
ar
X

iv
:1

90
5.

10
19

2v
1 

 [
cs

.S
C

] 
 2

4 
M

ay
 2

01
9

New ways to multiply 3 × 3-matrices1

Marijn J.H. Heule

Department of Computer Science, The University of Texas, Austin TX, USA

Manuel Kauers

Institute for Algebra, J. Kepler University Linz, Austria

Martina Seidl

Institute for Formal Models and Verification, J. Kepler University Linz, Austria

Abstract

It is known since the 1970s that no more than 23 multiplications are required for computing

the product of two 3 × 3-matrices. It is not known whether this can also be done with fewer

multiplications. However, there are several mutually inequivalent ways of doing the job with 23

multiplications. In this article, we extend this list considerably by providing more than 13 000

new and mutually inequivalent schemes for multiplying 3 × 3-matrices using 23 multiplications.

Moreover, we show that the set of all these schemes is a manifold of dimension at least 17.

Keywords: bilinear complexity, matrix multiplication, Laderman’s algorithm, SAT solving.

1. Introduction

The classical algorithm for multiplying two n × n matrices performs 2n3 − n2 additions and

multiplications. Strassen’s algorithm (Strassen, 1969) does the job with only Ø(nlog2 7) additions

and multiplications, by recursively applying a certain scheme for computing the product of two

2 × 2-matrices with only 7 instead of the usual 8 multiplications. The discovery of Strassen’s

algorithm has initiated substantial work during the past 50 years on finding the smallest exponent

ω such that matrix multiplication costs Ø(nω) operations in the coefficient ring. The current

record is ω ≤ 2.3728639 and was obtained by Le Gall (2014). It improves the previous record

of Williams (2012) by just 3 · 10−7. Extensive background in this direction is available in text

books (Bürgisser et al., 2013; Landsberg, 2017) and survey articles (Bläser, 2013; Pan, 2018).

Contrary to wide-spread belief, Strassen’s algorithm is not only efficient in theory but also in

practice. Special purpose software for exact linear algebra, such as the FFLAS and FFPACK

1M.J.H. Heule was supported by NSF under grant CCF-1813993. M. Kauers was supported by the Austrian FWF
grants P31571-N32 and F5004. M. Seidl was supported by the Austrian FWF grant NFN S11408-N23 and the LIT AI
Lab funded by the State of Upper Austria.

Email addresses: marijn@cs.utexas.edu (Marijn J.H. Heule), manuel.kauers@jku.at (Manuel Kauers),
martina.seidl@jku.at (Martina Seidl)

Preprint submitted to Elsevier May 27, 2019

http://arxiv.org/abs/1905.10192v1


packages (Dumas et al., 2008), have been using it since long, and there are also reports that its

performance in a numerical context is not as bad as its reputation (Huang et al., 2016).

Besides the quest for the smallest exponent, which only concerns the asymptotic complexity

for asymptotically large n, it is also interesting to know how many multiplications are needed for

a specific (small) n to compute the product of two n × n-matrices. Thanks to Strassen, we know

that the answer is at most 7 for n = 2, and it can be shown (Winograd, 1971) that there is no way

to do it with 6 multiplications. It can further be shown that, in a certain sense, Strassen’s scheme

is the only way of doing it with 7 multiplications (de Groote, 1978).

Already for n = 3, the situation is not completely understood. Laderman (1976) showed

that 23 multiplications suffice, and Bläser (2003) showed that at least 19 multiplications are

needed. For larger sizes as well as rectangular matrices, many people have been searching for

new schemes using fewer and fewer coefficient multiplications. For n = 4, the best we know

is to apply Strassen’s scheme recursively, which requires 49 multiplications. For n = 5, the

record of 100 multiplications was held Makarov (1987) for 30 years until it was improved to 99

by Sedoglavic (2017b). For n = 6, there is a recent scheme by Smirnov (2013) which needs only

160 multiplications. For n = 7, Sedoglavic (2017c) found a way to compute the product with

250 multiplications. For larger sizes and rectangular matrices, see the extensive tables compiled

by Smirnov (2013, 2017) and Sedoglavic (2019). Many of the schemes for larger matrix sizes

are obtained by combining multiplication schemes for smaller matrices (Drevet et al., 2011).

Although nobody knows whether there is a scheme using only 22 multiplications for n = 3

(in an exact and non-commutative setting), 23 multiplications can be achieved in many different

ways. Johnson and McLoughlin (1986) have in fact found infinitely many ways. They presented

a family of schemes involving three free parameters. However, their families involve fractional

coefficients and therefore do not apply to arbitrary coefficient rings K. Many others have reported

isolated schemes with fractional or approximate coefficients. Such schemes can be constructed

for example by numerically solving a certain optimization problem, or by genetic algorithms. In

Laderman’s multiplication scheme, all coefficients are +1, −1, or 0, which has the nice feature

that it works for any coefficient ring. As far as we know, there are so far only three other schemes

with this additional property, they are due to Smirnov (2013), Oh et al. (2013), and Courtois et al.

