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Quasi-Bezier Curves Integrating Localised Information  

Ferdous A. Sohel1, Gour C. Karmakar, Laurence S. Dooley, and John Arkinstall 

ABSTRACT 

Bezier curves (BC) have become fundamental tools in many challenging and varied applications, 

ranging from computer aided geometric design to generic object shape descriptors. A major 

limitation of the classical Bezier curve however, is that only global information about its control 

points (CP) is considered, so there can often be a large gap between the curve and its control 

polygon, leading to large distortion in shape representation. While strategies such as degree 

elevation, composite BC, refinement and subdivision reduce this gap, they also increase the 

number of CP and hence bit-rate, and computational complexity. This paper presents novel 

contributions to BC theory, with the introduction of quasi-Bezier curves (QBC), which 

seamlessly integrate localised CP information into the inherent global Bezier framework, with no 

increase in either the number of CP or order of computational complexity. QBC crucially retains 

the core properties of the classical BC, such as geometric continuity and affine invariance, and 

can be embedded into the vertex-based shape coding and shape descriptor framework to enhance 

rate-distortion performance. The performance of QBC has been empirically tested upon a number 

of natural and synthetically shaped objects, with both qualitative and quantitative results 

confirming its consistently superior approximation performance in comparison with both the 

classical BC and other established BC-based shape descriptor methods.  

                                                 
1 Corresponding author: E-mail: Ferdous.Sohel@infotech.monash.edu.au; Ferdous.Sohel@ieee.org; Tel.: +61-3-990-

26133; Fax: +61-3-990-26842. Mailing address:- GSIT, Monash University, Churchill, Victoria – 3842, Australia. 



Index Terms – Vertex-based shape coding, image processing, video processing, and Bezier 

curve. 

I. INTRODUCTION 

Bezier curves (BC) were independently developed by P. de Casteljau and P. E. Bézier, and have 

subsequently been applied to a wide range of computer-aided design applications. While their 

origin can be traced back to the design of car body shapes in the automobile industries, their 

usage is no longer confined to this field. Indeed, their robustness in curve representation means 

BC now pervades many areas of multimedia technology, including shape description of 

characters [1] and objects [2], shape coding and error concealment for MPEG-4 coded objects 

[3].  

The classical BC is defined by a set of control points (CP) which, when joined together, form 

the control polygon, with the number and orientation of the vectors connecting the CP governing 

the shape of the curve. One limitation of BC theory is that only global information about the CP 

is considered [4] because each BC point is produced by blending all CP. As a consequence, a 

large gap can occur between the curve and its control polygon, leading to high distortions in 

shape approximation. 

A number of approaches have been proposed to reduce this gap, including degree elevation 

[5], Composite Bezier curve [6] and refinement and subdivision [7]-[8]. Degree elevation forms a 

curve with an increased number of CP by one in each iteration, though all of these, except the 

two end-points, need to be recalculated, so the computational overhead is commensurately 

increased. Moreover, a higher degree curve is always computationally expensive than a lower 

degree curve. Composite Bezier curves (CBC) [6] model a shape by dividing it into multiple 



segments, each of which is defined by a simple BC. The main drawback of CBC is however, that 

the number of segments required increases with shape complexity, as segment division is not 

very strategic. This was the primary driver behind the evolution of the refinement and subdivision 

techniques [6]. In the latter, the BC is arbitrarily subdivided into two [8], with a new set of CP 

being calculated from the initial CP set for each part, that is guaranteed closer to the curve. In the 

special case, where the two lengths are equal, the technique is referred to as midpoint subdivision 

[7]. These algorithms however, increase the number of curve segments and thereby the number of 

CP. Indeed, arbitrary subdivision and CBC double the number of curve segments, which 

commensurately increases the number of CP, meaning a high bit-rate encoding overhead is 

required. 

While these techniques successfully reduce the distance between a Bezier approximation and 

its control polygon, they also increase the number of CP, leading to a higher coding or descriptor 

length. This was the motivation behind this research, namely to reduce the gap between the curve 

and its control polygon without increasing the number of CP. Such an objective mandates an 

augmentation to the fundamental theoretical basis of the BC, which this paper addresses by 

introducing two novel BC enhancements2, namely quasi-Bezier curves (QBC), theory which 

considers local information within the classical BC framework, without any increase in either the 

number of CP or computational complexity incurred. It is especially noteworthy that QBC can be 

seamlessly integrated into all Bezier variants including the aforementioned degree elevation, 

composite and subdivision techniques, while concomitantly retaining all the central properties of 

the BC. 

                                                 
2 The preliminary idea behind this work was presented at IEEE International Conference on Acoustics, Speech and 

Signal Processing (ICASSP 2005) [9]. 



