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Abstract

The large processing requirements of seismic wave propagation simulations
make High Performance Computing (HPC) architectures a natural choice for
their execution. However, to keep both the current pace of performance improve-
ments and the power consumption under a strict power budget, HPC systems
must be more energy e�cient than ever. As a response to this need, energy-
e�cient and low-power processors began to make their way into the market.
In this paper we employ a novel low-power processor, the MPPA-256 manycore,
to perform seismic wave propagation simulations. It has 256 cores connected
by a NoC, no cache-coherence and only a limited amount of on-chip memory.
We describe how its particular architectural characteristics influenced our solu-
tion for an energy-e�cient implementation. As a counterpoint to the low-power
MPPA-256 architecture, we employ Xeon Phi, a performance-centric manycore.
Although both processors share some architectural similarities, the challenges
to implement an e�cient seismic wave propagation kernel on these platforms are
very di↵erent. In this work we compare the performance and energy e�ciency of
our implementations for these processors to proven and optimized solutions for
other hardware platforms such as general-purpose processors and a GPU. Our
experimental results show that MPPA-256 has the best energy e�ciency, con-
suming at least 77% less energy than the other evaluated platforms, whereas
the performance of our solution for the Xeon Phi is on par with a state-of-the-art
solution for GPUs.
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1. Introduction1

Public policies for risk mitigation and damage assessment in hypothetical2

earthquakes scenarios as well as oil and gas exploration make an intensive use3

of simulations of large-scale seismic wave propagation. In order to provide re-4

alistic results, these simulations rely on complex models, which often demand5

considerable computational resources to reliably process vast amounts of data6

in a reasonable amount of time.7

Such processing capabilities are often provided by High Performance Com-8

puting (HPC) platforms. Up until recently, HPC platform capabilities were9

evaluated almost exclusively based on their raw processing speed. However, one10

of the aspects that hinder the quest for ever growing performance is the exces-11

sive use of energy. For that reason, the energy e�ciency of HPC platforms has12

become, in some contexts, as important as their raw performance.13

Indeed, the seek for alternatives to lower current energy consumption arose14

first in the embedded systems community but lately became one of the ma-15

jor concerns of the HPC scientific community [1, 2]. Recently, manycore pro-16

cessors, a new class of highly-parallel chips, was unveiled. Tilera Tile-Gx [3],17

Kalray MPPA-256 [4], Adapteva Epiphany-IV [5], Intel Single-Chip Cloud Com-18

puter (SCC) [6] and Xeon Phi are examples of such processors, providing up to19

hundreds of autonomous cores that can be used to accomplish both data and20

task parallelism. This distinctive characteristic sets them apart from SIMD-like21

highly-parallel architectures such as Graphics Processing Units (GPUs). For22

this reason, in this paper, we classify GPUs separately, in their own category.23

While some manycore processors may present better energy e�ciency than24

state-of-the-art general-purpose multicore processors [7], their particular archi-25

tectural characteristics make the development of e�cient scientific parallel ap-26

plications a challenging task [5, 8]. Some of these processors are built and opti-27

mized for certain classes of embedded applications like signal processing, video28

decoding and routing. Additionally, processors such as MPPA-256 have impor-29

tant memory constraints, e.g., limited amount of directly addressable memory30

and absence of cache coherence protocols. Furthermore, communication costs31

between cores are not uniform, they depend on the location of the commu-32

nicating cores. One of the main reasons for this di↵erence in communication33

cost is the Network-on-Chip (NoC). When applications distribute work among34

the cores of the processor, they should take into consideration the placement35

of these tasks and their communication patterns to minimize communication36

costs. This problem is similar to that faced by applications running on NUMA37

platforms [9, 10], or MPI applications that try to take into account both the38

network topology and the memory hierarchy to improve performance [11, 12].39

In this paper we outline the architectural distinctiveness of the low-power40

MPPA-256 manycore processor. Considering these characteristics, we describe41

how the main kernel of a seismic wave propagation simulator was adapted to42

h.aochi@brgm.fr (Hideo Aochi), navaux@inf.ufrgs.br (Philippe O. A. Navaux),
jean-francois.mehaut@imag.fr (Jean-François Méhaut)
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this platform. Due to the limited size of the local memories in MPPA-256, we43

developed a new multi-level tiling strategy and a prefetching mechanism to44

allow us to deal with real simulation scenarios and to alleviate communication45

overheads. We also describe the di�culties and solutions (some of them generic46

enough to be used in di↵erent contexts) we employed during this adaptation.47

As a counterpoint to the low-power MPPA-256, we also adapted the same48

kernel to a performance-centric manycore, the Xeon Phi. Although both pro-49

cessors share some architectural characteristics such as the presence of a NoC,50

non-uniform costs of communication between cores and limited fast local mem-51

ories, they have their own peculiarities which directed us to employ di↵erent52

approaches in each case. For instance, in both architectures, each thread has53

access to approximately 128 kB of fast local memory. However, their memory54

organization is very di↵erent. On Xeon Phi each core has 512 kB of L2 shared55

by up to 4 threads. On the other hand, on MPPA-256 the processing cores have56

8 kB of L1 cache each and cores are grouped into clusters of 16. Each one of57

these clusters has 2MB, of work memory shared among the cores. Contrary to58

Xeon Phi, MPPA-256 does not have cache-coherence or automatic load/store of59

values from/to main memory, and all memory transferences must be handled60

by the programmer explicitly. Ultimately, this means that in order to be able61

to achieve good performance on MPPA-256, the application is obliged to tightly62

control communications between the cores in the same cluster, between clusters,63

and between each cluster and the main memory. This paper explains the de-64

tails that made us decide for a multi-level tiling strategy proposed for MPPA-25665

instead of a more traditional approach of cache blocking that was used for Xeon66