(2011), respectively. We add more than 13 000 new schemes to this list.

The isolated scheme presented by Courtois et al. was not found numerically but with the help

of a SAT solver. SAT (Biere et al., 2009) refers to the decision problem of propositional logic:

given a Boolean formula in conjunctive normal form, is there an assignment of the Boolean

variables such that the formula evaluates to true under this assignment? Although SAT is a

prototypical example of an NP-complete problem, modern SAT solvers are able to solve very

large instances. In addition to various industrial applications, they have recently also contributed

to the solution of difficult mathematical problems, see Heule et al. (2016) and Heule (2018) for

two examples. SAT solvers also play a central role in our approach. As explained in Section 3,

we first use a SAT solver to find multiplication schemes for the coefficient ring Z2, starting from

some known solutions. In a second step, explained in Section 4, we discard solutions that are

equivalent to solutions found earlier. Next, we simplify the new solutions (Sect. 5), and use

them as starting points for a new round of searching. Altogether about 35 years of computation

time were spent in several iterations of this process. In the end, we lifted the solutions from Z2

to arbitrary coefficient rings (Sect. 6), and we extracted families with up to 17 free parameters

from them (Sect. 7). Our 13,000 isolated schemes and our parameterized families are provided

in various formats on our website (Heule et al., 2019b).

2



2. The Brent Equations

The general pattern of a matrix multiplication scheme consists of two sections. In the first

section, several auxiliary quantities M1,M2, . . . ,Mm are computed, each of which is a product

of a certain linear combination of the entries of the first matrix with a certain linear combination

of the entries of the second matrix. In the second section, the entries of the resulting matrix are

obtained as certain linear combinations of the auxiliary quantities M1,M2, . . . ,Mm.

For example, writing

A =

(

a1,1 a1,2

a2,1 a2,2

)

, B =

(

b1,1 b1,2

b2,1 b2,2

)

, and C =

(

c1,1 c1,2

c2,1 c2,2

)

:= AB,

Strassen’s multiplication scheme proceeds as follows:

First section.

M1 = (a1,1 + a2,2)(b1,1 + b2,2)

M2 = (a2,1 + a2,2)(b1,1)

M3 = (a1,1)(b1,2 − b2,2)

M4 = (a2,2)(b2,1 − b1,1)

M5 = (a1,1 + a1,2)(b2,2)

M6 = (a2,1 − a1,1)(b1,1 + b1,2)

M7 = (a1,2 − a2,2)(b2,1 + b2,2)

Second section.

c1,1 = M1 + M4 − M5 + M7

c1,2 = M3 + M5

c2,1 = M2 + M4

c2,2 = M1 − M2 + M3 + M6.

Observe that the number of multiplications is exactly the number of M’s. Also observe that

while it is not obvious how to construct such a scheme from scratch, checking that a given

scheme is correct is an easy and straightforward calculation. For example, c2,1 = M2 + M4 =

(a2,1 + a2,2)(b1,1) + (a2,2)(b2,1 − b1,1) = a2,1b1,1 + a2,2b2,1.

In order to search for a multiplication scheme for a prescribed shape of matrices (e.g., 3 × 3)

and a prescribed number of multiplications (e.g., 23), we can make an ansatz for the coefficients

of the various linear combinations,

M1 = (α
(1)
1,1

a1,1 + α
(1)
1,2

a1,2 + · · · )(β
(1)
1,1

b1,1 + β
(1)
1,2

b1,2 + · · · )

M2 = (α(2)
1,1

a1,1 + α
(2)
1,2

a1,2 + · · · )(β
(2)
1,1

b1,1 + β
(2)
1,2

b1,2 + · · · )

...

M23 = (α
(23)
1,1

a1,1 + α
(23)
1,2

a1,2 + · · · )(β
(23)
1,1

b1,1 + β
(23)
1,2

b1,2 + · · · )

c1,1 = γ
(1)
1,1

M1 + γ
(2)
1,1

M2 + · · · + γ
(23)
1,1

M23

c1,2 = γ
(1)
1,2

M1 + γ
(2)
1,2

M2 + · · · + γ
(23)
1,2

M23

...

c3,3 = γ
(1)
3,3

M1 + γ
(2)
3,3

M2 + · · · + γ
(23)
3,3

M23

and then compare coefficients such as to enforce ci, j =
∑

k ai,kbk, j. Doing so leads to a system of

polynomial equations for the undetermined coefficients α(ι)
i1 ,i2
, β

(ι)
j1, j2
, γ

(ι)

k1,k2
. The equations in this

3



system are known as the Brent equations (Brent, 1970). For 3×3-matrices and 23 multiplications,

the equations turn out to be

23
∑

ι=1

α
(ι)
i1 ,i2
β

(ι)
j1, j2
γ

(ι)

k1,k2
= δi2, j1δi1,k1

δ j2,k2

for i1, i2, j1, j2, k1, k2 ∈ {1, 2, 3}, i.e., there are 621 variables and 729 cubic equations. The δu,v on

the right refer to the Kronecker-delta, i.e., δu,v = 1 if u = v and δu,v = 0 otherwise.

