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Abstract

Point cloud-based place recognition is crucial for mobile robots and autonomous vehi-

cles, especially when the global positioning sensor is not accessible. LiDAR points are

scattered on the surface of objects and buildings, which have strong shape priors along

different axes. To enhance message passing along particular axes, Stacked Asymmet-

ric Convolution Block (SACB) is designed, which is one of the main contributions in

this paper. Comprehensive experiments demonstrate that asymmetric convolution and

its corresponding strategies employed by SACB can contribute to the more effective

representation of point cloud feature. On this basis, Selective Feature Fusion Block

(SFFB), which is formed by stacking point- and channel-wise gating layers in a pre-

defined sequence, is proposed to selectively boost salient local features in certain key

regions, as well as to align the features before fusion phase. SACBs and SFFBs are

combined to construct a robust and accurate architecture for point cloud-based place

recognition, which is termed SelFLoc. Comparative experimental results show that

SelFLoc achieves the state-of-the-art (SOTA) performance on the Oxford and other

three in-house benchmarks with an improvement of 1.6 absolute percentages on mean

average recall@1.
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Figure 1: Point cloud-based place recognition in large-scale urban environments. The place recognition
network extracts global descriptors from point clouds in different locations, which are subsequently stored
in a database. Once the vehicle reaches a new location, the closest match (green) can be retrieved if the
distance between the queried and recorded global descriptor is the shortest.

1. Introduction

Due to the frequent absence of global positioning signals, localization based on

environmental perception is becoming increasingly vital in the navigation system for

both mobile robots and autonomous vehicles [1, 2, 3]. Place recognition attempts to

determine whether a place has been visited, which contributes to localization in GPS-

denied environments. According to the type of sensor input, place recognition can be

splited into image-based methods [4, 5, 6] and point cloud-based methods. Point cloud-

based methods are more robust to the lighting and seasonal changes [7] when compared

with image-based ones. In the remainder of this paper, place recognition refers to

LiDAR point cloud-based place recognition. As shown in Fig. 1, the offline stage

of place recognition collects the global descriptors of previously visited places, which

forms the place descriptor database. The online stage extracts the global descriptor

of current query LiDAR scan and ranks the LiDAR scans of previously visited places

based on the Euclidean distances between the query descriptor and the descriptors in

the database.

2



With the development of deep learning, the representation of global descriptor for

place recognition has progressed greatly. PointNetVLAD [7] first creates the place

recognition benchmarks and proposes a framework based on PointNet [8] and NetVLAD

[9]. Different from images, point clouds are inherently unordered and irregular [10],

which makes it difficult for PointNet-based models to capture the spatial relationships

among the local neighboring points [11]. To this end, k-nearest neighbor (k-NN)

[12, 13, 14] and sparse voxelization-based 3D convolution [15, 16, 17] are mostly uti-

lized to capture the locality and hierarchy. Furthermore, transformer [18, 19] is also

employed for local feature enhancement [13, 20, 16, 17]. Nevertheless, aforemen-

tioned methods are proposed based on symmetrical sampling, neglecting the fact that

point clouds for various objects disperse differently along each axis.

In this paper, informative features are extracted by enhancing message passing

along particular axes. Specifically, the Stacked Asymmetric Convolution Block (SACB)

is designed, where multiple 1D asymmetric convolutions are stacked to extract lo-

cal features, and the convolution numbers and strategies can vary with each axis to

strengthen feature aggregation along particular axes. For example, additional convolu-

tion along x-axis can be performed to strengthen the feature in the driving direction,

and dilation strategy can be further applied to expand the effective receptive field. In

addition, the number of parameters can be reduced drastically compared with the tra-

ditional 3D convolution.

On the other hand, to fuse multi-scale local features, Minkloc3D [21] is the first

place recognition method that built on Feature Pyramid Network (FPN) to fuse multi-

scale local features. The success of Minkloc3D-based models comes at fully use of the

locality and hierarchy of 3D convolution, and shows that reliable place recognition is

more dependent on local features. Salient local features locate at certain key regions,

and feature semantics (channels) should be aligned before the fusion phase. Differ-

ent from simple addition or concatenation, this paper argues that multi-scale features

should be fused selectively, in which way local features can be boosted. Specifically,

Selective Feature Fusion Block (SFFB) is introduced by stacking point- and channel-

wise context gating layers to reweight the local features. Note that SFFB can be inte-

grated as a plugin before any feature fusion phase. The contributions of this paper are
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threefold:

• This paper proposes SACB to leverage the strong shape priors of the point cloud,

which is stacked by 1D asymmetric convolutions equipped with different strate-

gies. In addition, it reduces the parameters, which contributes to deployment.

• SFFB block is introduced to fuse multi-scale features selectively, according to

the point- and channel-wise context. Ablation experiments show that SFFB is

beneficial to feature semantic alignment and key region enhancement, which

further contributes to accurate global descriptor matching.

• Comprehensive experiments show that both SACB and SFFB are effective for

place recognition, supported by superior performance on the Oxford and three

in-house datasets.

