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Abstract

Recently, Zero-shot Sketch-based Image Retrieval (ZS-SBIR) has attracted the attention of the computer
vision community due to it’s real-world applications, and the more realistic and challenging setting than
found in SBIR. ZS-SBIR inherits the main challenges of multiple computer vision problems including content-
based Image Retrieval (CBIR), zero-shot learning and domain adaptation. The majority of previous studies
using deep neural networks have achieved improved results through either projecting sketch and images
into a common low-dimensional space or transferring knowledge from seen to unseen classes. However,
those approaches are trained with complex frameworks composed of multiple deep convolutional neural
networks (CNNs) and are dependent on category-level word labels. This increases the requirements on
training resources and datasets. In comparison, we propose a simple and efficient framework that does not
require high computational training resources, and can be trained on datasets without semantic categorical
labels. Furthermore, at training and inference stages our method only uses a single CNN. In this work, a
pre-trained ImageNet CNN (i.e.ResNet50) is fine-tuned with three proposed learning objects: domain-aware
quadruplet loss, semantic classification loss, and semantic knowledge preservation loss. The domain-aware
quadruplet and semantic classification losses are introduced to learn discriminative, semantic and domain
invariant features through considering ZS-SBIR as a object detection and verification problem. To preserve
semantic knowledge learned with ImageNet and utilise it on unseen categories, the semantic knowledge
preservation loss is proposed. To reduce computational cost and increase the accuracy of the semantic
knowledge distillation process, ground-truth semantic knowledge is prepared in a class-oriented fashion prior
to training. Extensive experiments are conducted on three challenging ZS-SBIR datasets, Sketchy Extended,
TU-Berlin Extended and QuickDraw Extended. The proposed method achieves state-of-the-art results, and
outperforms the majority of related works by a large margin.
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1. Introduction
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¢-fookesoqut . edu.au (Clinton Fookes) the scenario where both query and gallery images are
real photos (i.e.scenes [I], faces [2]) or digital im-
ages (i.e.logo [3]). With the widespread popularity
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of touch-screen devices, free-hand sketch-based im-
age retrieval (SBIR) tasks have drawn the attention
of the computer vision (CV) community as sketches
are a convenient, universal, easy and fast method for

image description [4, [5l [6] [7, 8, @]. See Figure |1| for
examples of SBIR results.

Figure 1: Examples of SBIR results. In each row, the figure in
the left is query while others are retrieved results.

The domain-gap and information-gap between
sketch and photo domains presents a challenge to
existing CBIR approaches. Sketches contain sparse
and abstract information, while photos carry dense
and precise information. Deep learning models have
been applied to reduce these gaps, either in the la-
tent space or the pixel space. A variety of complex
architectures such as multiple independent networks
[10, 1T, 4, M2], semi-hetergenous networks [13] [14],
generative adversarial networks (GAN) [I5] [16] 17
[I8] and networks with domain-invariant layers [5l [12]
have been proposed to address the domain gap. Al-
though these approaches have shown substantial im-
provements over hand-crafted features, the increased
model complexity requires extra resources during
training and inference processes.

The model complexity has increased as SBIR meth-
ods are often evaluated under zero-shot settings,
where testing queries are unseen during training. Re-
lated studies found existing SBIR models tend to fail
under zero-shot settings [I2]. To tackle this problem,
commonly, the mapping or joint embedding space
between the visual representation and class seman-
tic representation is modelled. To achieve this, lan-

guage models [, 19, 20, 21 20] are often used to

extract semantic class embeddings, while auxiliary
networks such as auto-encoders [19, 20| [4], GANs
[20, 20, 22, 23] or graph convolutional neural net-
works (GNN) [21] [12] are trained to learn the joined
representation or mapping.

Moreover, the high training cost is not the only
drawback of the aforementioned methods. They re-
quire all classes of the training set have descriptive
text labels that can be modelled by a language model.
However, in some practical applications, classes may
be only labelled with numerical values, or uncommon
(i.e.;unknown) word labels which cannot be modelled
by a language model.