Phi.67

Taking as a basis optimized GPU and general-purpose processor implemen-68

tations for this kernel, we show that even if MPPA-256 presents an increased69

software development complexity, it can indeed be used as an energy-e�cient70

alternative to perform seismic wave propagation simulations. Our results show71

that the solution we propose for the MPPA-256 processor achieves the best en-72

ergy e�ciency, consuming 77%, 86% and 88% less energy than optimized so-73

lutions for GPU, general-purpose and Xeon Phi architectures, respectively. The74

performance achieved on Xeon Phi, on the other hand, is comparable to a state-75

of-the-art GPU. Moreover, the execution was 58% and 73% faster than that of76

multicores and MPPA, respectively.77

The remainder of this paper is organized as follows. Section 2 discusses78

the fundamentals of seismic wave propagation. Then, Section 3 discusses the79

main challenges we must overcome when dealing with parallel seismic wave80

propagations on MPPA-256 and Xeon Phi. Moreover, it presents our approaches81

to perform e�cient seismic wave propagation simulations on both processors.82

Section 4 discusses performance and energy e�ciency experimental results. Sec-83

tion 5 describes related work and Section 6 concludes this paper.84

2. Seismic Wave Propagation85

Quantitative earthquake hazard assessment is crucial for public policy, re-86

duction of future damages and urban planning. Recent important geological87
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events, such as the MW7.9 (moment magnitude) earthquake in China (2008) or88

the MW8.8 earthquake in Chile (2010), have been studied using numerical tools89

with good agreement with observation. From a physical point a view, the mech-90

anisms used to describe earthquake events are complex and highly nonlinear.91

For the sake of simplicity, wave propagation simulations usually consider elastic92

domains and include some anelasticity to account for attenuations. However,93

in the case of strong motion, these simplifying assumptions are not capable of94

correctly describing the phenomenon. A fundamental challenge for earthquake95

engineering is predicting the level and variability of strong ground motion from96

future earthquakes. Enhancing this predictive ability requires understanding of97

the earthquake source, the e↵ects of the propagation path on the seismic waves,98

and basin and near-surface site e↵ects.99

In this paper, we restrict our discussion to the elastodynamics equations100

corresponding to the elastic situation using a linear model. However, our ap-101

proach could also be used in nonlinear models that rely on a linear solution102

inside the iterative procedure such as Newton-like methods. Among numeri-103

cal methods, variational methods such as finite element method [14] or spectral104

element method [15] can be employed for both regional and global scale seismol-105

ogy whereas the Discontinous Galerkin method is very e�cient for earthquake106

source modeling [16]. In terms of popularity, the Finite Di↵erence Method107

(FDM) remains one of the top contenders due to its implementation simplicity108

and e�ciency for a wide range of applications. Although this method was ini-109

tially proposed almost thirty years ago [17], this classic discretization technique110

has been the focus of continuous refinements since its proposal [18, 19].111

Simulations of seismic wave propagations are often constrained by the com-112

putational and storage capacity of the hardware platform. Thus seismologists113

often reduce the scope of the simulation to a small volume instead of considering114

the whole Earth. The memory footprint of each simulation depends on both115

the domain of interest and the number of grid points per wavelength. This last116

condition guarantees numerical stability and therefore the accuracy of the sim-117

ulation. In our case, for practical reasons, we limit our simulations to problem118

domains that fit into the 2GB of memory available on the MPPA-256 platform.119

For that, we perform regional scale modeling spanning a few hundred kilometers120

in each spatial direction.121

In the next section we present the standard sequential algorithm for seis-122

mic wave propagation simulations. Aochi et al. [20] provide a more detailed123

description of the equations governing these simulations in the case of an elastic124

material.125

2.1. Discretization and Standard Sequential Algorithm126

As mentioned before, the FDM is one of the most popular techniques to127

solve the elastodynamics equations and to simulate the propagation of seismic128

waves. One of the key features of this scheme is the introduction of a staggered-129

grid [17] for the discretization of the seismic wave equation, which in the case130

of an elastic material is:131
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Where indices i, j, k represent a component of a vector or tensor field in133

cartesian coordinates (x, y, z), v
i

and �

ij

represent the velocity and stress field134

respectively, and F

i

denotes an external source force. ⇢ is the material density135

and � and µ are the elastic coe�cients known as Lamé parameters. A time136

derivative is denoted by @

@t

and a spatial derivative with respect to the i-th137

direction is represented by @

@i

. The Kronecker symbol �
ij

is equal to 1 if i = j138

and zero otherwise.139

Indeed, all the unknowns are evaluated at the same location for classical140

collocated methods over a regular Cartesian grid whereas the staggered grid141

leads to a shift of the derivatives by half a grid cell. The equations are rewritten142

as a first-order system in time and therefore the velocity and the stress fields143

can be simultaneously evaluated at a given time step.144

Exponents i, j, k indicate the spatial direction with �

ijk = �(i�s, j�s, k�s),145

�s corresponds to the space step and�t to the time step. The elastic coe�cients146
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For instance, the stencil applied for the computation of the velocity compo-151

nent in the x-direction is given by:152
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The computational procedure representing this evaluation is described in153

Algorithm 2.1. Inside the time step loop, the first triple nested loop is devoted154

to the computation of the velocity components, and the second loop reuses the155

velocity results of the previous time step to update the stress field.156

Algorithm 2.1: Sequential Seismic Wave Propagation(�, v)

for x 1 to x dimension

do

8
<

:

for y  1 to y dimension

do

⇢
for z  1 to z dimension

do {compute velocity(�
xx

,�

yy

,�

zz

,�

xy

,�

xz

,�

yz

)
for x 1 to x dimension

do

8
<

:

for y  1 to y dimension

do

⇢
for z  1 to z dimension

do {compute stress(v
x

, v

y

, v

z

)

The best parallelization strategy for the elastodynamics equations strongly157

depends on the characteristics of the underlying hardware architecture. In the158

following section, we detail the parallelization and optimization strategies we159

employed for the adaptation of this sequential algorithm to highly parallel many-160

core processors.161

3. Elastodynamics Numerical Kernel on Manycores162

In this section we present our approaches to perform seismic wave propaga-163

tion simulations on MPPA-256 and Xeon Phi. We first discuss in Section 3.1 some164

of the intrinsic characteristics and challenges that led us to employ di↵erent par-165

allelization strategies and optimizations in each one of these processors. Then,166

in Sections 3.2 and 3.3, we describe in details our solutions for these hardware167

architectures.168

3.1. Platforms and Challenges169

MPPA-256. The MPPA-256 is a single-chip manycore processor developed170

by Kalray that integrates 256 user cores and 32 system cores in 28 nm CMOS171

technology running at 400MHz. These cores are distributed across 16 compute172

clusters and 4 I/O subsystems that communicate through data and control173

NoCs. Each compute cluster has 16 cores called Processing Elements (PEs),174

which are dedicated to run user threads (one thread per PE) in non-interruptible175

and non-preemptible mode, and a low-latency shared memory of 2MB. This176

local memory enables a high bandwidth and throughput between PEs within the177

same compute cluster. Each PE has private 2-way associative 32 kB instruction178

and data caches. The system has no cache coherence protocol between PEs,179

even among those in the same compute cluster. The board used in our tests180
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Figure 1: Manycore architectures.