2. Related Work

2.1. Point Cloud-based Place Recognition

Traditional point cloud-based place recognition methods are depend on hand-crafted

features [22, 23, 24, 25], which are well-designed to produce a discriminative global

descriptor. Recently, the representation of discriminative feature is remarkably en-

hanced by deep learning methods. PointNetVLAD is the pioneering deep learning-

based method proposed for place recognition, where the local features are extracted by

PointNet. Different from images, it is difficult for PointNet-based models to capture the

local response, since point clouds are inherently unordered and irregular [10]. With the

help of predefined local geometric features, LPD-Net [12] can enhance local features

by a graph-based aggregation operation. While NDT-Transformer [26] transforms the

point cloud into Normal Distribution Transform (NDT) cells, thus point-wise features

can be boosted, and it is also the first one to make use of transformer for globality

capturing. Furthermore, PPT-Net [13] designs a pyramid point cloud transformer to

capture globality spatially on different clustering granularities.

Different from the aforementioned methods, 3D convolution can also be employed

to extract local features. In particular, Minkloc3D [21] and its inherited versions are
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among the most successful 3D convolution-based place recognition models, which are

built on the ResNet and FPN architectures. However, the proposed SelFLoc decom-

poses a 3D convolution into 1D convolutions to take advantage of the strong shape

priors in point clouds, in addition to introducing novel attention mechanisms for selec-

tive feature fusion.

2.2. Asymmetric Convolution

Asymmetric convolution is originally designed to improve parameter efficiency.

[27] argues that any n × n kernel can be replaced by a 1 × n asymmetric convolution

followed by a n×1 convolution, and the computation cost can be greatly reduced. The

hypothesis that a 2D kernel with a rank of one equals a sequence of 1D convolutions

supports asymmetric convolution, while ranks of a 2D kernel cannot be guaranteed to

be one. To this end, [28] represents a 2D kernel (matrix) of rank k as the outer product

of a sequence of 1D convolutions (vectors). Supported by this low-rank approximation,

the non-bottleneck module in ResNet [29] is redesigned by ERFNet [30], and this

factorization considerably decreases the kernel size and enables real-time operation.

ACNet [31] provides a novel application of asymmetric convolution, which leverages

1D convolution to enhance the model robustness to rotational distortions. The SACB in

proposed SelFLoc is not only intended for feature enhancement along particular axes

and parameter reduction, but also equipping the asymmetric convolutions with different

strategies.

2.3. Attention and Context Gating Mechanisms

Context gating as a reweighting operation designed to enhance the more informa-

tive features. There are both spatial and channel-wise attention mechanisms in image

convolution networks [32, 33, 34]. Likewise, point- and channel-wise attention mech-

anisms are both utilized in point feature aggregation [35]. In particular, PCAN [36]

presents a 3D point-wise attention map for place recognition and retrieval of point

clouds, which is inspired by CRN [34]. On the other hand, the ECA [32] module is

introduced to place recognition by Minkloc3Dv2 [15] and TransLoc3D [17], where the

global information is aggregated by channel-wise attention.
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Recently, transformer-based attention architecture has become popular in both nat-

ural language processing and computer vision. In addition, there are attempts to sur-

pass the dominance of CNN and transformer by using MLP-like architecture [37, 10].

PointNet [8] is a pioneering trial in MLP-like architecture for point cloud. While Point-

Mixer [10] initially utilizes MLP-Mixer [37] for point cloud understanding. In this

paper, point- and channel-wise gating layers are employed for semantic alignment and

key region enhancement, which further contribute to reliable place recognition.

3. Method

3.1. Asymmetric Convolution

Asymmetric convolution for point cloud. Initially, asymmetric convolution is

created to reduce the computation cost and model size. ERFNet redesigns the non-

bottleneck residual module of ResNet by introducing 1D asymmetric convolution,

which contributes to traffic scene segmentation. In addition to reducing the compu-

tation cost, we replace the typical 3D convolution to decouple aggregation of features

along each axis, which greatly enhances message passing along particular axes. More-

over, various strategies can be adapted for different 1D asymmetric convolution layers

along different axes, e.g., dilation, deformation and stacking.

A 3D convolution can be separated into a sequence of 1D convolutions, as sup-

ported by the low-rank hypothesis [28]. Let W ∈ Rdin×dx×dy×dz×dout denote the

weights of a 3D convolution layer, where din and dout are numbers of input and output

planes, and dx × dy × dz indicates the kernel size. For convenience, dx, dy and dz are

set to the same value d. Given the i-th kernel in the 3D convolution layer ki ∈ Rd×d×d,

it can be decomposed as follows:

ki =

R∑
r=1

αi
r ⊗ βi

r ⊗ γi
r, (1)

where R is the rank of ki, ⊗ is the outer product operation, and αi
r, βi

r, γi
r are 1D vec-

tors having the same size of 1× d. In this paper, R is set to 1 for the trade-off between

accuracy and efficiency. Therefore, the kernel ki with size of d3 can be decomposed
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Figure 2: (a): An SACB is composed of two sub-blocks, each of which is formed by stacking a specified
number of asymmetric convolutions in a predefined sequence. (b): Asymmetric convolutions equipped with
different strategies, e.g., typical (pink), dilation (orange) and deformation (blue).

into three 1× d kernels, employing the decomposition on a 3D convolution layer with

3× 3× 3 kernels can yield a 66% reduction in parameters.