Moreover, the B-spline is a generalisation of the Bezier curve [4], for example, quadratic B-

splines are piecewise Bezier curves. Quadratic B-splines have been efficiently used in the 

classical vertex-based operational-rate-distortion (ORD) shape coding framework [10]-[15]. The 

performance of QBC as a generic shape descriptor is rigorously analysed for a number of natural 

and synthetic shapes, as well as embedding it within the classical vertex-based ORD optimal 

shape coding framework. Experimental results corroborate the theoretical basis of QBC by 

consistently providing superior shape approximations in comparison with the classical BC and its 

major variants. 

The remainder of the paper is organised as follows: Section II presents a short overview of 

classical BC theory and the classical vertex-based ORD optimal shape coding framework, while 

Section III introduces the mathematical foundations of the new QBC together with appropriate 

proofs that all the core properties of the BC are retained and also the model of QBC based ORD 

optimal vertex-based shape coding framework. Section IV provides a comprehensive analysis of 

the improved performance of QBC, with some conclusions drawn in Section V. 

II. OVERVIEW OF THE CLASSICAL BEZIER CURVE THEORY AND THE VERTEX-BASED ORD 

OPTIMAL SHAPE CODING FRAMEWORK 

This section presents a short overview of the Bezier curve theory followed by the B-spline based 

shape coding framework.  

II A. The Bezier Curve Theory 

The classical BC is a linearly-weighted interpolation which exhibits the variation diminishing 

property of the edges of a generated polygon. Commencing with a set of points which form the 

initial (control) polygon, this property relates to the fact that during each iteration a particular u , 



the number of interpolated points decreases by one and ends when the final point is generated. 

Hence, as  varies, it produces a segment of curve in form of a blending polynomial. As the 

iteration goes, the levels of intermediate points increase, the degree of each blending polynomial 

increases, and the number of curve segments reduces. After the last iteration, a single blending 

polynomial of degree  i.e., the  degree BC, is produced, from the set of  CP. The 

Casteljau form of the BC for an ordered set of CP 

u

N N 1+N

{ }NpppP ,,, 10 K=  is iteratively defined as: 

⎪⎩

⎪
⎨
⎧

=−

=
−
+

− ,0;,,1);()1(

;0;
(

1
1

1 iNuuppu

rifpP,memberi
p

r
i

r
i

i
th

r
i

L ≤≤− 10;, urNL=r+)(u

of
=)u                                                          (1) 

where  is the interpolation weight, which is determined by the number of points on the BC. The 

final iteration  is the Bezier curve of 

u
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Figure 1: A quadratic BC example illustrating the gap. 

 

Figure 1 shows a quadratic BC produced using CP  and . The large gap between the BC 

approximation and its control polygon represents a substantial shape distortion (error) caused by 

the fundamental BC limitation of considering only global CP information. If for a particular value 

, points  and 

10 , pp 2p

5.0=u A B  are generated by (1), then the inner area of BAp1Δ  is never reached and 

the final BC point  will be generated on line C AB . This inadequacy has lead to many variants of 



the classical BC being proposed [5]-[8], all attempting to some degree, to reduce this gap 

however at the cost of increasing the number of CP hence the bit requirement. To minimise the 

gap between the curve and its control polygon without increasing the number of CP, it is required 

to move the Bezier point inside .  BAp1Δ

II B. The Vertex-Based ORD Optimal Shape Coding Framework 

In [10], a rigorous review of shape coding algorithms was presented with the conclusion that the 

classical vertex-based shape coding framework was optimal in an ORD sense. With both 

polygonal and quadratic B-spline based shape encoding strategies being deployed in [10], these 

have become the kernel for several other shape coding algorithms [11]-[16] within the ORD 

framework. However, being higher order curve, the B-spline based algorithms require lower bit-

rate than those of the polygon based algorithms for the same experimental set up and the same 

test shapes. The general aim of all these algorithms is that for some prescribed distortion, a shape 

contour is optimally encoded in terms of the number of bits, by selecting a set of CP that incurs 

the lowest bit rate and vice versa. To define mathematically, let boundary { }110 −=
BNb,,b,bB L  is 

an ordered set of shape points, where  is the total number of points. BN { }110 −=
SN,s,,ssS L

CS ⊆

 is an 

ordered set of CP used to approximate , where  is the total number of CP and , where 

 is the ordered set of vertices in the admissible control point band (ACB), the source of 

potential CP. For a representative example, the ORD B-spline based shape coding algorithm for 

determining the optimal  for boundary  within RD constraints is formalised in 

B

B

SN

C

S Algorithm 1 

with the details can be found in [10], [11], [14] and [15]. 