This paper aims to tackle ZS-SBIR with a simple,
efficient, and language model-free framework. The
recent state-of-the-art (SOTA) work, SAKE [3], is a
concise and simple framework. It’s feature extrac-
tion encoder is a single-stream Convolutional Neu-
ral network (CNN) that ensures an efficient and sim-
ple inference process. However, during training it
also requires a language model and another ImageNet
pre-trained CNN to generate valid teacher signals for
knowledge distillation. They argue preserving knowl-
edge learned from Image-Net via knowledge distilla-
tion is beneficial for ZS-SBIR. Although we also find
that rich features learned from Image-Net are essen-
tial for ZS-SBIR, we find a language model and on-
line teacher network are not necessary. SAKE gen-
erates a teacher signal for each input item, either
from the sketch or photo domain. It therefore re-
quires a language model to align teacher signals that
are otherwise invalid due to domain-shift. The align-
ment is based on the semantic similarity matrix of
ImageNet labels and target dataset labels, which is
constructed using WordNet [24]. In comparison, we
generate teacher signals for each class by averaging
the activations of pretrained ImageNet with images
from the photo domain, whose distribution is close to
ImageNet. We therefore do not require any seman-
tic labels or language models, and the teacher signal
generation is a one-time offline process.

We also find SAKE treats the ZS-SBIR problem as
an object identification task, where the learning ob-
jective is a categorical classification loss, while other
related works [4 23] consider the problem a verifi-
cation task where metric learning ¢.e.triplet loss, is



applied. In this work, we not only unify these two
objectives in a single framework, but also propose a
domain-aware quadruplet loss for metric learning.

We have tested the proposed method on two
popular SBIR datasets (Sketchy Extended [25] and
TU-Berlin Extended [26]) and a newly proposed
challenging SBIR dataset, QuickDraw Extended [4].
In all benchmarks, we have achieved state-of-the-
art (SOTA) performance only through fine-tuning a
ResNet50 [27] model with our three proposed learn-
ing objectives: Domain-aware Quadruplet, Semantic
Classification and Semantic Knowledge Preservation
losses.

The remainder of the paper is organized as follows.
Section 2] presents a literature review where we dis-
cuss related ZS-SBIR studies. In Section [3] the pro-
posed model and learning objectives are introduced.
Section [4] outlines experiment setups, results and re-
lated discussions; and finally Section [5| concludes the

paper.

2. Related Work

Early SBIR studies mainly focus on the challenges
raised by the large domain gap between the sketch
and photo domain. Both hand-crafted features and
deep features have been explored. Hand-crafted fea-
tures include edge/shape-based features [28|, 29| [30]
with a bag-of-words representation, as in some as-
pects, strong edges in a photo correspond to the
contours of sketches. On the other hand, deep fea-
tures seek to learn a joint representation the of
sketch and photo domain through metric learning
[311, 32, [33] [14], style-content disentangle representa-
tion, [6l 22] and style-transfer [I8] [15] 10, 34]. How-
ever, related studies discover that the accuracy of
these models decreases in a real-life and challenging
scenarios where either the queries or gallery images
are unseen. To tackle this problem, zero-shot SBIR
approaches [12] [5l, [, 19, 20, 211, 20] have been pro-
posed.

The majority of ZS-SBIR approaches leverage se-
mantic information embedded in seen data (i.e.word
labels) to learn a generalised representation for both
seen and unseen categories. The main difference be-
tween these methods lies in the architecture of the

mapping network and the embedding method in the
semantic space. GNNs [12] 21], Multi Layer Percep-
trons (MLP) [4, B5] and GANs [36, 20] 37, 19] have
all be used for the mapping network. On other side,
word2vec [4, 19, 211 37, 20, 35, [36] and hierarchical
models [T9] 20 B6] are common embedding methods
used to construct the semantic space.

In comparison, the recent work SAKE [5] uses a vi-
sual semantic representation learned from ImageNet.
However, to avoid an incorrect representation caused
by domain-shift, SAKE aligns the visual semantic
representation with a semantic similarity matrix con-
structed with wordNet. We proposed an alternative
method for extracting a visual semantic representa-
tion that is free-from alignment. As such, our method
does not require a language model. To the best of our
knowledge, making our proposed approach one of a
very small number of ZS-SBIR studies that do not
require a language model. Other such methods are
typically generative approaches based-on GANs [6]
and variational auto-encoder encoders (VAE) [38].

3. The Proposed Method

In this section, we present our proposed method for
zero-shot sketch-based image retrieval (ZS-SBIR). In
the following sub-sections, we first outline the over-
all structure of the proposed method, then explain
network structures, learning objectives and discuss
implementation details.