Buildings and objects are often aligned in the driving direction, and LiDAR points

are typically distributed on their surfaces. What is more, point clouds scattered on var-

ious surfaces exhibit distinct correlations along different axes. For instance, assuming

that the x-axis direction corresponds with vehicle orientation in a traffic scene, points

on the lamp-post are distributed along the z-axis. Whereas points on the building wall

are primarily scattered on the plane perpendicular to the y-axis. In general, correlation

on the x- and y-axis is significant for points on the corners of buildings.

To enhance the feature aggregation for a given scene, the ratio among the numbers

of 1D convolutions along x-, y- and z-axis can be customized to strengthen message

passing along particular axes. As demonstrated in Fig. 2 (a), each sub-block is created

by stacking a series number of 1D convolutions along different axes in a predefined

sequence. By the above decomposition, convolution operations along the x-, y- and

z-axis can be conducted independently. In addition, different strategies can be applied

to these 1D convolutions along different axes, as illustrated in Fig. 2 (b).
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3.2. Selective Feature Fusion

In this paper, point- and channel-wise context gating layers are stacked to form the

SFFB, which is a kind of mixed attention mechanism that contributes to local feature

enhancement by leveraging two attention modes. SFFB works as a plugin placed before

low- and high-level feature fusion, and the detailed design will be described as follows.

Point-wise context gating. It has been verified that point-wise context gating is

beneficial to place recognition [36]. Point clouds have plenty of low-level visual cues,

e.g., edges, planes and corners, which are shaped by the corresponding key points.

Moreover, certain regions with salient geometric shapes contribute the most to place

recognition, e.g., doors, windows, lamp-posts and their spatial relationships. We apply

the point-wise attention to selectively boost the features of key regions. In addition,

the operation contributes to key point estimation, which is crucial for the geometric

verification task that follows the place recognition.

Given a feature map X ∈ RN×C , N and C indicate the number of feature points

and channels, respectively. A point-wise gating layer Fpoint conducts a reweighting

operation on each point:

Fpoint(Xn) = Xn · σ (MLPpoint (Xn)) , (2)

where Xn indicates the n-th point of X , σ is the sigmoid activation. Given Xn with

size of 1×C, the output size of MLPpoint is 1. The point-wise layer has the same size

of input and output, which pays more attention to key regions.

Channel-wise gating. A channel-wise gating layer conducts a reweighting oper-

ation on each channel, then channel dependencies can be exploited. Another concern

is that place recognition usually aggregates local features into a global descriptor to

compute the Euclidean distance. Channel-wise gating as a kind of semantic refinement

further makes the semantics (channels) to be more comparable and more diverse, which

contributes to accurate distance compution. The channel-wise gating layer Fchannel is

represented as follows:

Fchannel(Xn) = Xn ⊙ σ (MLPchannel (AvgPool (X))) , (3)
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Figure 3: The architecture of SelFLoc implemented in an encoder-decoder style. In encoder stage, down
sampling layers are utilized to reduce the resolutions of feature maps. each of which is followed by an
SACB. Low- (horizontal) and high-level (vertical) features are fused (addition) during the decoder stage.
Note that an SFFB is placed prior to the local feature fusion phase, which is intended for point- and channel-
wise selective fusion refinement.

where Xn ∈ R1×C indicates the n-th point of X ∈ RN×C , ⊙ and σ are the Hadamard

product (element-wise multiplication) and sigmoid activation, respectively. Notably,

the value of N is not fixed, due to the difference between the numbers of points in each

frame, and an global average pooling operation is required to ensure the input size of

MLPchannel is 1× C.

Original SENet [33] uses global average pooling to squeeze global spatial infor-

mation. Then fully-connected (FC) layers with dimensionality reduction are used to

take advantage of the information. On the other hand, ECA reweights each channel by

considering its nearest neighbors, thus only local cross-channel interaction is captured.

Both of the above methods bring side effects on Euclidean distance computation. In

this paper, FC layers without dimensionality reduction are employed in MLPchannel,

which are more suitable for reliable place recognition. For a comprehensive compari-

son, MLPchannel in SENet, ECA-Net and MLP-Mixer styles are also implemented in

our ablution experiments.

3.3. Overall Architecture.

As illustrated in Fig. 3, the overall architecture mainly consists of an initial con-

volution, SACBs and SFFBs, which is implemented in an encoder-decoder style. The

encoder stage, in particular, adapts an initial convolution to project 3D LiDAR points

into a deep feature space. Then multi-scale feature maps can be produced by a series
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of SACB blocks, placed after down sampling operations. Low- and high-level features

are fused during the decoder stage. And the SFFB is naturally placed prior to the local

feature fusion phase.

Initial convolution is conducted by a K0 × K0 × K0 3D sparse convolution for

primary deep feature extraction. Given an input point cloud P = {p1, p2, ..., pN}, ini-

tial feature X = {x1, x2, ..., xN} can be extracted. pn indicates the coordinate of n-th

point in the point cloud, whose size is 1×3, and the size of corresponding feature xn is

1×C0. As described previously, the asymmetric convolution is more suitable for place

recognition task than symmetric 3D convolution. However, asymmetric convolution is

not guaranteed to work well on low-level layers [27], typical 3D sparse convolution is

still required for this phase.