 

 



Algorithm 1: The B-spline based ORD optimal shape coding algorithm. 
Inputs:  –  the boundary;  and – the peak admissible distortion bounds. B maxT minT
Variables: State ( )njmi cc ,, ,  refers to encoding up to  from  with  immediately preceding 

; 
njc , 0b mic ,

njc , ( )njm c ,, ,icMinRate – current minimum bit-rate required to encode ( )lkn c ,,jc , ; ( )lknj ccpred ,, , – 
predecessor of ( )lknj cc ,, ,  that maintains the ( )njcMinRate ,mic , , ; [ ]iN  – the number of vertices in C  
associated to . ib
Output:  – the ordered set of CP approximating . S B
 
1. Determine the admissible distortion [ ]iT  for 10 −<< BNi  using maxT  and minT ; 
2. Form the ACB C  using width [ ]iW  for 10 −<< BNi  according to [15];  
3. Initialise ( )0,10,0 , cc  with the total bits required to encode the first boundary point 0b ; MinRate

4. Set ( )njmi ccMinRate ,, , , [ ]iNmNi B <≤−<< 0,10 , [ ]jNnNji B <≤<< 0,  to infinity; 
5. FOR each vertex [ ]iNmNic Bmi <≤−<≤ 0,20,,  
6.         FOR each vertex [ ]jNnNjic Bnj <≤−<< 0,1,,  
7.                 FOR each vertex [ ]kNlNkjc Blk <≤<< 0,,,  
8.                        Determine the B-spline curve BSQ  using CP set ( )lknjmi ccc ,,, ,, ; 
9.                        Check the admissible distortion using ( )TQBS , ; 
10.                        IF the admissible distortion is maintained  
11.                            Determine bit-rate ( )lknjmi cccr ,,, ,,  and weight ( )lknjmi cccw ,,, ,, ; 
12.                            IF ( ) ( )( ) ( )( )lknjlknjminjmi ccMinRatecccwccMinRate ,,,,,,, ,,,, <+  THEN  
13.                                ( )lknj cc = MinRate ,, , ( ) ( )lknjminjmi cccwccMinRate ,,,,, ,,, + ;  
14.                                ( )lknj ccpred ,, , = mic , ; 
15. Obtain S  with properly indexed values from pred . 
 

From (1), polynomial form of a quadratic Bezier curve  for the ordered CP set { } is 

obtained as: 

BCQ 210 ,, ppp

 ( )( ) ( ) ( ) 2
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210 121,,, pupuupuupppQBC +−⋅⋅+−= , 10 ≤≤ u                       (2) 

Again, the polynomial form of a quadratic B-spline curve segment  for the ordered CP set 

 is defined as: 
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From (2) and (3):  



 ( )( ) ( )( )upQupppQ pppp
BCBS ,,,,,, 212210

2110 ++≡ , 10 ≤≤ u                                                                   (4) 

Equation (4) confirms that a Bezier curve can be represented in B-spline form and a quadratic B-

spline curve is piecewise Bezier where the end CP for the BC are the midpoints of the control 

polygon of the B-spline curve, which can also be illustrated by the example in Figure 2. 

 

 

Figure 2: The relationship between Bezier and B-spline curves. 

 

Therefore, in Step 8 of Algorithm 1, Bezier curves can be equivalently used instead of the B-

splines, with proper CP of course. This leads the way to embed the proposed QBC within the 

existing B-spline based ORD optimal shape coding framework to improve the rate-distortion 

performance. 

 

Section III introduces novel strategies namely the quasi-Bezier curves (QBC) that reduce the gap 

between the classical Bezier curve and its control polygon, and also the mechanism to embed 

QBC into B-spline based shape coding framework. 

 

 



III. QUASI-BEZIER CURVE THEORY INTEGRATING LOCAL INFORMATION 

In this section the quasi BC theory is firstly developed, including a series of formal proofs to 

confirm all core properties of the classical BC are upheld in the new representation. A short 

delineation is then presented as to how QBC may be seamlessly embedded in the operational-

rate-distortion (ORD) optimal vertex-based shape coding framework [10] to enhance its rate 

distortion (RD) performance. 

III A. The Quasi-Bezier Curve 

Enhancement of the quadratic BC is initially presented, before the theory is generalised for any 

arbitrary degree N. To reduce the gap illustrated in the example in Figure 1, curve points need to 

be generated inside the triangular area. For this purpose, the centre of gravity (CoG)  of G BAp1Δ  

in Figure 3(a) can be exploited, by shifting a particular point generated by the classical BC, 

towards it. If this point, for a particular  is moved directly to the CoG, three major problems 

arise: 1) End-point interpolation, which is one of the most important BC properties is no longer 

upheld, since for the extreme values 

u

10 == uoru , the CoG can never be an end CP. For 0=u , the 

corresponding triangle will be the line  in 10 pp

u

p

Figure 3(a), so the CoG of the triangle is not at 

point , rather specifically, it will be at the midpoint of line . As a consequence, a point 

shifted directly to the CoG violates the end-point interpolation for the first CP. Similarly for 

, the CoG will be on line  but, not at point  and so again direct shifting to the CoG 

invalidates this important BC property. 2) The length of the generated curve will be shorter than 

the BC since the CoG for various  values are confined to within a small region. As it is just 

discussed, that shifting directly to the CoG does not uphold the end-point interpolation property 

rather it begins the curve at the midpoint of line  and ends at the middle of . Therefore, 

0
p 10 pp

1=u 21 pp
2

p

10 p 21 pp



the resulting curve is shorter than the BC. 3) The resulting curve also may not be smooth, since 

the curve connecting the corresponding CoG may form an unwanted zigzag.    
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Figure 3: QBC examples for a) Quadratic; b) Cubic. 