has one of the I/O subsystems connected to an external LP-DDR3 of 2GB.181

Figure 1(a) shows an architectural overview of the MPPA-256 processor. Some182

uses of this processor include embedded parallel signal processing and video183

decoding [21], and parallel scientific applications [7].184

The development of a seismic wave propagation kernel for this processor185

can be a challenging task due to some of its intrinsic characteristics. First, the186

low-latency memory available in each compute cluster acts as a cache, whose187

goal is to store data retrieved from the DDR. However, data transfers between188

the DDR and compute clusters’ low-latency memories must be explicitly man-189

aged by the programmer, in other words, there are no automatic fetching or190

prefetching mechanisms. Second, the amount of data needed to simulate real191

wave propagation scenarios does not fit into the local memories. In fact, about192

500 kB of memory is always in use by the operating system leaving about 1.5MB193

free to house the application’s data and code. For this reason, the application194

has to take into account the data transfers and how these data should be sliced195

in order to fit into the limited local memory.196

Xeon Phi. Xeon Phi was designed to operate in a way similar to regular197

x86 multicore processors. In this article we used Xeon Phi model 3120, which198

features 57 cores. Each one of its cores has a clock frequency of 1.10GHz,199

32 kB for L1 instruction and data caches and 512 kB for L2 cache. Coherence200

between the caches is guaranteed by hardware through a Global-distributed201

Tag Directory (TD). Additionally, every core can directly address the shared202

DDR memory (6GB in our case) and is connected to the remaining cores by a203

high-performance bidirectional ring-shaped NoC as shown in Figure 1(b). More-204

over, each core is 4-way multithreaded, i.e., it is able to execute instructions205

from four threads/processes (using time-multiplexed multithreading), helping to206

reduce the e↵ect of vector pipeline latency and memory access latencies. Di↵er-207

ently from other regular x86 multicore processors, each core has 512-bit vector208

instructions, which makes this processor able to perform 16 single precision209

operations, or 8 double precision operations, within a single instruction.210

Porting a seismic finite di↵erence numerical stencil to the Xeon Phi architec-211

ture requires a careful exploitation of two main aspects. The first one is related212

to the use of vector processing units. Since most of the performance power of213
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Xeon Phi comes from these units, it is essential to fully benefit from them. This214

can be achieved by performing a clever decomposition of the 3D input problem215

to maximize the use of long vectors in the unit-stride direction. The second216

aspect is related to the L2 caches. When a core C

src

accesses its L2 cache and217

misses, an address request is sent to the tag directories throughout the ring.218

If the requested data block is found in the cache of another core (C
dst

), it is219

forwarded back through the ring to the L2 cache of C
src

. Thus, the overhead220

imposed by this protocol must be avoided whenever possible to improve appli-221

cation’s performance. Overall, this can achieved by organizing data memory222

accesses to improve data locality.223

In the next sections we describe how the architectural distinctiveness of these224

architectures guided the development of a seismic wave propagation simulation225

kernel.226

3.2. A Two-level Tiling Approach for the MPPA-256227

The seismic wave propagation kernel has a high demand for memory band-228

width. This makes the e�cient use of the low-latency memories distributed229

among compute clusters indispensable. In contrast to standard x86 processors230

in which it is not uncommon to find last-level cache sizes of tens of megabytes,231

MPPA-256 has only 32MB of low-latency memory divided into 2MB chunks232

spread throughout the 16 compute clusters. These chunks of memory are di-233

rectly exposed to the programmer that must explicitly control them. Indeed,234

the e�ciency of our algorithm relies on the ability to fully exploit these low-235

latency memories. To that end, we implemented a data fractioning strategy236

that decomposes the problem into tiles small enough to fit into the memory237

available on the compute clusters. Figure 2 illustrates the general idea of our238

two-level tiling scheme.239

The three-dimensional structures corresponding to the velocity and stress240

fields are allocated on the DDR connected to the I/O subsystem to maximize241

the overall problem size that can be simulated. Next, we divide the global242

computational domain into several subdomains corresponding to the number243

of compute clusters involved in the computation (Figure 2- 1 ). This decom-244

position provides a first level of data-parallelism. To respect the width of the245

stencil (fourth-order), we maintain an overlap of two grid points in each di-246

rection. These regions, called ghost zones, are updated at each stage of the247

computation with point-to-point communications between neighboring clusters.248

Unfortunately, only this first level of decomposition is not enough because249

the three-dimensional tiles do not fit into the 2MB of low-latency memories250

available to the compute clusters. A second level of decomposition is there-251

fore required. We performed this decomposition along the vertical direction as252

we tile each three-dimensional subdomain into 2D slices (Figure 2- 2 ). This253

leads to a significant reduction of the memory consumption for each cluster but254

requires maintaining a good balance between the computation and communica-255

tion. Our solution relies on a sliding window algorithm that traverses the 3D256

domains using 2D planes and overlaps data transfers with computations. This257

mechanism can be seen as an explicit prefetching mechanism (Figure 2- 3 ) as258
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Figure 2: Two-level tiling scheme to exploit the memory hierarchy of MPPA-256.