SACB consists of two sub-blocks, each sub-block has three asymmetric convolu-

tion layers operating on x-, y- and z-axis, respectively, as well as an additional layer

along a particular axis. Furthermore, to verify the influence of additional convolution

along different axes, three version are created: SelFLoc X, SelFLoc Y and SelFLoc Z.

The dilation strategy is also introduced into the additional asymmetric convolution. For

a fair comparison, only one SACB block of a specific depth employs dilation strategy

for each trial.

Notice that the numbers and strategies of asymmetric convolutions along different

axes can be varied and a study on these combinations may lead to superior outcome

than the ones presented in this research. However, such studies are out of the scope of

this research, and the above models are chosen for a good balance between accuracy

and efficiency.

SFFB is placed prior to each additive fusion phase, which includes a point-wise

context gating layer and a channel-wise one. There are two different stacking orders:

point-wise gating first and channel-wise gating first. We implement these two model

types, moreover, models with only point- or channel-wise gating layers are also imple-

mented for comparison.

Overall forward process is elaborated in Algorithm 1. The down and up sam-

pling depths are denoted as Dd and Du, respectively, which should be predefined for

a specific place recognition task. Note that the ChannelAlignedConv is used for
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Algorithm 1 The Overall Forward Process of SelFLoc.
Require: Point cloud P , down sampling depth Dd, up sampling depth Du.
Ensure: Global descriptor G of point cloud P .

1: Initialize lower level feature maps F ← ∅
2: X ← InitialConvolution(P )
3: for d = 0→ Dd − 1 do
4: X ← DownSample(X)
5: X ← SACB(X)
6: if Dd −Du − 1 ≤ d < Dd − 1 then
7: F ← F ∪X
8: end if
9: end for

10: for d = 0→ Du − 1 do
11: X ← UpSample(X)
12: X ← SFFB(X)
13: Get the last d-th feature map Y of F
14: Y ← ChannelAlignedConv(Y )
15: Y ← SFFB(Y )
16: X ← X + Y
17: end for
18: G← GeMPool(X)
19: Return G

channel number alignment, which is inspired by Minkloc3dv2 and plays a crucial role

for feature addition phase. In addition, GeM pooling [38] is employed to aggregate

local features into a global descriptor G in accordance with typical place recognition

methods. As discussed above, Euclidean distance employed in point cloud retrieval

for place recognition demands the amplitudes of each channel are comparable. GeM,

as a generalized form of harmonic and quadratic mean, can further align the channels

(semantics).

3.4. Probability Model of Point Cloud-based Place Recognition

Given the training dataset D = {(q, i, j) | q ∈ Q}, where Q is the query set, and

i and j indicate sampled point cloud frames. The training objective O is to maximize

the posterior probability defined as follows:

O = ln p (Θ | D)

= ln p (D | Θ) p(Θ), (4)
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where Θ indicates the parameters of SelFLoc. According to reference [39], we intro-

duce a common assumption that p(Θ) is a normal distribution: p(Θ) ∼ N(0, λΘI).

p (D | Θ) is the likelihood function, which can be rewriten as follows:

ln p (D | Θ) = ln
∏

(q,i,j)∈D

p (i >q j | Θ)
δ((q,i,j)∈DO)·(1−p (i >q j | Θ))δ((q,i,j)/∈DO),

(5)

where δ is the indicator function. p (i >q j | Θ) represents the probability that the

point cloud frame i is closer to the query frame q compared to the frame j. DO is a set

containing observed preferences, which can be defined as:

DO = {(q, i, j) | q ∈ Q ∧ i ∈ SP ∧ j ∈ SN}, (6)

where SP and SN represent the positive and negative sets, respectively. Moreover, the

probability can be calculated by the corresponding global descriptors as:

p(i >c j|Θ) = σ(Ĝqij(Θ)) (7)

Ĝqij(Θ) = d(q, i)− d(q, j) (8)

σ(x) :=
1

1 + e−x
, (9)
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where d(q, i) is the Euclidean distance between the global descriptors of q and i. Com-

bining the above equations, we rewrite the objective function as follows:

O = ln
∏

(q,i,j)∈D

p (i >q j | Θ) p(Θ)

= ln
∏

(q,i,j)∈D

σ(Ĝqij(Θ))δ((q,i,j)∈DO)(1− σ(Ĝqij(Θ)))δ((q,i,j)/∈DO)p(Θ)

=
∑

(q,i,j)∈DO

lnσ(Ĝqij(Θ)) +
∑

(q,i,j)/∈DO

ln(1− σ(Ĝqij(Θ))) + ln p(Θ)

=
∑

(q,i,j)∈DO

lnσ(Ĝqij(Θ)) +
∑

(q,i,j)/∈DO

ln(1− σ(Ĝqij(Θ)))− λΘ||Θ||2

≈
∑

(q,i,j)∈DO

lnσ(d(q, i)− d(q, j)) +
∑

(q,i,j)/∈DO

ln(1− σ(d(q, i)− d(q, j))).

(10)

According to Jensen’s inequality, the objective function has a lower bound:

O ≥ ln
∑

(q,i,j)∈DO

σ(d(q, i)− d(q, j)) + ln
∑

(q,i,j)/∈DO

(1− σ(d(q, i)− d(q, j)))

= lnO1 + ln(|D −DO| − O2). (11)

According to the monotonicity of Equation 11, maximizing the lower bound is equiv-

alent to maximizing O1 and minimizing O2. Training the proposed SelFLoc using the

Smooth-AP [40, 15] loss function can achieve this goal.