3.1. Network Architecture

The objective of the proposed method is to learn
discriminative and domain-invariant CNN encoders
that map semantically similar images from the sketch
and photo domains into the same region of a com-
mon embedding space. An overall diagram of the
proposed approach is shown in Figure The dia-
gram is composed of two parts: the Online Training
Student Network and the Offline Soft Label Extrac-
tion with Teacher Network. The student network,
FEg, is trained with quadruplets and three proposed
learning objectives. The teacher network, F;., gener-
ates ground-truth for the knowledge distillation that
prevents the Fy; from forgetting semantic knowledge
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Figure 2: A diagram of the proposed method. The approach includes an Online Training Student Network and an Offline
Soft Label Extraction with Teacher Network. The student, Fs¢, and teacher, Fi., networks use Resnet50 as the backbone. A
quadruplet composed of two images from the sketch domain and two images from the photo domain is the input of the student
network, while the inputs to the teacher network are only from the photo domain. The teacher network generates soft labels
to prevent the student network from forgetting previously learned knowledge from ImageNet, and the soft label extraction is a

one-time offline process.

learned from pre-training on ImageNet. Unlike [5],
our approach does not require a teacher network dur-
ing training and a language model for an alignment.
Our approach, therefore, has a simple and efficient
training process. For simplicity and efficiency, two
encoders with ResNet50 [27] backbones are used as
Ey and FEy.. However, for F4, we replace the fully-
connected layer of ResNet50 with three new fully con-
nected layers, F'Ciq, FCg;pm and FCsop, that corre-
spond to three proposed learning objectives. The size

of F'Csoy; is 1,000, while sizes of FCjq and FClyp,
are equal to the number of classes (i.e.80, 100, 104 or
220) and the size of embedded feature (i.e.64, 512 or
1024). In this work, a four stream encoder where all
streams share weights is used as F;. However, semi-
heterogeneous networks, or special domain-invariant
layers widely used by previous works [4} 12} 5] to pro-
cess the photos and sketches separately are easily in-
tegrated into Eg. Global average pooling (GAP) is
applied to extract latent features from the last con-
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volutional layer of the backbone network. Similar to
[], we have tried adding an attention [39] mechanism
to Eg, although we observed that it didn’t yield any
improvements during ablation studies.

3.2. Learning Objectives

To learn a discriminative and domain-invariant en-

coder with general semantic knowledge, we introduce
the following learning objectives: Domain-aware
Quadruplet Loss, Classification Loss and Knowledge
Preservation loss.
Domain-aware Quadruplet Loss is a modified
version of the triplet loss, which has been widely
used to maximise the inter-class distance and min-
imise the intra-class distance in embedding space for
various image retrieval tasks [Il [40]. Here, our ob-
jective is also minimizing distance between sketches
and photos from the same semantic category, while
maximizing the distance between sketches and pho-
tos from different categories in the target embedding
space.

With the triplet loss, this inter-class and intra-
class distance relationship is formulated with triplets
where a sketch and a photo are selected from the same
category, while another photo is from a diﬂerent cat-
egory. For example, T'(i {Ia i), 1, (2)} is
ith triplet where I(I%(i )) = (I} (i )) and 1(12(7)) #
I(I, (7)) (notation [ represents label). The Euclidean
distance between the anchor sketch and the positive
(same class) photo image is 07 (i) = ||Es(12(i)) —
Eg (L} (i))||3, while the Euclidean distance between
the anchor sketch and it’s negative (different class)
photo image is 3, (i) = || B (12(1)) — Eut(L; (i))] 3
6, (i) should be larger than 6 (i) by a threshold a,
which is set to 0.2. The triplet loss for a batch of N
triplets is defined as

Z max (6t (i

The proposed domain-aware quadruplet loss de-
ploys an extra negative sketch image, I, such that
the quadruplet is defined as Q = {Ig7I;‘,Ip ,IS_}.
The additional image is used to calculate the Eu-
clidean distance between the anchor sketch and the

— 6, (i) + a,0). (1)

Mm =

additional negative (different class) sketch image,
6, (1) =||E(I%(i)) — E(Ip_(z))H% Therefore, the pro-
posed loss is

N
Loim = Z maz (6t (i) — 0, (i) + o, 0)+  (2)

(3)

We proposed the quadruplet for the following rea-
sons:

maz(§7 (i) — 87 (i) + a, 0)).

1. To overcome domain imbalance which can ap-
pear in triplet loss and classification losses (dis-
cussed later), as the total number of sampled
photos are two times the number of sketches.

2. Related studies [40, 41] demonstrate that an ex-
tra negative image is beneficial for learning dis-
criminative features. However, these studies do
not take consider domain differences and imbal-
ance in their formulations.