2D planes required for the computation at one step are brought to the clusters259

during the computation performed at previous steps. To alleviate communi-260

cation costs, asynchronous background data transfers are employed. Finally,261

OpenMP directives are employed inside each compute cluster to compute 2D262

problems with up to 16 PEs in parallel (Figure 2- 4 ). Additional details about263

the implementation of the seismic wave propagation simulation kernel for the264

MPPA-256 architecture are provided by Castro et al. [8].265

3.3. A Cache-aware Approach for the Xeon Phi266

Research on the e�ciency of seismic wave propagation simulations using the267

FDM on multicore architectures has received a lot of attention lately [22, 23].268

The performance of these simulations are typically memory-bound due to the269

imbalance between the relatively fast point-wise computations and the intensive270

memory accesses these computations require.271

Several standard sequential implementations o↵er a poor cache reuse and272

therefore achieve only a fraction of the peak performance of the processor. Even273

if some optimizations alleviate this problem, the standard simulation algorithm274

typically scans an array spanning several times the size of the cache using each275

retrieved grid point only for a few operations. Therefore, the cost to bring the276

needed data from the main memory to the fast local cache memories account277

for an important share of the total simulation time, specially for a 3D problem.278

In particular, this limitation is more noticeable in processors that feature279

high core counts such as Xeon Phi due to the contention on the bidirectional280

data ring. To improve the cache locality we employ a cache blocking technique.281

Cache blocking is an optimization technique that intends to reduce memory282

bandwidth bottlenecks. The main idea is to exploit the inherent data reuse283

available in the triple nested loop of the elastodynamics kernel by ensuring that284

data remains in cache across multiple uses.285

Among classical blocking strategies, the approach described by Rivera and286

Tseng [24] proposes to tile two dimensions and to perform computations by287

accumulating the layers in the third one. This strategy is somehow similar to288

our tiling strategy proposed for the MPPA-256, since the idea is to control the289

data movement by prefetching the read and the write computing planes.290

Although the sliding window algorithm and vectorial instructions are a good291

combination, their use on Xeon Phi is unfeasible in practice. The limited cache292
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size on Xeon Phi prevents the storage of three velocity and six stress components293

in 512 kB of L2 cache memory shared by up to four threads. For that reason,294

our implementation therefore relies on a 3D blocking strategy which leads to295

a important speedup when we take the näıve implementation as a baseline as296

shown in Section 4. This improvement is due to the reduction of the pressure on297

the memory. We employ OpenMP to distribute the load throughout the di↵erent298

computing cores and we use the OpenMP’s loop collapse directive to improve299

loop execution scheduling across the 3D domain decomposition. Additionally,300

we consider low-level specific optimizations such as data alignment, vectorization301

and thread a�nity. On Xeon Phi, unaligned data severely limits the overall302

performance. In our implementation, we align data with respect to the length303

of the stencil (fourth order in our case) and we shift pointers in order fully304

benefit from the Xeon Phi vectorization capabilities (16 single precision floats).305

A similar optimization strategy can be found in [25]. Finally, we employ thread306

a�nity to ensure that threads are correctly bound to the cores to reduce memory307

access latency and to alleviate the memory contention.308

4. Experimental Results309

In this section we evaluate the performance and energy consumption of our310

solutions to perform seismic wave propagation simulations on manycores. First,311

we briefly describe our evaluation methodology. Then, we analyze the impact312

of the optimizations on MPPA-256 and Xeon Phi. Finally, we carry out an overall313

comparison of the performance and energy consumption between our solutions314

for manycores and other standard optimized solutions for other modern plat-315

forms.316

4.1. Methodology317

We compare our solutions for the MPPA-256 and Xeon Phi to reference im-318

plementations of the same elastodynamics kernel for multicores [8, 26] and319

GPUs [8, 27]. These implementations were extracted from Ondes3D, a seis-320

mic wave propagation simulator developed by the French Geological Survey321

(BRGM). In this study we used the following platforms:322

• MPPA-256: This low-power manycore processor integrates 16 compute323

clusters in a single chip running at 400MHz. Each compute cluster has324

16 cores called PEs and a low-latency shared memory of 2MB shared325

between all the PEs. Additionally, each PE has non-coherent, 8 kB, 2-way326

set associative caches, one for data and another for instructions. Compute327

clusters can communicate with each other and can indirectly access an328

external LP-DDR3 of 2GB through data and control NoCs. Compilation329

was done using Kalray Compiler 9898489 (based on GCC 4.9) with the330

flags -O3, -fopenmp, and -ffast-math.331

• Xeon Phi: The processor used in this article features 57 4-way multi-332

threaded cores. Each one of its cores has a clock frequency of 1.10GHz,333

32 kB for L1 instruction and data caches and 512 kB for L2 cache. Every334
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core can directly address the shared DDR memory (6GB) and is connected335

to the remaining cores by a high-performance bidirectional ring-shaped336

NoC. Intel’s ICC version 14.0 was used to compile the code with the fol-337

lowing compilation flags: -O3, -openmp, -mmic (enables the cross compiler338

nedeed for a native execution on the Xeon Phi), and -fp-model fast=2.339

Additionally during development, we used the flag -vec-report2 to verify340

whether the seismic wave simulation kernel was successfully vectorized.341

• Tesla K20: This graphics board features NVIDIA Kepler architecture342

with 2496 CUDA parallel-processing cores, with working frequencies up343

to 758MHz and 5GB of GDDR5 GPU memory. Compilation was done344

using NVIDIA’s nvcc version 5.5 with the flags -O3 -arch sm 20, and345

--use fast math, using GCC 4.9 as the host compiler.346

• Xeon E5: This platform features a Xeon E5-4640 Sandy Bridge-EP pro-347

cessor, which has 8 physical cores, with working frequencies up to 2.4GHz348

and 32GB of DDR3 memory. The code was compiled with GCC 4.9 with349

the flags -O3, -fopenmp, and -ffast-math.350

• Altix UV 2000: It is a Non-Uniform Memory Access (NUMA) platform351

composed of 24 NUMA nodes. Each node has a Xeon E5-4640 Sandy352

Bridge-EP processor (with the same specifications of the Xeon E5 platform)353

and 32GB of DDR3 memory shared in a cc-NUMA fashion (NUMAlink6).354

Overall, this platform has 192 physical cores. Compiler version and flags355

are identical to that of the Xeon E5 platform.356

We use four metrics to compare the energy and computing performance:357

time-to-solution, energy-to-solution, speedup and Energy-delay Product (EDP).358

Time-to-solution is the time spent to reach a solution for a seismic wave prop-359

agation simulation. Analogously, energy-to-solution is the amount of energy360

spent to reach a solution for a seismic wave propagation simulation. Speedups361

are calculated by dividing the time-to-solution of the sequential version by time-362

to-solution of the parallel/distributed version with n threads. The EDP, ini-363

tially proposed by Horowitz et al. [28], fuses the time-to-solution and energy-to-364

solution into a single metric, allowing hardware platforms to be directly com-365

pared taking into account both metrics. Since the relative weights between per-366

formance and energy consumption are subject to pragmatic concerns, we show367

the values for both EDP and Energy-delay-squared Product (ED2P) [29]. All368

results represent averages of 30 runs to guarantee statistically relevant values.369