Relation to Smooth-AP Loss. Smooth-AP is a commonly used training loss function

in the field of place recognition. Specifically, it calculates APq for each query frame q

as follows:

APq ≈
1

|SP |
∑
i∈SP

1 +
∑

h∈SP
σ(d(q, i)− d(q, h))

1 +
∑

h∈SP
σ(d(q, i)− d(q, h)) +

∑
j∈SN

σ(d(q, i)− d(q, j))

=
1

|SP |
∑
i∈SP

1 +O2

1 +O2 +O1
. (12)
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Therefore, the loss for each batch can be calculated as:

LAP =
1

m

m∑
q=1

(1−APq), (13)

where m is the number of queries in one batch. Comparing Equation 11, 12, and 13, we

can see that maximizing LAP is equivalent to maximizing the lower bound of objective

function O.

4. Experiments

This section verifies the performance of proposed SelFLoc by conducting experi-

ments on a variety of benchmark datasets. Additionally, ablation studies are performed

to analyze the introduced blocks and strategies.

4.1. Experiments Setting

Benchmark and evaluation. PointNetVLAD originally created four benchmark

datasets for evaluating point cloud-based place recognition networks: Oxford is a par-

tial set of Oxford RobotCar dataset [41], U.S., R.A. and B.D. are respective in-house

datasets of a university sector, a residential area and a business district. These datasets

are obtained using a LiDAR sensor installed on a car that regularly drives over each

of the four regions at different times, and collects data under varying environmental

conditions.

The locations are sampled at a specified interval (shown in Table 1) along continu-

ous tracks of the vehicle, and the corresponding submaps are constructed by dividing

the LiDAR scans and erasing non-informative ground planes. Each submap is down

sampled to 4096 points using a voxel filter and tagged with the Universal Transverse

Mercator (UTM) coordinate of its centroid. During training tuple generation, a point

cloud pair is considered positive if the distance is less than 10m and negative if the

distance is greater than 50m. In order to evaluate various place recognition methods,

the query point cloud is successfully localized when the retrieved point cloud is within

25m.
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Table 1: The number of submaps for training and testing, * approximate value.

Training
Set

Testing
Set

Submaps
/Run

Intervals
(training)

Intervals
(testing)

Oxford 21711 3030 120-150 10m 20m
U.S.

6671 4542
400*

12.5m 25mR.A. 320*
B.D. 200*

Our evaluation follows the baseline training pipeline introduced in [7]. Specifically,

the network is trained using the training set of the Oxford dataset and tested on the

testing sets of the Oxford and three in-house datasets. Table 1 shows the details of

training and testing datasets, the average recall@1% (AR@1%) and average recall@1

(AR@1) metrics are primarily adopted for evaluation.

Implementation details. Implementation of the proposed network SelFLoc is

based on the MinkLoc3Dv2 codebase, where the sparse convolution on point clouds is

implemented by Minkowski Engine [42].

To be fair, the size of input point clouds is 4096 × 3, which is the same as Point-

NetVLAD. Each down sampling layer decreases the spatial resolution by two. In our

experiments, there are 4 down sampling layers (each is placed before an SACB), and

2 up sampling layers (each is followed by an SFFB). The training loss, stays the same

with MinkLoc3Dv2.

4.2. Main Results

To verify the quantitative performance of the proposed SelFLoc method, we con-

duct comprehensive experiments on the benchmark datasets in [7]. Specifically, we

compare SelFLoc with a lot of advanced methods, including RI STV [14], MinkLoc3Dv2

[15], HiBi-Net [43], SVT-Net [16], PPT-Net [13], NDT-transformer [26], EPC-Net

[44], LPD-Net [12], PCAN [36] and the pioneering PointNetVLAD [7]. Table 2 reports

the AR@1% and AR@1 metrics of aforementioned methods trained by the baseline

pipeline. Although many excellent methods have be proposed for place recognition,

and there is little room for improvement [15, 17]. SelFLoc can still has a remarkable

performance, outperforming the most sophisticated methods [14, 15] by 1.6 absolute

percentages on AR@1 (90 vs. 91.6) and 1 absolute percentage on AR@1% (95.1 vs.

15



Query True Match Top 1 Top 2 Top 3

Figure 4: Query (gray) and top 3 retrieved frames (green: successful, red: failed). Moreover, one of the
true (blue) matches is displayed for comparison. SelFLoc successfully finds the closest match even when the
perspective changes (row 3).

96.1). Moreover, the in-house datasets in Table 2 have not be trained and the AR@1

metric has been improved by 2.3%, 2.3% and 2.1%, respectively. Compared with Min-

kLoc3Dv2, SelFLoc has a better capability for generalization in addition to its high

accuracy. This is crucial for mobile robots because their operation scenarios are di-

verse, and it is difficult to collect sufficient training data for each scenario. Note that

3D convolution-based methods have higher metrics than kNN-based and NDT-based

methods in the mass, which demonstrates that voxel-based convolution is still an effec-

tive technique to capture the locality and hierarchy of point cloud.

Fig. 4 displays the query point cloud and the point clouds retrieved by SelFLoc.

