiority of the proposed model.
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Figure 7: Experimental analysis of mean DSC and mean IoU on ISIC2017 dataset against

different δ values, that defined the weights of different components in the proposed loss function

(Equation 9).

3.1. Dataset Description

Three dermatology datasets have been used in the current research to eval-

uate the performance of MFSNet:

1. PH2 dataset by [33] consisting of 200 images.

2. ISIC 2017 dataset by [17] consisting of 2379 images.

3. HAM10000 dataset by [42] consisting of 10015 images.

3.2. Evaluation Metrics

To evaluate the performance of the proposed model on the supervised skin

lesion segmentation problem, we use five popularly used metrics which are de-

scribed as follows:

1. Dice Similarity Coefficient (DSC): It is a spatial overlap metric which is

computed as in Equation 11 for predicted image S and ground truth G.

DSC(S,G) =
2× |S ∩G|
|S|+ |G|

(11)
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2. Intersection over Union (IoU): IoU, also known as Jaccard Index (JI),

measures segmentation accuracy by computing the ratio of the intersec-

tion of objects and their union when projected on the same plane. Math-

ematically it is expressed as in Equation 12, where S is the predicted

segmentation mask, and G is the original ground truth mask of the image.

IoU(S,G) =
|S ∩G|
|S ∪G|

(12)

3. F-Measure (FM): F-Measure is a standard metric that evaluates the har-

monic mean of the pixel-wise precision and recall and is mathematically

expressed as in Equation 13.

FM =
2× Precision×Recall
Recall + Precision

(13)

4. Sensitivity (Sen): It characterizes the percentage of pixels of the object

that are accurately classified as the object class and it is computed by

Equation 14.

Sen(S,G) =
|S ∩G|
|G|

(14)

5. Specificity (Spe): It characterizes the percentage of pixels of the back-

ground class that are accurately classified as the background, and it is

computed using Equation 15.

Spe(S,G) =
|(1− S) ∩ (1−G)|

|1−G|
(15)

For all the mentioned evaluation metrics, the mean value over all the test images

has been reported in this study for evaluation denoted bymIoU ,mDSC,mFM ,

mSen and mSpe.

3.3. Implementation

The proposed MFSNet is implemented in PyTorch and is accelerated using

an NVIDIA Tesla K80 GPU. Table 1 shows the results obtained by MFSNet

on the three publicly available datasets using 5-fold cross-validation. The high

values of DSC and IoU suggest that the segmentation is reasonably accurate.

In contrast, the high Sensitivity and Specificity values suggest the maintenance
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Table 1: Results obtained by MFSNet on the three datasets using 5-fold cross-validation.

Dataset Fold mDSC mIoU mFM mSen mSpe

PH2

1 0.955 0.917 0.947 1.000 1.000

2 0.956 0.918 0.941 0.991 0.986

3 0.951 0.915 0.945 0.995 0.999

4 0.949 0.920 0.943 1.000 1.000

5 0.958 0.899 0.941 0.989 0.999

Average 0.954±0.003 0.914±0.008 0.944±0.002 0.995±0.004 0.997±0.002

ISIC 2017

1 0.991 0.976 0.989 1.000 1.000

2 0.985 0.971 0.980 1.000 1.000

3 0.983 0.967 0.980 0.998 0.999

4 0.986 0.980 0.991 0.999 0.999

5 0.990 0.975 0.989 0.997 0.998

Average 0.987±0.003 0.974±0.004 0.986±0.005 0.999±0.001 0.999±0.001

HAM10000

1 0.911 0.910 0.905 1.000 0.999

2 0.900 0.901 0.899 0.997 0.998

3 0.905 0.903 0.906 0.999 1.000

4 0.904 0.894 0.892 1.000 1.000

5 0.910 0.900 0.914 0.998 0.998

Average 0.906±0.004 0.902±0.005 0.903±0.007 0.999±0.001 0.999±0.001

Table 2: Comparison of the results obtained with the MFSNet model on the three datasets