The energy-to-solution was obtained through each platform’s specific power370

measurement sensors. Both Xeon E5 and Altix UV 2000 are based on Intel’s371

Sandy Bridge microarchitecture. This microarchitecture has Intel’s Running372

Average Power Limit (RAPL) interface which allows us to measure the power373

consumption of CPU-level components through hardware counters. We used374

this approach to obtain the energy consumption of the whole CPU package375

including cores and cache memory.376

On Xeon Phi, we used Intel’s MIC System Management and Configuration377

(MICSMC) tool which allows us to monitor the processor’s power consumption.378

11



Power measurements obtained from RAPL and MICSMC are very accurate as379

shown in [30, 31]. Similarly, MPPA-256 features a tool called K1-POWER to380

collect energy measurements of the whole chip, including all clusters, on-chip381

memory, I/O subsystems and NoCs. According to Kalray’s reference manuals,382

the measurement precision on MPPA-256 is ±0.25W. NVIDIA Kepler GPUs383

such as Tesla K20 also have a similar tool called NVIDIA Management Library384

(NVML). We used the NVML to gather the power usage for the GPU and its as-385

sociated circuitry (e.g., internal memory). According to NVML documentation,386

readings are accurate to within ±5% of the actual power draw.387

MPPA-256, Xeon Phi and Tesla K20 architectures can all be used as accelera-388

tors, where the main application code is executed on the host and performance-389

critical sections of the seismic wave propagation kernel are o✏oaded to them.390

However, since we intend to compare the performance and energy consumption391

of our seismic wave propagation solutions for these processors, we execute the392

entire application on MPPA-256 and Xeon Phi in native mode. In this case, both393

the main application code and the seismic wave propagation kernel are cross-394

compiled for them. GPUs, however, cannot be used in native mode. For that395

reason we avoid host intervention whenever possible. During our tests the host396

was only responsible for loading the kernel and for performing the initial and397

final data exchanges between the host and GPU memories. To provide a fair398

comparison and discard influences caused by the host, all the results presented399

in the following sections reflect only the execution of the kernel.400

4.2. MPPA-256401

Figure 3(a) shows the impact of the number of prefetched planes on commu-402

nication and computation times. As we increase the number of planes available403

at the compute cluster memory level, we improve the reuse of data in the verti-404

cal direction. This allows us to overlap a considerable portion of data transfers405

with computations. However, we observed only slight improvements past six406

planes. This is due to the saturation of the NoC as this strategy increases the407

data tra�c each time we increase the number of prefetched planes. Contrary to408

the other architectures, the small amount of memory available at each compute409

cluster on MPPA-256 (2MB) obliges us to perform an important number of data410

transfers from/to the DDR. Due to the limited on-chip memory, were able to411

prefetch only up to eight planes before exhausting the available local memory in412

each compute cluster. Overall, the reason why the communication is still fairly413

high compared to computation is because the ratio between the time taken by414

a compute cluster to compute a subdomain of 1.5MB and the time taken to415

transfer 1.5MB from/to the DDR is low. This limits the performance gains that416

can be achieved by overlapping communications with computations.417

Figure 3(b) presents a weak scalability analysis of the seismic wave propa-418

gation kernel on MPPA-256 when we vary the number of prefetched planes and419

the number of clusters. For this analysis the problem size assigned to each clus-420

ter remains constant as we increase the number of clusters. Therefore, linear421

scaling is achieved if the normalized execution time is kept constant at 1.00422

while the workload is increased in direct proportion to the number of clusters.423
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Figure 3: Seismic wave propagation simulation kernel on MPPA-256.

Although the increase on the number of prefetched planes can indeed improve424

the scalability of our solution, there is still a considerable performance degra-425

dation as we employ an additional number of clusters. Even if our prefetching426

scheme is capable of masking communication costs on MPPA-256, the latency427

and bandwidth of the NoC can still hurt the execution performance and thus428

limit the scalability. A comparative scalability evaluation between MPPA-256429

and Altix UV 2000 is presented in [8]. However, the results presented on that430

paper are slightly di↵erent from the ones we present here. This is due to the use431

of a newer toolchain in this work which has a slight performance improvement432

as well as better energy e�ciency.433

4.3. Xeon Phi434

As discussed in Section 3.3, our solution to seismic wave propagation sim-435

ulations on Xeon Phi employs not only the cache blocking technique, but also436

classic memory alignment with pointer shifting. Besides these optimizations,437

we experimented with di↵erent thread a�nity and scheduling strategies.438

Thread a�nity can reduce variations on the execution time of an applica-439

tion and in some cases improve execution times by performing a better thread440

placement. We executed the seismic wave propagation kernel using the follow-441

ing OpenMP’s thread placement policies: compact, scatter, balanced and default442

(no thread a�nity). Setting a�nity to compact will place OpenMP threads443

by filling cores one by one. Balanced a�nity evenly distributes threads among444

the cores. It attempts to use all the available cores while keeping the thread445

neighboring logical IDs physically close to one another. The scatter a�nity also446

evenly distributes threads among the cores but it does so in a round-robin fash-447

ion. Hence, threads with the adjacent IDs are not guaranteed to be physically448

adjacent.449

Scheduling strategies dictate how the loop iterations are assigned to threads.450

We experimented with three scheduling strategies available in OpenMP: static,451

dynamic and guided. In static scheduling, the number of loop iterations is452

statically divided by the number of threads. This results in equal-sized chunks453

that are assigned to the threads (or as equal as possible in the case where the454
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Figure 4: Impact of optimizations for dynamic and static OpenMP scheduling policies.