The cases are challenging and SelFLoc successfully retrieves the closest match by

leveraging the most discriminative feature. As depicted in Fig. 3, SFFB can be plugged

16



Table 2: Evaluation results of the advanced place recognition methods.
Oxford U.S. R.A. B.D. Mean

AR@1 AR@1% AR@1 AR@1% AR@1 AR@1% AR@1 AR@1% AR@1 AR@1%
PointNetVLAD [7] 62.8 80.3 63.2 72.6 56.1 60.3 57.2 65.3 59.8 69.6

PCAN [36] 69.1 83.8 62.4 79.1 56.9 71.2 58.1 66.8 61.6 75.2
LPD-Net [12] 86.3 94.9 87.0 96.0 83.1 90.5 82.5 89.1 84.7 92.6
EPC-Net [44] 86.2 94.7 - 96.5 - 88.6 - 84.9 - 91.2
SOE-Net [20] - 96.4 - 93.2 - 91.5 - 88.5 - 92.4
HiBi-Net [43] 87.5 95.1 87.8 - 85.8 - 83.0 - 86.0 -

MinkLoc3D [21] 93.0 97.9 86.7 95.0 80.4 91.2 81.5 88.5 85.4 93.2
NDT-Transformer [26] 93.8 97.7 - - - - - - - -

PPT-Net [13] 93.5 98.1 90.1 97.5 84.1 93.3 84.6 90.0 88.1 94.7
SVT-Net [16] 93.7 97.8 90.1 96.5 84.3 92.7 85.5 90.7 88.4 94.4

TransLoc3D [17] 95.0 98.5 - 94.9 - 91.5 - 88.4 - 93.3
MinkLoc3Dv2 [15] 96.3 98.9 90.9 96.7 86.5 93.8 86.3 91.2 90 95.1

RI STV [14] - 98.5 - 97.3 - 93.0 - 91.7 - 95.1
SelFLoc (ours) 96.0 98.8 93.2 98.3 88.8 94.8 88.4 92.4 91.6 96.1

into both horizontal and vertical feature branches, we further visualize the point-wise

attention maps in these branches before the last fusion phase. As shown in Fig. 6,

point-wise gating layer in horizontal SFFB mainly pays attention to the major struc-

ture of the point cloud, while point-wise attention in vertical branch can be selectively

allocated to the points isolated but salient.

4.3. Ablation Study

Additional axes. To verify the impact of different additional layers, asymmetric

convolution layers along x-, y- and z-axis are respectively added to the sub-blocks of

SACBs every time. Fig. 5 displays the quantitative results with different additional lay-

ers, and SelFLoc X achieves better accuracy and robustness, demonstrating that feature

extraction along the x-axis is the most effective for the place recognition task. This may

inspire researchers in the field of mobile robotics to optimize axis-oriented point cloud

processing methods for specific scenarios. For example, in the field of self-driving,

there may be more sophisticated methods developed in the future for enhancing the

transmission of point cloud features along X-axis.

Dilation strategy. The effective receptive field can be expanded by utilizing the

dilation strategy. Results of testing dilation influence on different depths of SACBs in

Fig. 5 indicate that models with lower level dilated convolutions have higher metrics.

Dilated convolutions in lower layers contribute more to the capture of local response.

On the contrary, dilated convolutions in higher layers help to capture the interrelation-

ship between semantics at higher levels, however the performance will be negatively
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affected if levels of dilated convolutions are excessively high. The performance of di-

lated convolution layers in different depths evidences that place recognition relies more

on local features, and applicable depth is crucial for dilation strategy, e.g., Depth = 1.

Channel-wise attention mechanisms. In order to compare the effectiveness of dif-

ferent attention mechanisms for channel-wise feature aggregation, we conduct experi-

ments with various attention mechanisms. Specifically, FC layers without dimensional-

ity reduction (SelFLoc-FC), channel-wise gating in the SENet (SelFLoc-SE), channel-

wise gating in the ECA-Net (SelFLoc-ECA) and channel-wise attention proposed in

MLP-Mixer (SelFLoc-Mixer) are implemented, as shown in Table 3. The comparison

between SelFLoc-Mixer and other methods shows that the squeeze phase is crucial for

both robustness and accuracy. Moreover, FC attention without dimensionality reduc-

tion or neighbor limitation further improves the robustness by a large margin.

Table 3: Evaluation results (AR@1) of models with different channel-wise attention mechanisms.

Model Type Oxford U.S. R.A B.D.
SelFLoc-ECA 96.53 90.72 87.37 87.35
SelFLoc-SE 96.39 90.47 87.50 87.05

SelFLoc-Mixer 94.59 88.73 86.30 84.47
SelFLoc-FC(Ours) 96.04 93.23 88.84 88.38

Table 4: Evaluation results (AR@1) of different gating orders.

First
Layer

Second
Layer Oxford U.S. R.A B.D.

P P 96.11 92.33 85.89 86.84
P C 96.21 91.76 86.76 86.31
C P 96.04 93.23 88.84 88.38
C C 94.95 90.85 88.17 87.19

Table 5: Ablation study results (AR@1) of different D1 and D2.