 

To obtain a smooth curve, all generated points need to be regularly distributed over the entire 

curve which is again controlled by the values of u  in accordance with the direction guided by the 

CP. For example, there is regularity between a constant increment  in the parameter domain u  

and the corresponding increment in arc length, say  on BC. It is noteworthy to mention that it 

is not necessarily constant. To ensure a large and smooth curve, it is essential to maintain the end-

point interpolation property as well as the regular distribution of the generated points. This can be 

achieved by generating the points using a suitably weighted linear interpolation between the BC 

point and its CoG. If the original BC ratio 

du

dl

( )uu −1:

)

 is used as the interpolation weighting factor to 

shift a BC point, the end-point interpolation property for the last CP will not be satisfied, since 

for  the shifting ratio is  and as a result the Bezier point at  will be shifted to the 

corresponding CoG which will be at the midpoint of the line . However, as will be proven in 

Lemma 1, the ratio ( )

1=u 0:1

( (1 u

2
p

21 pp

)1:)1( uuu −−−  for a BC point and its CoG guarantees the end-point 



interpolation criterion and concomitantly ensures a smooth curve, because, the generated points 

are regularly dispersed over the entire curve due to the values of the shifting parameters in the 

direction guided by the CP set. Moreover, ( )1−uu  is the lowest order polynomial that maintains 

the required shifting ratio for the end-point interpolation property. This strategy of shifting a BC 

point using the above ratio is the basis of the new quasi Bezier curves (QBC), which is pictorially 

depicted in Figure 3(a), where  is the BC point for S 3.0=u  and  is the CoG of  G BAp1Δ . In 

QBC,  moves to any point on line  and the shifted point Q  always segments line  such 

that . For a particular 

S

:

SG SG

( ) ( )1(1:)1( uuuuQGSQ −−−= ) 3.0=u  this ratio is , and the 

quadratic QBC can be formulated as: 

79.0:21.0: =QGSQ
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22
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1 +−−++−−= puuuup            (5) 

where {  is the set of CP. }210 ,, ppp

The cubic QBC is shown in Figure 3(b), where points Q and  are generated using the quadratic 

QBC described above for CP sets { }and 2pp { }3, p2p1,p  respectively. A new quadratic CP set 

is then formed with , where  is produced by the weighted { 21 ,, QBQ } B ( )( )uu −1:

N

 interpolation of 

successive initial CP  and  during the BC generation process.  is so chosen because of its 

influence on both  and . The final curve point is generated by quadratic QBC with CP 

. 

1p 2p

1 2Q

B

Q

{ }21 ,, QBQ

The quadratic QBC can be iteratively extended to an arbitrary degree  by using two 

consecutively generated quadratic QBC points in the previous iteration, together with a polygon 

point between them, to form another quadratic QBC, until it converges to a single point for each 

value of u , thereby generating the entire QBC polynomial for the values of u  in the range. 



Depending on the iteration, the polygon point is selected either from the CP or from Bezier 

generated intermediate points during interpolation. This polygon point will actually be the 

common point which has been involved in generation of both these QBC points. This is 

formulated as: 
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The first and last of the three CP required for a quadratic QBC are chosen from the QBC points 

generated in the previous iteration, while the polygon point is selected from either the initial 

CP or the interpolation points according to 

)(usr
i

(7), so the final generation is the resulting 

QBC.  

)(2
0 up N −

As , the value of  in QBC is generally small and consequently, the corresponding 

displacement distance of a BC point towards the CoG is also small. To create a larger 

displacement, so further reducing the gap, a normalised shifting parameter can be introduced, 

which is normalised with respect to the value of the following expression: 

10 ≤≤ u )1( uu −

{ })1(max
10

jj
u

uu
j

−
≤≤

                                      (8) 



which is  with . The normalised shifting parameter thus becomes 

. This ensures a smooth curve since the generated points are well 

distributed over the entire curve and also that the gap between the curve and control polygon is 

reduced further. Note, when ,  shifts to the CoG of the triangle, which is the maximum 

possible shift within this framework, while concomitantly maintaining the end-point interpolation 

and the smoothness properties of the classical BC. When the normalised parameter is used, QBC 

is referred to as QBC-n, so in 

25.0

( 1( uu −−

5.0=ju

)

5.0=u

25.0/)1:25.0/)1( uu −

S

Figure 3(a), for 3.0=u .  is the QBC-n point, where the shifting 

parameter is . Applying the same rationale as for QBC, the generic QBC-n can 

be formally expressed as: 
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where the polygon point is selected from either the initial CP or the interpolation point as 

found by 

)(usr
i

(7), so is the resulting QBC-n. )(2
0 up N −

III B.  Properties of Quasi-Bezier Curves 

As the foundations of both QBC frameworks are underpinned by classical BC theory, all the core 

properties [4] are preserved. The following examines some of these, where without loss of 

generality; all proofs are provided for QBC, though they are equally applicable to QBC-n.  