with and without image preprocessing

Dataset Preprocessing mDSC mIoU mSen mSpe

NO 0.931 0.895 0.978 0.978
PH2

YES 0.954 0.914 0.995 0.997

NO 0.963 0.942 0.969 0.970
ISIC2017

YES 0.987 0.974 0.999 0.999

NO 0.872 0.869 0.954 0.961
HAM10000

YES 0.906 0.902 0.999 0.999
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of structural coherence between the segmented mask and the available ground-

truth mask. Further, to evaluate the importance of image preprocessing (artifact

removal) in this research, we evaluate and compare the performance of the

MFSNet model with the raw images and the preprocessed images. The results

of these experiments are presented in Table 2.

3.4. Ablation Study

We have experimented by removing different components from the proposed

model to justify their impact on the overall performance. We have performed

an ablation study of RA, PPD, BA modules and their different orientations

concerning the convolution layers of the backbone Res2Net model to assert the

importance of the proposed configuration used in the MFSNet architecture.

3.4.1. Orientation of BA and RA

We have experimented with different combinations and orientations of BA

and RA branches to explore the best possible combinations for boosting perfor-

mance. Table 3 shows the results on the PH2 dataset, where we have used RA

and BA modules at different levels of feature extraction. Comparing instances

1 and 4 from the table shows that the performance can be boosted if we use BA

at the Conv2 layer instead of RA. This behavior can be justified because the

shallow layers of the CNN can extract features rich in boundary information.

Hence adding BA there will provide additional edge guidance to the model.

Similar conclusions can be drawn by comparing instances 1 and 2. Again, com-

paring instances 2 and 3, we can observe experimentally that removing the BA

module from the Conv1 layer does not decrease the segmentation performance

significantly but effectively reduces computation of an additional BA module.

We have slightly better performance in instance three than in instance 5, estab-

lishing the importance of the RA module at the Conv4 layer. Based on these

observations, we have finalized the orientations of different RA and BA blocks

to optimize the segmentation performance and add their clinical importance.

20



Table 3: Comparison of quantitative results obtained from different orientations of RA and

BA blocks in the proposed MFSNet model on the PH2 dataset. The highlighted row indicates

the orientations and results of our proposed model.

Combinations Average Result (on 5 fold)
Instance

Conv1 Conv2 Conv3 Conv4 Conv5 mDSC mIoU mFM mSen mSpe

1 BA BA BA RA RA 0.944±0.002 0.897±0.003 0.928±0.004 0.984±0.008 0.989±0.004

2 BA BA RA RA RA 0.926±.006 0.872±0.002 0.902±0.006 0.971±0.004 0.969±0.006

3 - BA RA RA RA 0.930±0.004 0.876±0.003 .911±0.007 0.979±0.005 0.972±0.006

4 BA RA BA RA RA 0.926±0.004 0.876±0.002 0.916±0.005 0.966±0.004 0.963±0.002

5 - BA RA BA RA 0.926±0.006 0.871±0.005 0.902±0.003 0.978±0.006 0.970±0.004

Proposed - BA BA RA RA 0.954±0.003 0.914±0.008 0.944±0.002 0.995±0.004 0.997±0.002

Table 4: Results of the ablation study considering various components of the MFSNet model

on the PH2 dataset. Best results are highlighted.

Architecture mDSC mIoU mFM mSen mSpe

Res2Net 0.794±0.006 0.758±0.008 0.761±0.005 0.816±0.009 0.821±0.008

Res2Net+PPD 0.877±0.005 0.852±0.004 0.873±0.003 0.915±0.006 0.906±0.004

Res2Net+BA 0.843±0.003 0.820±0.006 0.871±0.004 0.911±0.007 0.904±0.004

Res2Net+RA 0.842±0.002 0.834±0.005 0.866±0.006 0.909±0.006 0.929±0.004

Res2Net+BA+RA 0.906±0.003 0.861±0.004 0.894±0.006 0.947±0.004 0.936±0.007

Res2Net+RA+PPD 0.927±0.003 0.895±0.007 0.912±0.005 0.963±0.007 0.959±0.006

Res2Net+BA+RA+PPD (Proposed) 0.954±0.003 0.914±0.008 0.944±0.002 0.995±0.004 0.997±0.002