number of loop iterations is not evenly divisible by the number of threads).455

In dynamic scheduling, blocks of loop iterations are put into a shared work456

queue. These blocks are then dynamically distributed to the threads. When457

a thread finishes its block, it retrieves the next block of loop iterations from458

the top of the work queue. The size of the blocks is fixed and determined by459

the OpenMP’s chunk parameter. The guided scheduling is similar to dynamic460

scheduling, but the size of the blocks starts o↵ large and decreases to better461

handle load imbalance between iterations. In this case, the OpenMP’s chunk462

parameter defines the approximate minimum size of the block.463

Figure 4 shows the speedup we obtained when the kernel was executed464

with dynamic scheduling with no optimizations (Baseline); only memory align-465

ment (MA); only cache blocking (CB); memory alignment and cache blocking466

(MA+CB). Moreover, it presents the results obtained with static and guided467

scheduling policies when all optimizations are applied. The chunk size used for468

the experiments with dynamic and guided scheduling policies was 1, since it469

presented the best results1. Thread a�nity (A�nity) was only applied to static470

scheduling. As we will explain later on, thread a�nity has almost no impact471

when OpenMP’s dynamic or guided scheduling policies are used.472

Experimental results showed us that memory alignment is essential to make473

a good use of Xeon Phi’s 512-bit vector instructions. However, in order to do so,474

cache blocking is indispensable. In fact, memory alignment alone accounted for475

an average improvement of 24% in comparison to the baseline. The performance476

improvement of this optimization is severely limited by the poor utilization of477

the local caches. On the other hand, when compared to the baseline, a more478

1Experiments with chunks greater than 1 exhibited higher load imbalances resulting in
poorer performance.
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e�cient utilization of the caches through cache blocking alone increased the479

performance by 79% on average. If used in isolation, cache blocking does not480

allow a full use of Xeon Phi’s vectorization capabilities and creates additional481

cache faults due to unaligned memory accesses. By using these two techniques482

at once we can, at the same time, make a good utilization of Xeon Phi’s vectorial483

capabilities and its fast local caches. Indeed, when these two techniques are484

used together we see an average improvement of 92% in performance, and an485

improvement of 91% for 224 threads.486

Dynamic and guided scheduling policies had a better scaling behavior as well487

as better performance than static scheduling. On average, dynamic scheduling488

provided an increase of 14% over static scheduling. Static scheduling has the489

downside of causing imbalances during the execution of the simulation with an490

intermediate number of threads. For instance, for 58 threads, iterations would491

be divided equally between threads, but since a single core would execute two492

threads, it would actually end up executing twice as many iterations as the other493

cores. This behavior can clearly be seen as steps in the speedup graph. However,494

this assumption is not enough to e↵ectively explain why the performance using495

static scheduling is not on par with (or better than) the performance of dynamic496

scheduling when the number of threads is a multiple of the number of cores.497

The reason for that lies on the high usage levels of the NoC during the498

implicit synchronization between the calculation of the velocity and stress com-499

ponents of the stencil. For each timestep, the stress calculation loop only starts500

its execution after all the velocity components of the previous loop have finished501

(cf. Algorithm 2.1). This synchronization makes every thread to try to commu-502

nicate at the same time at the start of each parallel loop. On the static scheduler,503

the concurrency for the NoC might introduce small delays for the beginning of504

the execution of each thread, essentially making the loop’s critical path slightly505

longer. While by itself each one of these delays is not very significant, they506

accumulate at each timestep both at the stress and velocity calculation loops.507

Since the concurrency for the NoC also increases with the number of threads,508

the relative execution performance di↵erence between the static and dynamic509

approaches also increases. This imbalance is compensated on the dynamic case,510

even if the dynamic scheduler has a higher overhead, because it is able to keep511

more threads active up to the end of each loop.512

Guided scheduling also allows for a better work distribution and smaller513

imbalances than the static scheduler between threads at the end of each loop.514

However, the synchronization between velocity and stress loops and the small515

delay introduced during the initial phases of each loop still create slight imbal-516

ances at the end of both the stress and velocity loops of each timestep. Using517

the guided scheduler we were able to achieve near linear speedups up to the518

number of cores. After this point, the dynamic scheduler gradually approaches519

the guided performance to eventually beat it with the best execution time with520

224 threads.521

Finally, for static scheduling, thread a�nity was able to improve the perfor-522

mance of MA+CB in 11%, on average. On the other hand, by its nature, dy-523

namic and guided scheduling reduce the importance of thread a�nity. Indeed,524
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scatter and balanced thread placement policies presented very similar results525

in these cases. However, the compact thread placement policy decreased the526

performance with dynamic and guided scheduling by 22% on average, since it527

creates an important imbalance between cores, specially for low thread-counts.528

The loss in performance is reduced as the number of threads increases, from529

50% for 40 threads to 0% for thread counts beyond 222.530

Since Xeon Phi does not o↵er Dynamic Voltage and Frequency Scaling (DVFS),531

the energy consumption on this platform is directly related to the execution time532

of the application. The best execution time was obtained with dynamic schedul-533

ing with 224 threads, providing the smallest energy-to-solution at 4.42 kJ, and534

thus resulting in an improvement of 91% when compared to the baseline (46.76 kJ).535

4.4. Overall Energy and Performance Results536

In this section we compare the performance and energy consumption of our537

seismic wave propagation simulation kernel on MPPA-256 and Xeon Phi against538

other multicore and GPU reference implementations. On Xeon E5, we used539

the solution proposed by Dupros et al. [26], which employs OpenMP for the540

parallelization. On GPU we relied on the solution proposed by Michéa and541

Komatitsch [27], which is a state-of-the-art parallel solution for GPU-based542

seismic wave propagation simulation.543

DVFS can make a significant di↵erence in both performance and energy544

consumption. Although not available on the manycore processors we evaluated,545

it is available for the Xeon E5 and GPU platforms. Therefore, for these platforms546

we always show two measurements. The first ones, Xeon E5 (2.4 GHz) and Tesla547

K20 (758 MHz), represent the experimental results when their frequencies are548

optimized for performance, i.e., using their maximum working frequencies. The549

second ones, Xeon E5 (1.6 GHz) and Tesla K20 (705 MHz), are relative to the optimal550

energy consumption setting, which for this kernel was 1.6GHz and 705MHz on551

Xeon Phi and Tesla K20, respectively.552

Figure 5 compares the time-to-solution and energy-to-solution across the553

processors using a problem size of 2GB (1803 grid points) and 500 time steps.554

For these experiments we used the optimal number of threads on each platform.555

With the exception of Xeon Phi (in which the best results were obtained with556

224 threads), the thread count was equal to the number of physical cores of557

each processor. As shown in Figure 4, our solution for Xeon Phi keeps scaling558

considerably well past the 57 physical cores.559

To the best of our knowledge, GPUs are among the most energy e�cient560

platforms currently in use for seismic wave propagation simulation. Yet, our561

proposed solution on MPPA-256 achieves the best energy-to-solution among the562

analyzed processors, consuming 78%, 77%, 88%, 87% and 86% less energy563

than Tesla K20 (758 MHz), Tesla K20 (705 MHz), Xeon Phi, Xeon E5 (2.4 GHz), and564