D1 D2 Oxford U.S. R.A B.D.
128 128 94.88 87.75 86.76 83.92
256 128 95.29 90.47 83.94 84.57
256 256 96.04 93.23 88.84 88.38
256 512 96.24 92.65 87.83 86.72
512 512 96.10 93.43 88.44 87.90
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Figure 5: Horizontal axis represents the depth of which SACB equipped with dilation strategy. There are
4 SACBs employed in our experiments, and Depth = 0 indicates that no SACB is equipped with dilation
strategy. SelFLoc X, SelFLoc Y and SelFLoc Z represents the models with one additional layer along x-,
y- and z-axis, respectively, while model without additional asymmetric convolution layer is regarded as the
baseline. Note that the dilation strategy is only applied on the additional layer of each sub-block in the
SACB.
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Figure 6: Point-wise attention in horizontal and vertical SFFBs. Note that the horizontal point-wise attention
is generated by lower-level local features, while the vertical one is selectively enhanced by semantics from
higher level. Points in blue circles are isolated but salient.

Combinations of point- and channel-wise gating layers. An SFFB is composed

of a point-wise and a channel-wise gating layer. Table 4 shows performance of different

combinations of gating layers. From the table, it can be seen that SFFBs with only point

or channel-wise gating layer have worse performance than SFFBs with both point- and

channel-wise gating layers. In addition, the best performance can be obtained when the

first layer is channel-wise and the second layer is point-wise. As mentioned previously,

channel-wise gating is employed for semantic (channel) alignment, therefore earlier

alignment can result in better performance.

Dimension influence. Here we study the impact of model size. In particular,

we denote D1, D2 as the output dimensions of last and penultimate SACB blocks,

respectively. Note that D2 is equal to the numbers of channels in each fusion phase,

as well as the size of global descriptor for retrieval. As shown in Table 5, expanding

the model size can lead to higher accuracy, while overfitting will reduce its robustness.

The model with D1 = 256 and D2 = 256 achieves an empirically optimal trade-off

between accuracy and robustness.

5. Conclusion

In this paper, a novel architecture named SelFLoc is proposed for point cloud-based

place recognition, which takes advantage of the strong shape priors of point clouds by

stacking 1D asymmetric convolutions equipped with different strategies. In addition,
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features from different scales are refined by selective point- and channel-wise gating

layers before the fusion phase. Comprehensive experiments on the Oxford dataset and

three in-house datasets demonstrate that SelFLoc can achieve SOTA performance in

terms of both accuracy and robustness.

Limitation and Future Work. The decomposition of 3D convolution, enhancement

of axis-oriented features, and selective feature fusion in this research are all tailored for

scenarios involving self-driving. However, the introduction of these strategies relies on

the experience of researchers. To make them more applicable to other robotic studies,

such as drones and bipedal robots, we will explore novel methods to endow robots

with the ability to autonomously learn these strategies. One potential approach is to

integrate the selection of strategies into the learnable world model [45, 46].

6. Acknowledgements

This research is supported in part by the National Natural Science Foundation of

China under Grant 62303428, and in part by Zhejiang Provincial Natural Science Foun-

dation of China under Grant LQ23F030010.

References

[1] J. L. Matez-Bandera, J. Monroy, J. Gonzalez-Jimenez, Efficient semantic place

categorization by a robot through active line-of-sight selection, Knowledge-Based

Systems 240 (2022) 108022.

[2] C. Wang, X. Chen, C. Li, R. Song, Y. Li, M. Q.-H. Meng, Chase and track:

Toward safe and smooth trajectory planning for robotic navigation in dynamic

environments, IEEE Transactions on Industrial Electronics 70 (1) (2022) 604–

613.

[3] Y. Shi, R. Yang, Z. Wu, P. Li, C. Liu, H. Zhao, G. Zhou, City-scale continual

neural semantic mapping with three-layer sampling and panoptic representation,

Knowledge-Based Systems 284 (2024) 111145.

21



[4] Q. Zhang, Z. Xu, Y. Kang, F. Hao, Z. Ren, J. Cheng, Distilled representation

using patch-based local-to-global similarity strategy for visual place recognition,

Knowledge-Based Systems 280 (2023) 111015.

[5] J. Yu, C. Zhu, J. Zhang, Q. Huang, D. Tao, Spatial pyramid-enhanced netvlad

with weighted triplet loss for place recognition, IEEE Transactions on Neural

Networks and Learning Systems 31 (2) (2019) 661–674.

[6] Y. Wang, Y. Qiu, P. Cheng, J. Zhang, Transformer-based descriptors with fine-

grained region supervisions for visual place recognition, Knowledge-Based Sys-

tems 280 (2023) 110993.

[7] M. A. Uy, G. H. Lee, Pointnetvlad: Deep point cloud based retrieval for large-

scale place recognition, in: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 4470–4479.

[8] C. R. Qi, H. Su, K. Mo, L. J. Guibas, Pointnet: Deep learning on point sets for

3d classification and segmentation, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 652–660.

[9] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, J. Sivic, Netvlad: Cnn architecture

for weakly supervised place recognition, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2016, pp. 5297–5307.

[10] J. Choe, C. Park, F. Rameau, J. Park, I. S. Kweon, Pointmixer: Mlp-mixer

for point cloud understanding, in: European Conference on Computer Vision,

Springer, 2022, pp. 620–640.