3.4.2. Importance of BA

In this work, we have also performed an ablation study to investigate the

importance of the proposed BA module in the overall model. Row 3 in Table 4

shows the performance of the proposed architecture has improved by a consid-

erable margin in terms of significant evaluation metrics by using the BA module

along with the Res2Net backbone as compared to the backbone only in row 1.

Besides, using BA along with RA boosts the model performance as compared

to only the RA module, shown in row 4 and row 5 of Table 4, leading to the

conclusion that BA has an essential contribution towards achieving better seg-

mentation outcome. [55] also exemplified that optimal edge guidance can boost

the segmentation performance significantly, justifying the results obtained in

our experiment.
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3.4.3. Importance of RA

Row 4 in Table 4 shows that RA is another essential component of the

proposed module as removing it may reduce the DSC, IoU, and other evaluation

results significantly. The optimal combination of BA and RA modules (shown

in Table 3) is another essential feature of the proposed MFSNet, where the

addition of RA has boosted the model performance as compared to the mere

BA module, shown in row 5 of Table 4.

3.4.4. Importance of PPD

PPD is another vital component of our proposed method, as removal of

this can affect the model performance as shown in Table 4. We can observe

from row 2 of Table 4 that adding PPD to the baseline model can increase the

performance, unparalleled to the contribution of RA and BA. Again, combining

it with the RA module, as shown in row 6, can produce an almost similar

performance to that of the proposed architecture. The improvements establish

that PPD, combined with RA, is the prime component of the proposed MFSNet.

3.5. Comparison to State-of-the-art

Table 5 compares the proposed method to several state-of-the-art methods

on the three datasets used. The proposed MFSNet performs significantly better

than the said methods and can be justified as a reliable framework for skin lesion

segmentation. To further prove the superiority of the MFSNet framework, we

use some popular segmentation models prevalent in literature for comparison:

U-Net [36], SegNet [5] and Double U-Net [26], the results of which are also

compared in Table 5. Some visual results of the predicted segmented masks by

these models and the proposed MFSNet are shown in Figure 8. From the visual

results, it can be seen that SegNet consistently produces unsatisfactory results.

U-Net can segment most images well, but it fails to perform well for relatively

challenging images. Double U-Net performs closest to the MFSNet. However

evidently MFSNet outperforms all these models as justified from both Table 5

and Figure 8.
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Table 5: Comparison of the proposed MFSNet model to state-of-the-art models on the three

publicly available datasets used in this study. (Total training time is calculated on implemen-

tation using NVIDIA Tesla K80 GPU)