Semantic Classification Loss is introduced to en-
sure hidden features extracted with F4; are composed
of signals that are sufficient to identifying the seman-
tic classes of inputs from both the sketch and photo
domains. Additionally, with this semantic loss, F;
implicitly learns to minimise the intra-class distance.
Specifically, a soft-max cross-entropy loss is utilised.
As Equation [f] shows, every input to Eg is a quadru-
plet, @, that includes two images from the sketch do-
main and two images from the photo domain. This
equal domain sampling ensures domain balance. The
output from FEy; will be sent to the FC for soft-
max calculation. Here, we simply use notation ¢ to
represent this whole process,

cls — T AT Z Z —lng

i=1TeQ

eI ), (4)

where p represents the probability.

Semantic Knowledge Preservation Loss Trans-
fer learning plays a key role in SBIR tasks. Net-
works pre-trained on ImageNet have been fine-tuned
for ZS-SBIR problems in previous works [12] [6l, [4] [5].
However, Liu et al. [5] claim fine-tuning will cause



catastrophic forgetting that decreases the ability of
the fine-tuned network to adapt back to the origi-
nal domain. To prevent a network from forgetting
previously learned knowledge, Liu et al. generates
a teacher signal to each of the training inputs for
knowledge distillation. However, this requires extra
training resources as inputs are also sent to a teacher
network to generate the teacher signals. Moreover,
their method also requires a language model for er-
ror alignments. Here, we implement a similar knowl-
edge distillation approach, which is efficient and does
not require a language model. As shown in Figure
we only use a class-based teacher signal rather than
item-based teacher signals. The teacher signals are
the softmax of the average activation of the teacher
network Eeqcner for each semantic class. The teacher
signals can be considered as soft signals. The nota-
tion ¢(I(I)) represents the soft label of image I. To
reduce the errors caused by domain shifts, we calcu-
lated ¢ with the softmax of the average activation of
each class that exists in the photo domain as shown
in Figure Those soft labels are only calculated
once, so it is efficient. We use the cross-entropy loss
with soft labels for calculation of the Knowledge loss
Eknowledge

['knowledge = _ﬁ Z Z —q(l(I(Z))ZOQU(E(I(Z))
i=11eQ
(5)

In summary, F is trained using the £ in Equation
[l which is a combination of the three proposed ob-
jectives. For simplicity, the weights of each objective
are set to 1.

L= ACknowledge + £cls + Esim (6)

3.3. Implementation Details

PyTorch [42] is used as our implementation frame-
work, and all models are trained with single GTX
1080Ti GPU. We select an ImageNet pretrained
ResNet50 as the backbone for both teacher and stu-
dent networks. We applied the SGD optimiser with
momentum=0.9 and decay=5 x 10~*. The batchsize
is 16, but it includes 64 images as each input is a

quadruplet. The initial learning rate A = 1 x 1074,
and it is decayed by a factor of 10 times after ev-
ery ten epochs. We trained all models for up to 25
epochs, which is smaller than what previous works
[4, 22 [5] require, as our model starts to converges
after only a few training epochs. We also used
early-stop based on the validation accuracy. If the
model’s validation accuracy has not shown improve-
ments within 5 epochs, the model will stop training.

4. Experiments

4.1. Datasets

We evaluated our method on well-known large-
scale SBIR datasets: Sketchy Fatended, TU-Berlin
Extended and QuickDraw Fxtended. An overall com-
parison of these datasets is described in Table
Sketchy Extended is an extended version of the
Sketchy dataset [25] by Liu et al. [I4]. The Sketchy
dataset has 125 categories. Each category is com-
posed of 100 natural images and at least 600 sketches.
It’s photo domain is extended by adding an extra
60, 502 natural images collected from ImageNet. The
extended version has an average of 604 sketches and
584 images in each class, and it is a balanced dataset
as the variance between the number of items in each
class is relatively small. To adapt this dataset for
zero-shot studies, the dataset is partitioned into seen
and unseen sets. There exists two partition proto-
cols in the literature. For clarify, we refer to them as
SK-SH and SK-YE. SK-SH is proposed by Shen et
al. [I2], who creates an unseen set by randomly select-
ing 25 classes, and the remaining 100 classes are used
as training classes. However, some of those randomly
selected classes might have already been seen by net-
works initialised with ImageNet pretrained weights,
and thus this violates the zero-shot setting. SK-YE
introduced by Yelamarthi et al. [38]. They carefully
selects 21 classes that are not present in ImagenNet.
TU-Berlin Extended includes 20,000 sketches
from the TU-Berlin dataset [26] and an extra 204, 489
real images collected by Liu et al. [14]. TIts sketch-
domain has a uniform class distribution but with
only 80 items, while the photo-domian has around
787 items, but is highly imbalanced. It, therefore, is



a challenging dataset. The partition protocol intro-
duce by Shen et al. [12] is used for creating zero-shot
training and testing sets. We refer to this protocol as
TUB-SH where 30 randomly picked classes that in-
clude at least 400 photo images are used for testing,
and other classes are used for training.