Lemma 1: End-point interpolation: The QBC always interpolates its first and last CP. 

Proof: Any Bezier curve interpolates its end points [4] for the starting ( 0=u ) and end ( 1=u ) CP.  

QBC makes a parametric shift of the classical BC point towards the CoG by the 



ratio . For both ( ) ( )1(1:)1( uuuu −−− ) 0=u  and 1=u , ( ) ( ) 1:0)1(1:)1( =−−− uuuu , which means the 

end-points are shift invariant in QBC, i.e. the end-points of QBC and BC are the same. This is 

also evidenced in (5) and (6), i.e. 0)0 p(p =  and Npp =)1( . 

Lemma 2: Convex Hull Property: QBC always lies within the convex hull of its CP. 

 where  is the th CP. If ( ) 0,)( ≥Proof: Suppose a curve is defined as kp k)(u
0
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≤≤ Nk

upu kkp k αα

, the curve  lies within its convex hull 
k
∑
≤≤0

uu
N

k ∀= ,1)( )α (up

u∀
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20
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)()( α , so the quadratic QBC 

lies within the convex hull of its control polygon, i.e. within the corresponding enclosed 

triangular area. It follows from (7) that  always lies on the control polygon, so any QBC 

point will always lie within the corresponding triangle and QBC therefore must lie within the 

convex hull of the CP. 
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Lemma 3: Affine Invariance: QBC is invariant under affine transformations. 

Proof: A BC is affine invariant if the curve drawn with affine transformed CP is the same as the 

entire affine transformed curve with the same parameters, i.e. 
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[4].  QBC with affine transformed CP can be expressed as:- 
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therefore QBC is affine invariant. 



Computational complexity analysis: QBC has the same order of computational complexity as the 

classical BC, since for a  degree curve, QBC in N (6) requires ( )2−N  iterations to locate the final 

curve point for each value of u , as it started with a quadratic curve. In contrast, the classical BC 

in (1) takes  iterations, so the computational order in both cases is N ( )NO  iterations. 

III C.  QBC in the ORD Optimal vertex-based shape coding framework: 

Katsaggelos et al. [10] proposed the framework for ORD optimal vertex-based shape coding 

using B-splines and polygons, which has subsequently been deployed in [11], [12] and extended 

in [14], [15]. It is already shown in Section IIB that quadratic Bezier curves can be equivalently 

used instead of the B-splines. Therefore, to improve the rate-distortion performance of these 

algorithms a series of conjoint QBC curves can be used to approximate the shape. Though since 

QBC possesses an end-point interpolation property (Lemma 1) similar to the Bezier, to ensure a 

series of conjoint curves so that adjacent curves have some common CP, the points are to be 

coordinated in a similar fashion of (4), where two QBC curves abut. Therefore, as shown in (10) 

the QBC will replace the B-spline based framework: 

 ( )( ) ( )( )upQupppQ pppp
QBCBS ,,,,,, 212210

2110 ++⎯→← , 10 ≤≤ u                                             (10) 

where ⎯→←  denotes that the right-hand-side curve will replace the left-hand-side curve. For a 

series curves using the CP set { }110 −=
SN,s,,ssS L , the  and thi ( )thi 1+  curve segments are 

respectively defined, within the range 10 ≤≤ u , as:  
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Figure 4: Illustration for series of conjoint QBC curves with in a quadratic B-spline framework. 

        These are also pictorially shown in Figure 4. It will now be proven in Lemma 4 that the 

resulting series of QBC curves maintain the geometric continuity at the knot (where two 

consecutive curves abut) points which is crucially an important property for the parametric curves 

when they are dealt with shapes [17]. 

Lemma 4: Geometric Continuity: The QBC curves series produced in accordance with (11) and 

(12) maintains the geometric continuity at the knot points. 

Proof: From (11) and (12) for QBC curves using parameter u  in (5), ( ) 01 1+−= ii QQ ( )  which means 

the consecutive curve segments join at the end points and form a series of curves. Now, if ( )uQi′  

denotes the derivative of  with respect to , ( )uQi u ( ) ( )01 1+′−=′ ii QQ  which means the conjoint curves 

maintain the geometric continuity at the knots.                        