Dataset Model mDSC mIoU mSen mSpe Training time

Double U-Net [26] 0.907 0.899 0.945 0.966 1hr 2min12sec

U-Net [36] 0.876 0.780 0.816 0.978 30min 54 sec

SegNet [5] 0.894 0.808 0.865 0.966 58min 21 sec

Goyal et al. [22] 0.907 0.839 0.932 0.929 -

Hasan et al. [24] - 0.870 0..929 0.969 35min 08sec

Al et al. [2] 0.918 0.848 0.937 0.957 -

Ozturk et al. [35] 0.930 0.871 0.969 0.953 -

Xie et al. [53] 0.919 0.857 0.963 0.942 -

Unver et al. [44] 0.881 0.795 0.836 0.940 -

Yuan et al. [54] 0.915 - - - -

Bi et al. [11] 0.907 0.840 0.949 0.940 -

Bi et al. [10] 0.921 0.859 0.962 0.945 -

PH2

Proposed MFSNet 0.954 0.914 0.995 0.997 46min 37sec

Double U-Net [26] 0.913 0.918 0.963 0.974 4hr 18min 07sec

U-Net [36] 0.778 0.683 0.812 0.805 3hr 22min 44sec

SegNet [5] 0.821 0.696 0.801 0.954 4hr 04min 17sec

Tschandl et al. [43] 0.853 0.770 - - -

Navarro et al. [34] 0.938 0.846 - - -

Saha et al. [37] 0.855 0.772 0.824 0.981 -

Goyel et al. [22] 0.793 0.871 0.899 0.950 -

Hasan et al. [24] - 0.775 0.875 0.955 3hr 37min 17sec

Al et al. [2] 0.871 0.771 0.854 0.967 -

Ozturk et al. [35] 0.886 0.783 0.854 0.981 -

Xie et al. [53] 0.862 0.783 0.870 0.964 -

Unver et al. [44] 0.843 0.748 0.908 0.927 -

ISIC2017

Proposed MFSNet 0.987 0.974 0.999 0.999 3hr 51min 20sec

Double U-Net [26] 0.843 0.812 0.861 0.845 11hr 21min 53sec

U-Net [36] 0.781 0.774 0.799 0.802 9hr 05min 31sec

SegNet [5] 0.816 0.821 0.867 0.854 11hr 04min 10sec

Saha et al. [37] 0.891 0.819 0.824 0.981 -

Abraham et al. [1] 0.856 - - - -

Shahin et al. [39] 0.903 0.837 0.902 0.974 -

Bissoto et al. [12] 0.873 0.792 0.934 0.936 -

Ibtehaz et al. [25] - 0.803 - - -

HAM10000

Proposed MFSNet 0.906 0.902 0.999 0.999 9hr 41min 34sec
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Figure 8: A few instances of segmentation masks obtained by some standard models in liter-

ature compared to the proposed MFSNet model.
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We have also compared the computational cost of MFSNet in terms of the

total execution (training) time with existing methods, as shown in Table 5.

It is clear from the table that our proposed method is computationally effi-

cient compared to several state-of-the-art methods like SegNet, DoubleUNet,

etc. However, we could not calculate the execution time for all the methods in

the literature compared in this study due to the unavailability of open-source

implementations.

The improvement in the values of the evaluation metrics by the MFSNet

model as compared to state-of-the-art methods in the literature can significantly

impact the diagnosis process. Higher values of IoU, DSC, etc., indicate a more

accurate skin lesion segmentation while preserving structural similarity. Thus,

when the segmented lesions are used for further diagnosis, more robust and

informative features can be extracted for the automatic classification of the

lesions into benign and malignant classes as stated by Mahbod et al. [32]. This

reduces the chances of faulty diagnosis and helps control skin cancer early and

more effectively.

4. Conclusion and Future Work

The emergence of CAD systems has facilitated several seemingly daunting

tasks, like the segmentation of skin lesions. Skin cancer affects a large popula-

tion worldwide, and hence its early detection is essential for eradicating cancer.

Localization of tumors and lesion segmentation poses a challenge since an eso-

teric group of clinicians can only perform manual segmentation, and it is also

a time-demanding task. To bolster the efforts of the medical practitioners, in

this research, we develop a fully automated framework for accurate skin le-

sion segmentation from raw dermoscopy images. The proposed framework uses

multi-scaled maps using a PPD module and two RA and BA modules to pro-

duce the final segmentation mask. The use of the multi-focus-based approach

helps determine the overall lesion structure from the coarse map. The use of

the finer maps helps in determining more refined edges, leading to increased
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segmentation accuracy. Upon evaluating the proposed MFSNet model on three

publicly available datasets of varied sizes, the proposed method displayed ro-

bust performance, outperforming the state-of-the-art methods on the respective

datasets.

In the future, we may extend the segmentation model to other domains like

brain MRIs, lung CT scans, etc. Also, we might incorporate semi-supervision

for the segmentation, similar to [28] to extend the models to unlabelled datasets.
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