QuickDraw Extended is a challenging dataset cre-
ated by Dey et al. [4]. Compared to Sketchy Ex-
tended and TU-Berlin Extended datasets, it includes
more sketches (average of 3022/class) and photos (av-
erage of 1853/class). All sketches are drawn by ama-
teurs, so they are very abstract and highly variable.
Moreover, all classes are carefully selected to avoid
ambiguity and overlap. A partition following a simi-
lar protocol to that proposed by Yelamarthi et al. [38]
is provided. We named this partition QD-DE. With
this partition, the dataset is split into 80 training and
30 testing classes.

4.2. Evaluation metrics

Precision (P) and mean average precision (mAP)
are two main metrics for evaluating the ranked re-
trieval results for testing queries in related SBIR
studies. Precision is calculated for the top k (i.e.,
100, 200) ranked results, and mAP values are calcu-
lated for the top K or all ranked results. The PQK is
equal to the ratio between the number of total doc-
uments and relevant documents in the K retrieved
results. PQK is also used for calculating AP values
of each query as follows:

K. Pa@i x (i)

APQK =
N )

(7)
i=1

where N is total number of relevant documents and

~(i) is 1 if the ith ranked result is relevant, otherwise

0. mAP@k is mean APQk of all queries.

4.8. State-of-the-art Comparison

We have compared the proposed methods with
SOTA methods on ZS-SBIR and its generalised ver-
sion (search space includes seen and unseen cate-
gories [20]) . The results of the ZS-SBIR task on the
Sketchy Extended and TU-berlin Extended datasets
are shown in Table[2] and the ZS-SBIR results on the

QuickDraw Extended datasets are listed in Table [4]
The results of the generalised ZS-SBIR task on the
Sketchy Extended and TU-Berlin Extended datasets
are shown in Table Bl

In all these experiments, we have shown improve-
ments compared to SOTA methods. We have sur-
passed methods that have not utilized a language
model by a large margin. We also compare the em-
bedding feature sizes used by the methods. Our fea-
ture size is 512, which we note is relatively small com-
pared to many other methods, and equal to feature
size of the previous best SOTA method, SAKE [5].

4.4. Qualitative Results

We also visualized topl0 and topb results of some
success and failure cases. All those results are dis-
played in Figure [3] and Figure [@] Figure [3] displays
both ZS-SBIR and GZS-SBIR results of Sketchy Ext.
and TU-Berlin Ext. datasets. While Figure |4] shows
topl0 results of QuickDraw Ext. dataset. The pro-
posed method returns perfect results when the given
query is unambiguous, whereas it returns acceptable
false-positive results when the query is unclear. This
is more like to happen when the searching space is as
large as in generalised ZS-SBIR cases.

4.5. Ablation Studies

Here, we investigate the impact of each proposed
learning objective and attention (att.) [39] on the
proposed approach using the TU-Berlin Extended
and Sketchy Extended Datasets. As shown in Table
Bl we provided results of models trained with several
combinations of these losses. The model trained with
the triplet loss is the baseline, and it’s results show
that it is a challenging baseline which outperforms
most of the state-of-the-art method listed in Table[2l
Each learning objective improves the results of the
baseline. However, the attention mechanism has not
brought any improvements to the final results. We
supposed that, with the proposed learning objectives,
the network is trained to pay attention to important
information without an attention module.



(b) Generalized zeroshot, Sketchy (Split:SK-YE)
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(d) Generalized zeroshot, TU-Berlin (Split: TUB-SH)

Figure 3: Top-5 ZS-SBIR (a,c) and generalised ZS-SBIR (b,d) results retrieved by our model on Sketchy Ext. (a,b) and TU-
Berlin Ext. (c,d) datasets. Correct results are shown with a green border, while false results are shown with a red border. The
top two rows are all correct, the third row is partially correct, while the bottom row is all incorrect.