[11] X. Li, X. Zhang, X. Zhou, I.-M. Chen, Upg: 3d vision-based prediction frame-

work for robotic grasping in multi-object scenes, Knowledge-Based Systems 270

(2023) 110491.

[12] Z. Liu, S. Zhou, C. Suo, P. Yin, W. Chen, H. Wang, H. Li, Y.-H. Liu, Lpd-net: 3d

point cloud learning for large-scale place recognition and environment analysis,

in: Proceedings of the IEEE International Conference on Computer Vision, 2019,

pp. 2831–2840.

22



[13] L. Hui, H. Yang, M. Cheng, J. Xie, J. Yang, Pyramid point cloud transformer for

large-scale place recognition, in: Proceedings of the IEEE International Confer-

ence on Computer Vision, 2021, pp. 6098–6107.

[14] D. Kong, X. Li, W. Hu, J. Hu, Y. Hu, Q. Xu, X. Song, Explicit points-of-interest

driven siamese transformer for 3d lidar place recognition in outdoor challenging

environments, IEEE Transactions on Industrial Informatics (2023).

[15] J. Komorowski, Improving point cloud based place recognition with ranking-

based loss and large batch training, arXiv preprint arXiv:2203.00972 (2022).

[16] Z. Fan, Z. Song, H. Liu, Z. Lu, J. He, X. Du, Svt-net: Super light-weight sparse

voxel transformer for large scale place recognition, in: Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 36, 2022, pp. 551–560.

[17] T.-X. Xu, Y.-C. Guo, Y.-K. Lai, S.-H. Zhang, Transloc3d: Point cloud based

large-scale place recognition using adaptive receptive fields, arXiv preprint

arXiv:2105.11605 (2021).

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, I. Polosukhin, Attention is all you need, Advances in neural infor-

mation processing systems 30 (2017).

[19] Y. Shen, L. Hui, Flowformer: 3d scene flow estimation for point clouds with

transformers, Knowledge-Based Systems 280 (2023) 111041.

[20] Y. Xia, Y. Xu, S. Li, R. Wang, J. Du, D. Cremers, U. Stilla, Soe-net: A self-

attention and orientation encoding network for point cloud based place recogni-

tion, in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2021, pp. 11348–11357.

[21] J. Komorowski, Minkloc3d: Point cloud based large-scale place recognition, in:

Proceedings of the IEEE Winter Conference on Applications of Computer Vision,

2021, pp. 1790–1799.

23



[22] L. He, X. Wang, H. Zhang, M2dp: A novel 3d point cloud descriptor and its ap-

plication in loop closure detection, in: Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2016, pp. 231–237.

[23] G. Kim, S. Choi, A. Kim, Scan context++: Structural place recognition robust

to rotation and lateral variations in urban environments, IEEE Transactions on

Robotics 38 (3) (2021) 1856–1874.

[24] F. Cao, F. Yan, S. Wang, Y. Zhuang, W. Wang, Season-invariant and viewpoint-

tolerant lidar place recognition in gps-denied environments, IEEE Transactions

on Industrial Electronics 68 (1) (2020) 563–574.

[25] L. Luo, S.-Y. Cao, Z. Sheng, H.-L. Shen, Lidar-based global localization using

histogram of orientations of principal normals, IEEE Transactions on Intelligent

Vehicles 7 (3) (2022) 771–782.

[26] Z. Zhou, C. Zhao, D. Adolfsson, S. Su, Y. Gao, T. Duckett, L. Sun, Ndt-

transformer: Large-scale 3d point cloud localisation using the normal distribution

transform representation, in: Proceedings of the IEEE International Conference

on Robotics and Automation, 2021, pp. 5654–5660.

[27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception

architecture for computer vision, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.

[28] J. Alvarez, L. Petersson, Decomposeme: Simplifying convnets for end-to-end

learning, arXiv preprint arXiv:1606.05426 (2016).

[29] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,

in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2016, pp. 770–778.

[30] E. Romera, J. M. Alvarez, L. M. Bergasa, R. Arroyo, Erfnet: Efficient residual

factorized convnet for real-time semantic segmentation, IEEE Transactions on

Intelligent Transportation Systems 19 (1) (2017) 263–272.

24



[31] X. Ding, Y. Guo, G. Ding, J. Han, Acnet: Strengthening the kernel skeletons for

powerful cnn via asymmetric convolution blocks, in: Proceedings of the IEEE

International Conference on Computer Vision, 2019, pp. 1911–1920.

[32] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, Eca-net: Efficient channel attention

for deep convolutional neural networks, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2020, pp. 11534–11542.

[33] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–

7141.

[34] H. Jin Kim, E. Dunn, J.-M. Frahm, Learned contextual feature reweighting for

image geo-localization, in: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017, pp. 2136–2145.

[35] G. Chen, L. Wan, L. Song, Z. Liu, 3d perception arithmetic of random envi-

ronment based on rgb enhanced point cloud fusion, Knowledge-Based Systems

(2023) 110710.

[36] W. Zhang, C. Xiao, Pcan: 3d attention map learning using contextual informa-

tion for point cloud based retrieval, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2019, pp. 12436–12445.

[37] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner,

J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, et al., Mlp-mixer: An all-mlp archi-

tecture for vision, Advances in Neural Information Processing Systems 34 (2021)

24261–24272.
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