Lemma 5: Bounds for the ACB Width: Step 2 of Algorithm 1 determines the width [ ]jW  of the 

ACB for each boundary point . It was proven in ib [15] that for B-spline based encoding: 

[ ] [ ] [ ]jT
jTT

jW +
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ++

≤
4

2,
6

243
min max ρδ                                   (13)

   



where δ  and ρ  are respectively the longest chord length of the boundary and the largest run-

length possible for the code employed. These bounds for QBC-n and QBC are respectively:  
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Proof: Figure 5(a) shows a uniform quadratic parametric curve (BC, QBC or QBC-n) with the 

ordered CP set , with   being the minimum distance of the middle CP  from the 

curve. It thus follows from 

{ 210 ',,' ppp } h 1p

[18] that for BC { }2110 ','max2 pppph ≤ , where 21 'pp  is the length 

of edge . However, for example, in case of QBC-n the curve point is generated by shifting 

the BC point to the CoG of the triangle for 

21 'pp

5.0=u  and hence this distance is reduced. This 

minimum distance becomes the maximum when the end CP  and  coincide and it is 0p 2p

103
1 ' pp , i.e.,  { }2'110 ,'max3 pppph ≤ . Therefore, { }210max pppp≤ 1 ,6h . 
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(a)                                                                        (b) 

Figure 5: a) Distance between a quadratic BC or QBC curve and its CP, b) Maximal width of the 

admissible CP band calculation. 

 



In the example shown in Figure 5(b), three CP  are employed to encode a shape segment 

that includes the boundary point  which has an admissible distortion . Assuming , 

the distance of the QBC-n curve from Q  is always ≤

RQP &,

jb [ ]jT QRPQ ≥

PQ6
1 . Let [ ]jα  denotes the difference 

between the corresponding admissible distortion and width of the admissible CP band, i.e., 

[ ] [ ] [ ]jTjjW +=α . The maximum length of  is: PQ

maxmaxmaxmax ααδ ++++ TT = maxmax 22 αδ ++ T where maxα  is the maximum value of α . So 

maxmaxmax 622 ααδ ≥++ T .  

Hence, 
4
2 max

max
T+

≤
δ

α                            (16) 

The corresponding [ ]jα  for boundary point  is given by; jb [ ] [ ] [ ]jjTTj ααδα ++++≤ maxmax6 .  

Hence,  [ ] [ ]( )jTTj 465 max20
1 ++≤ δα                                  (17)  

The encoding strategy adopted can limit the length of an edge since for example, the logarithmic 

code [11] can support a maximum length of 15=ρ , while using a 3-connected chain as the 

direction encoder, it is able to encode a maximum length of 2ρ  (through the diagonal) so that: 
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Again, for QBC { 211011
24 ','max pppph ≤⋅ } and it can be similarly shown for QBC that 
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From the widths of the ACB for B-spline and the QBC curves shown in (13), (14) and (15) it is 

clear that the bound for QBC-n is the minimum while for B-splines it is maximum. The 

computational complexity of the framework of Algorithm 1 (the loops due to the ’s in Steps [ ]iN

5-7) is primarily depends on the number of vertices in the ACB C , if all other parameters remain 

the same. The number of ACB vertices is directly proportional to the widths of the band. 

Therefore, a larger distortion bound will enforce a computationally expensive encoder if the 

admissible distortion and the shape properties are intended to be fully utilised in bit-rate 

reduction.  

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, the performance of both QBC-n and QBC is initially compared with the classical 

BC from the perspective of curve representation, by using some hypothetical CP sets, before 

analysing the results upon a series of popular test shapes from the perspective of both shape 

descriptor and the enhanced QBC based ORD optimal shape encoding. To quantitatively evaluate 

the performance of QBC, the widely-used shape distortion measurement metrics [11] were 

employed. Class one distortion measures the maximum distortion Dmax over the entire curve, 

while Class two distortion provides a measure of the mean-square (MS) distortion Dms of the 

shape approximation. For the distortion measurement purpose the accurate distortion 

measurement technique [16] was employed. 



IV A. Comparative results for QBC, BC and popular Bezier variants 

Figure 6 shows a comparison between the classical BC, QBC-n and QBC for varying degrees and 

orientations. QBC-n is consistently the closest to the control polygon, followed by QBC, with BC 

providing the poorest approximation, reflecting the fact that both QBC-n and QBC integrate local 

information about each CP in addition to the inherent global BC information. 

   
(a)                                (b)                               (c) 

Figure 6: Curves of different degrees and orientations; a) Quadratic; b) Cubic; c) Cubic curves in 
a different orientation. 