Xeon E5 (1.6 GHz), respectively. On the other hand, when we consider the time-565

to-solution, MPPA-256 does not have the upper hand. In fact Tesla K20 had the566

best execution times among all the evaluated architectures. This result was,567

however, to be expected since the theoretical peak performance of Tesla K20568

(3.5 TFLOPS in single precision) is at least 75% higher than that of the second569
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Figure 5: Chip-to-chip comparison.

placed architecture Xeon Phi (2.0 TFLOPS in single precision). Our solution570

for Xeon Phi improved the execution performance in 58%, 72% and 73% when571

compared to Xeon E5 (2.4 GHz), Xeon E5 (1.6 GHz) and MPPA-256, respectively.572

When compared to the Tesla K20 (758 MHz), our solution for Xeon Phi was only573

20% slower, which not only is compatible to the nominal performance di↵erence574

between these architectures, but also shows that our solution was able to provide575

hardware utilization levels that are at least as e�cient as a state-of-the-art576

solution for GPUs.577

A näıve direct comparison between the raw performance or the average power578

consumption between Altix UV 2000, a multi-processor architecture, to the pre-579

vious single-processor architectures would make little sense. Therefore, we com-580

pare the Altix UV 2000 NUMA platform to the other processors in terms of energy581

e�ciency and EDP. Table 1 shows the EDP and ED2P for all platforms (the582

lower the better). A scalability analysis of the seismic wave propagation kernel583

on Altix UV 2000 is discussed by Castro et al. [8].584

When we consider EDP, MPPA-256 and Tesla K20 are clearly superior to585

the other evaluated platforms. If energy-to-solution alone is considered, MPPA-586

256 has a clear advantage. MPPA-256 was conceived as a low-power highly-587

parallel processor. During our evaluation the MPPA-256 consumed on average588

only 6.45W, while Tesla K20, Xeon Phi and consumed 184W, 108W and Altix UV589

2000 1458W, respectively. However Tesla K20 shows a better balance between590

energy consumption and performance than the other manycore processors as591

evidenced by ED2P. The high energy consumption of Xeon Phi places it right592

between MPPA-256/Tesla K20 and Xeon E5 when EDP is considered. However593

when we increase the time-to-solution weight (ED2P), Xeon Phi becomes more594

interesting than MPPA-256.595

The Altix UV 2000 platform has the best trade-o↵ between the time-to-596

solution and energy-to-solution, for both maximum performance and optimal597

energy consumption settings. If we consider ED2P, this di↵erence becomes598

even more noticeable. The significant di↵erences highlighted in the combined599

time and energy evaluation can be explained by the poor arithmetic intensity600
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Table 1: EDP (in thousands) for a simulation with 1803 grid points and 500 time steps.

Platform EDP ED

2
P

MPPA-256 49 4,695
Xeon Phi 114 2,934
Tesla K20 (758MHz) 49 1,056
Tesla K20 (705MHz) 50 1,124
Xeon E5 (2.4GHz) 242 14,755
Xeon E5 (1.6GHz) 330 30,143
Altix UV 2000 (2.4GHz) 13 40
Altix UV 2000 (1.6GHz) 17 74

(FLOP/transferred byte ratio) which is characteristic of seismic wave kernels601

based on elastodynamics stencils. These memory-bound applications can ex-602

perience important losses of performance if communications are not carefully603

overlapped with communications. On manycores such as MPPA-256 and Xeon604

Phi, there is an additional overhead created by the limited amount of fast local605

memory which forces the application to frequently employ the NoC during the606

execution. Indeed, Altix UV 2000 has approximately 20 times more fast local607

memory per thread than MPPA-256 and Xeon Phi. This reduces considerably the608

communication overhead associated to accesses to the main memory.609

5. Related Work610

Totoni et al. [6] compared the power and performance of Intel’s Single-Chip611

Cloud Computer (SCC) to other types of CPUs and GPUs. The analysis was612

based on a set of parallel applications implemented with the Charm++ pro-613

gramming model. Although they showed that there is no single solution that614

always achieves the best trade-o↵ between power and performance, the results615

suggest that manycores are an opportunity for the future. Morari et al. [3]616

proposed an optimized implementation of radix sort for the Tilera TILEPro64617

manycore processor. The results showed that the their solution for TILEPro64618

provides much better energy e�ciency than an general-purpose multicore pro-619

cessor (Intel Xeon W5590) and comparable energy e�ciency with respect to a620

GPU NVIDIA Tesla C2070.621

Francesquini et al. [7] evaluated three di↵erent classes of applications (CPU-622

bound, memory-bound and mixed) using highly-parallel platforms such asMPPA-623

256 and a 24-node, 192-core NUMA platform. They showed that manycore624

architectures can be very competitive, even if the application is irregular in625

nature. Their results showed that MPPA-256 may achieve better performance626

than a traditional general-purpose multicore processor (Intel Xeon E5-4640) on627

CPU-bound and mixed workloads whereas on a memory-bound workload Xeon628

E5 had better performance than MPPA-256. Among the evaluated platforms,629

MPPA-256 presented the best energy e�ciency reducing the energy consumed630

on cpu-bound, mixed and memory-bound applications by at least 6.9x, 6.5x631

and 3.8x, respectively.632

18



Using the low-power Adapteva Epiphany-IV manycore, Varghese et al. [5]633

described how a stencil-based solution to the anisotropic heat equation using a634

two-dimensional grid was developed. This manycore has a low power budged635

(2W) and has 64 processing cores. Each core has a local scratchpad of 32 kB and636

no cache-memory. Cores are connected by a NoC which allows direct memory637

access to 1GB of RAM and also to other cores’ local memories. The challenges638

we faced for the development of our seismic wave propagation simulation on the639