Table 1: Comparison of public SBIR datasets. These datasets include images from the sketch and photo domains. For zero-shot
studies, they are split to train (seen) and test (unseen) classes.

Sketchy Ext. [14] TU-Berlin | QuickDraw
Ext. [10] Ext. [4]
# Sketch/Class 604 + 61 80 £ 0 3022 £+ 216
# Image/Class 584 + 76 787 £ 489 1853 £ 308
Name SK-SH [127] | SK-YE [38] | TUB-SH [12] | QD-DE []
Type | Random | fyggeNet | Rendom | ImageNct
# Train Class 100 104 220 80
# Test Class 25 21 30 30

Table 2: A performance comparison of recent state-of-the-art ZS-SBIR methods.

Sketchy Sketchy TUBerlin
Method DIM. Ext. Ext. Ext.
(Split: (Split: (Split:
SK-SH) SK-YE) TU-SH)
mAP P mAP P mAP P
@all @100 | @200 @200 | @all @100
ZSIH [12] 64* 25.8 34.2 - - 22.3 294
64* - - - - 16.5 25.2
EMS [ 512 - - - - 25.9 36.9
CVAE [38] 4096 | 19.6 284 | 225 333 | - -
GZS-SBIR [16] 2,048 | 28.9 35.8 - - 23.8 334
64 34.9 46.3 - - 29.7 426
SEM-PCYC [20) 64* 344 399 - - 29.3 392
Doodle2Search [4] | 4,096 - - 46.1*  37.0 | 10.9

SketchGCN [21] 2,048 - - 56.8% 487 | 324  50.5
Style-guide [6] 4,096 37.6 48.4 35.8 40.0 | 264  35.6
64* 36.4 48.7 35.6  47.7 | 359 481

SAKE [ 512 | 547 692 | 49.7 598 | 475  59.9
BDT [22] 1024 - - 281 39.7 | - -
OCEAN [19] 512 | 462 59.0 - - | 333 467
64 | 523 616 - - | 424 517
PCMSN [36] 64* | 50.6  61.5 - - | 355 452
SBTKNet 512 | 55.25 69.77 | 50.2 59.6 | 48.0 60.8

@ These mAP@200 evaluations use a different formulation to ours. If we follow the same mAP@200 evaluation protocol, our
mAP@200 values for Sketchy-Ext. (Split: SK-YE) is 72.24.

5. Conclusion fashion with three introduced losses: domain-aware
quadruplet loss, semantic classification loss and se-
mantic knowledge preservation loss. The domain-

In this work, we propose a simple and efficient : .
aware quadruplet loss addresses the issue of domain-

framework for zero-shot sketch-based image retrieval ¢ ) " .
(ZS-SBIR). The model is trained in an end-to-end imbalance that occurrs using the vanilla triplet loss



Table 3: Comparison results of generalised ZS-SBIR on Sketchy Extended and TU-Berlin Extended datasets.

Sketchy TU-Berlin
Method DIM. Ext. Ext.
(Split: (Split:TU-
SK-SH) SH)
mAP@all PQ@I100 | mAP@all PQ@100
ZSIH [12] 64 21.9 29.6 14.2 21.8
SEM-PCYC [20] 64 30.7 36.4 19.2 29.8
Style-guide [6] 4,096 33.1 38.1 14.9 22.6
Ours 512 51.45 57.20 33.4 49.4

Figure 4: Top-10 ZS-SBIR results retrieved by the proposed model on the QuickDraw Ext. dataset. Correct results are shown
with a green border, while incorrect results are shown with a red border. The top two rows are all correct, the third row is
partially correct, while the bottom row is all incorrect.

Table 4: Comparison results of QuickDraw-Extended Dataset.

Method DIM. | mAP@all P@200
CVAE [3§] 4,096 0.30 0.30
Doodle2Search [4] | 4,096 7.52 6.75
Ours 512 11.88 16.65

that is frequently used to reduce the domain gap and
learn a shared low-dimension feature space. In ad-
dition, categorical semantic classification is also used
to learn semantic features. To enhance the zero-shot
ability of the learned model, the semantic knowledge
preservation loss is introduced. This loss is formu-
lated to prevent the rich knowledge learned from the

10

ImageNet dataset from being forgotten during fine-
tuning of the pre-trained ImageNet model that is
used by the network. Experiments on three chal-
lenging ZS-SBIR datasets show that the proposed
framework is more efficient and effective than related
works. Moreover, extensive ablation studies show
each introduced loss brings non-trivial improvements
and contributes to the state-of-the-art performance.
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