 

       A series of experiments were conducted to compare both QBC-n and QBC with the 

aforementioned degree elevation [5] technique. A hypothetical CP set for a quadratic BC was 

employed for which BC, QBC and QBC-n respectively yielded maximum distortions of 3.6, 3.3 

and 2.4 pel and MS distortions of 4.5, 3.6 and 1.9 pel2. A new CP set for one degree elevation 

shown in Figure 5(a) was generated by degree elevation using the same CP set. It is visually 

apparent that the new control polygon is closer to both QBC-n and QBC than the classical BC, 

with the maximum and MS distortion values in Table 1 confirming the numerical superiority of 

the QBC approximations over BC. 



   

(a)                                              (b)                                              (c) 

Figure 7: QBC-n, QBC and BC comparison; a) degree elevation; b) composite curve control 
polygons; c) subdivision (legend Sub-Div C H means sub-division convex hull). 

 
 

Table 1: QBC-n, QBC and BC distortions for degree elevation. 

 BC QBC QBC-n 
Degree Dmax (pel) Dms (pel2) Dmax (pel) Dms (pel2) Dmax (pel) Dms (pel2) 
2 3.6 4.5 3.3 3.6 2.4 1.9 
3 (Elevated) 1.65 1.36 1.1 0.6 0.82 0.34 

 

To test the effectiveness of QBC-n and QBC compared to the classical BC using a CBC 

approach, another experiment was conducted using the curve in Figure 7(b), which is intuitively 

divided into two segments. The corresponding control polygons, each defined by four CP are 

shown in Figure 7(b). The results reveal the control polygon for BC is further away than either 

QBC-n or QBC, with QBC-n generating the better approximation. The plots in Figure 7(c) 

illustrate the potential of QBC-n and QBC using the midpoint subdivision algorithm [7]. Both 

curves were drawn using the resultant CP generated by Bezier subdivision and reveal that both 

enhancements qualitatively generated better curve approximations than BC, using the same 

subdivided CP set. 

 



IV B.  Comparative results as a shape descriptor 

Cubic BC was used for shape description in [2], with an a priori number of curve segments 

(segment rate-SR) each with the same number of contour points. The CP for the segments were 

determined as in [2] and for comparative purposes, the experiments used the same set of CP for 

the BC, QBC and QBC-n. 

   
(a)          (b)           (c) 

Figure 8: a) Fish shape of [2]; b) Shape described with SR= 5; c) Zoom-in on the highlighted 
portion. 

 

The shape descriptions of the object-shape in Figure 8(a) are shown for SR=5 in Figure 8(b). The 

BC generated a class one distortion of 9.25pel for the highlighted head region, compared with the 

corresponding values for QBC and QBC-n of 7.8pel and 7pel respectively. For clarity, a 

magnified version of this region is shown in Figure 8(c). When the whole object was considered, 

QBC-n provided the best shape description, while BC performed worst as confirmed by the 

numerical results in Table 2 for various segment numbers. Table 2 also reveals QBC-n 

consistently provided better performance (lower distortion) even for a small number of curve 

segments. For instance, the class one and class two distortions for the BC with 6 segments were 

7.8 pel and 6.7 pel2 respectively, while for 5 segments, it was 7.8 pel and 6.6 pel2 for QBC and 7 

pel and 5.4 pel2 for QBC-n respectively. This improvement was a direct result of incorporating 

localised information into the classical BC global framework. 



 

Table 2: Class one and class two distortion measures for the fish-shape with different segment 
rates (units: Dmax = pel; Dms=pel2). 

 SR=5 SR=6 SR=7 SR=8 SR=9 SR=10 
Fish Object Dmax Dms Dmax Dms Dmax Dms Dmax Dms Dmax Dms Dmax Dms 
BC 9.25 9.6 7.8 6.7 6.3 3.8 5.3 3.4 3.7 2.1 3.6 1.2 
QBC 7.8 6.6 6.5 5.8 5.5 2.8 4.7 2.4 3.2 1.5 3.2 0.9 
QBC-n 7.0 5.4 6.0 4.6 5.0 2.3 4.3 2.0 3.0 1.2 2.9 0.7 

 

From the results analysis above, it is evident that for the same set of CP on the shape both QBC 

and QBC-n produce better shape approximations than BC. The robustness of these enhancements 

were further tested by comparing them against shape approximating technique [1], which permit 

CP other than shape points, using their own set of CP derived for the classical BC. Finally a 

series of tests were conducted upon one of the Arabic character [1] which has strong localised 

information comprising very sharp peaks followed by sharp troughs over the entire shape. The 

respective results for BC, QBC and QBC-n are shown in Figure 9(a), (b) and (c). Although [1] 

produced an optimal set of CP in terms of minimum distortion for the BC representation, QBC 

and QBC-n generated a better approximation. The quantitative results in Table 3 again confirm 

this observation. 
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(a)                   (b)                                            (c) 

Figure 9: Shape modelling for Arabic-character [1] by a) BC; b) QBC; c) QBC-n approximations. 