MPPA-256 architecture are similar to the ones faced by the authors of this work.640

Similar to MPPA-256, Epiphany-IV has a very limited amount of local memory641

available to each core and no automatic prefetching mechanism exists; every642

data movement has to be explicitly controlled by the application. The authors643

demonstrated that, even if the implementation of an e�cient application can644

be a challenging task, their solution was able to achieve a FLOPS/Watt ratio 3645

times better than an Intel 80-core Terascale Processor.646

Adapting seismic wave propagation numerical kernels to emerging parallel647

architectures is an active research topic. Due the versatility of the FDM used648

both for oil and gas applications and standard earthquakes modeling, several649

strategies have been proposed. For instance, Intel and NVIDIA have proposed650

optimized implementations of such stencils [25, 32].651

Dupros et al. [33] presented a review of the scalability issues for distributed652

and shared-memory platforms with a focus on mapping processes/threads on653

hierarchical clusters. Dursun et al. [34] introduced several additional strategies,654

including inter-node and intra-node optimizations. Recently, Christen et al. [35]655

described the use of the Patus framework to optimize the AWP-ODC finite656

di↵erence code. In particular, they detailed the impact of vectorization and657

cache prefetching and reported a performance improvement up to 15% when658

running the complete application with 512 MPI processes.659

Several research e↵orts have been done on the adaptation of seismic wave ker-660

nels on GPUs to overcome the poor arithmetic intensity (FLOPS/transferred661

byte ratio) o↵ered by elastodynamics stencils [27, 36]. The results obtained662

demonstrate that GPUs could be a relevant alternative to standard general-663

purpose processors. Krueger et al. [37] compared the performance and energy664

e�ciency of an Intel Nehalem platform, an NVIDIA Tesla GPU and a simulated665

general-purpose manycore chip design optimized for high-order wave equations666

called “Green Wave”. They showed that Green Wave can be up to 8x and 3.5x667

more energy e�cient per node when compared with the Nehalem and GPU668

platforms, respectively. Di↵erently from this work, our experiments and mea-669

surements were carried out on real manycore processors. Even if the low-power670

MPPA-256 is not optimized for high-order wave equations as Green Wave, we671

were still able to achieve energy e�ciency improvements of at least 86% and672

77% when compared to the Xeon E5 and Tesla K20, respectively.673

6. Conclusion and Perspectives674

The use of highly-parallel manycore processors to meet the high demand for675

data processing capabilities needed by parallel scientific simulations has recently676
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become one of central points of interest in the HPC community. In this paper,677

we presented our approach to the seismic wave propagation simulation using the678

MPPA-256 and Xeon Phi manycore processors. Although both processors share679

some architectural characteristics, they present di↵erent challenges that must680

be overcome in order to obtain good performance results.681

The low-power MPPA-256 manycore processor has a limited amount of dis-682

tributed low-latency memories that must be explicitly managed by the program-683

mer. Xeon Phi, on the other hand, is a performance-centric manycore processor684

that requires careful source code changes to help the compiler to e↵ectively vec-685

torize time-consuming loops and to improve cache locality. In this article we686

proposed a new multi-level tiling strategy and a software prefetching mechanism687

that allowed us to perform real-world seismic wave propagation simulations and688

at the same time to lighten the communication overhead imposed by the NoC689

on the MPPA-256. On the other hand, on the Xeon Phi architecture we employed690

a cache blocking technique along with memory alignment and thread a�nity691

strategies which allowed us to considerably improve the performance and scal-692

ability of our solution.693

Our results showed that our approach to the MPPA-256 is the most energy694

e�cient whereas our solution for the Xeon Phi achieves a performance compara-695

ble to the state-of-the-art solution for GPUs. MPPA-256 presented energy con-696

sumption improvements of 77%, 86% and 88% over other solutions for GPU,697

general-purpose multicore and the Xeon Phi manycore architectures, respectively.698

In terms of performance, on the other hand, our solution for Xeon Phi achieved699

performance improvements of 73%, 58% with respect to the solutions for MPPA-700

256 and general-purpose multicore processor, respectively.701

Despite encouraging results, our solutions for MPPA-256 and Xeon Phi many-702

core processors could still be improved. On MPPA-256, the communication still703

consumes a large amount of the total execution time (58%). This is due to704

the high tra�c on the NoC to access a single DDR memory. Kalray recently705

announced a multi-MPPA solution that features four MPPA-256 processors on706

the same board with less than 50W of power consumption. In this new solution,707

each MPPA-256 processor can access two DDR3 channels in parallel and MPPA-708

256 processors are interconnected through NoC eXpress interfaces (NoCX), pro-709

viding an aggregate bandwidth of 40GB/s. The benefits of this new solution710

for seismic wave propagation simulations are two-fold: (i) this would allow us711

to deal with input problem sizes of 32GB or more; and (ii) distributing data712

among di↵erent MPPA-256 processors along with the parallel access to two DDR3713

memories in each processor would alleviate the current communication bottle-714

neck. Thus, we plan to work on new versions of our multi-level tiling strategy715

and prefetching scheme to exploit the full potential of multi-MPPA solutions as716

soon as they become available.717

On Xeon Phi, the performance could still be improved by using an auto-tuning718

mechanism to automatically select the best size of the tiles and specific optimiza-719

tions from the compiler based on the input problem and the number of threads720

used. Thus, we intend to study if frameworks such as Pochoir [38] or Patus [35]721

could provide us the essentials to implement the auto-tuning approach.722
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Finally, we intend to study how our optimizations proposed in this paper723

could be made automatic. One possibility would be to extend PSkel [39], a state-724

of-the-art framework that provides a single high-level abstraction for stencil725

programming, to support MPPA-256 and Xeon Phi manycores. This would allow726

us to implement our proposed optimizations inside the framework, so applica-727

tions implemented in PSkel will automatically benefit from software prefetching728

(MPPA-256) and cache blocking, memory alignment and thread a�nity (Xeon729

Phi).730
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