 

 



Table 3: Results summary obtained for shape description for the Arabic character. 

Class one distortion (pel) Class two distortion (pel2) 
BC QBC QBC-n BC QBC QBC-n 
1.45 1.44 1.2 0.34 0.34 0.23 

 

IV C. Comparison with B-splines based ORD optimal shape coding framework 

Though QBC primarily enhances the performance of the BC theory, since BC is the basis of B-

spline curves, QBC can be used, with proper adjustments of the CP, in the B-spline based 

frameworks. Section IIIC discussed how quadratic QBC can be used within the B-spline based 

ORD optimal shape coding algorithms. Some related experimental results will now be presented. 

 

For sake of equity in all the subsequent experiments the variable width admissible CP band [15], 

and the curvature based admissible distortion measurement strategy proposed in [13], since for 

binary shape coding purposes image intensity data may not always be available. Without loss of 

generality however, QBC is equally applicable to the image gradient based techniques [13], [14] 

provided the necessary image intensity data are available.  



 
               (a) B-spline    (b) QBC   c) QBC-n 

Figure 10: Results for the first Kid of the 1st frame of the Kids sequence with 2max =T  and 
  (legends – solid line: Approximated boundary; dashed line: Original boundary; 

asterisk: CP).  
pelT 1min =

 

A series of experiments were performed concentrating upon the required bit-rate for a prescribed 

set of admissible distortion values. The respective results produced by the different ORD 

algorithms upon the first Kid shape of the 1st frame of the Kids sequence are shown in Figure 10 

(a)-(c) for a peak distortion bound of pelTpelT 1,2 minmax ==  while Table 4 summarises the bit-

rate requirement for both Kid shapes of the 1st frame using various admissible distortion 

combinations. The subjective results in Figure 10 show that the approximated shapes maintained 

the admissible distortions in all cases and also for both QBC cases the approximated curves 

possessed similar smoothness that of B-spline based algorithms. The results in Table 4 reveals 



that both QBC and QBC-n based algorithms required lower bit-rate than those that of the B-

spline based algorithms and also the QBC-n provides superior results over the QBC. 

 
Table 4: Bit requirements for admissible  and  (in pel) for various ORD optimal shape 
coding algorithms upon the 1st frame of the Kids test sequence. 

maxT minT

 
 1max =T ,  1min =T 2max =T , 1min =T  2max =T , 2min =T  3max =T ,  1min =T 3max =T , 2min =T  
B-Spline 1140 730 641 627  612 
QBC 1136 728 628 616 609 
QBC-n 1084 708 620 609 601 
 

To substantiate the performance of the proposed QBC and QBC-n based ORD optimal shape 

coding algorithms compared with the existing B-spline based algorithms, a further series of 

experiments was conducted, this time using the MPEG-4 shape distortion metric , often 

referred to as the relative area error (RAE) which is defined as the percentile ratio of the number 

of erroneously represented pels of an approximating shape to the total number of pels in the 

original shape 

nD

[19]. Figure 11 plots the corresponding RD curves for B-splines, and the new QBC 

and QBC-n based algorithms using the 1st frame of the Kids sequence and this clearly reveals that 

both QBC and QBC-n based algorithms produced superior results over the existing B-spline 

based algorithms. This is because, the QBC curves closely follow the control polygon of the CP. 

Consequently, to obtain a curve similar to that of the B-spline in the sense of the maintaining 

admissible distortions, the distance between the consecutive CP in QBC becomes smaller than 

that of the B-splines and thereby requires a lower bit-rate and improves the overall rate-distortion 

performance. 



 
Figure 11: Comparative rate distortion performances for different ORD algorithms using the 
MPEG-4  metric on the 1st frame of the Kids test sequence. nD

V. CONCLUSION 

While the Bezier curve is a well established tool for a wide range of applications, its principal 

drawback is that it does not consider local shape information. This paper has focused specifically 

upon bridging this hiatus by integrating local information into the classical Bezier curve 

framework without increasing the number of control points. Two enhancements of Bezier (QBC 

and QBC-n) theory have been presented and mathematically proven they retain all the core 

properties of the classical Bezier curve. The qualitative and quantitative results using different 

control point sets, Bezier variants and test shapes have shown that QBC exhibited considerable 

improvement over the Bezier curve as well as other well-established shape descriptor methods, in 

terms of a consistently lower shape distortion performance, while retaining the same order of 

computational complexity. QBC can also be seamlessly integrated into these descriptor methods 

and operational rate distortion optimal vertex-based shape coding framework to improve their 

overall shape approximating performance. This paper has also determined the bounds of the 

admissible control point band for both QBC and QBC-n when these are embedded within the 



classical vertex-based shape coding framework. Moreover, since these bounds are lower than the 

bound for the existing B-spline based encoding, the QBC based encoding will also reduce the 

overall computational cost. 
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