The equations become a bit more symmetric if we connect the matrices A, B,C through C⊤ =

AB rather than C = AB. In the version with the transposition, which we shall use from now on,

and which is also more common in the literature, the right hand side has to be replaced with

δi2, j1δ j2,k1
δk2,i1 .

In any case, the problem boils down to finding a solution of the Brent equations. In prin-

ciple, this system could be solved using Gröbner bases (Buchberger, 1965; Cox et al., 1992;

Buchberger and Kauers, 2010), but doing so would require an absurd amount of computation

time. Some of the solutions reported in the literature have been found using numerical solvers (Smirnov,

2013; Oh et al., 2013), and Laderman (1976) claims that his solution was found by solving the

Brent equations by hand. He writes that he would explain in a later paper how exactly he did

this, but apparently this later paper has never been written. Only recently, Sedoglavic (2017a)

has given a convincing explanation of how Laderman’s scheme can be derived from Strassen’s

scheme for 2 × 2 matrices. Courtois et al. (2011) found their solution using a SAT solver. We

also start our search using SAT solvers.

3. SAT Encoding and Streamlining

In order to encode the problem as a SAT problem, we view the Brent equations as equations

for the finite field Z2, interpret its elements as truth values, its addition as exclusive or (⊕),

and its multiplication as conjunction (∧). These propositional formulas cannot be directly be

processed by most state-of-the-art SAT solvers, because they require the formulas in conjunctive

normal form (CNF). A formula is in CNF if it is a conjunction of clauses, where a clause is

a disjunction (∨) of literals and a literal is a Boolean variable x or the negation of a Boolean

variable (x̄). For avoiding an exponential blow-up when transforming an arbitrary structured

formula to CNF, auxiliary variables are introduced that abbreviate certain subformulas. For every

i1, i2, j1, j2 ∈ {1, 2, 3} and every ι = 1, . . . , 23, we introduce a fresh variable s
(ι)
i1,i2, j1, j2

and impose

the condition

s
(ι)
i1 ,i2, j1, j2

↔ (α(ι)
i1,i2
∧ β

(ι)
j1, j2

),

whose translation to CNF requires three clauses. Similarly, for every i1, i2, j1, j2, k1, k2 ∈ {1, 2, 3}

and every ι = 1, . . . , 23, we introduce a fresh variable t
(ι)

i1,i2, j1, j2,k1,k2
and impose the condition

t(ι)

i1,i2, j1, j2,k1,k2
↔ (s(ι)

i1,i2, j1, j2
∧ γ(ι)

k1,k2
),

whose translation to CNF costs again three clauses.

For each fixed choice i1, i2, j1, j2, k1, k2 ∈ {1, 2, 3}, there is a Brent equation which says that

the number of ι’s for which t(ι)

i1,i2, j1, j2,k1,k2
is set to true should be even (if δi2, j1δi1,k1

δ j2,k2
= 0) or

that it should be odd (if δi2, j1δi1,k1
δ j2,k2

= 1). It therefore remains to encode the condition that

an even number (or an odd number) of a given set of p variables should be true, i.e., we need

4



to construct a formula even(x1, . . . , xp) which is true if and only if an even number among the

variables x1, . . . , xp is true. Such a formula can again be constructed using auxiliary variables.

Note that even(x1, . . . , xp) is true if and only if even(x1, . . . , xi, y) ∧ even(xi+1, . . . , xp, y) is true,

because this is the case if and only if both {x1, . . . , xi} and {xi+1, . . . , xp} contain an even number

of variables set to true (and then y is set to false) or both sets contain an odd number of variables

set to true (and then y is set to true). Applying this principle recursively for p = 23 (the number

of summands in each Brent equation), the problem can be broken down to chunks of size four:

even(x1, x2, x3, y1) ∧ even(x4, x5, x6, y2) ∧ even(x7, x8, x9, y3) ∧ even(x10, x11, x12, y4)

∧ even(x13, x14, x15, y5) ∧ even(x16, x17, x18, y6) ∧ even(x19, x20, x21, y7) ∧ even(x22, x23, y1, y8)

∧ even(y2, y3, y4, y9) ∧ even(y5, y6, y7, y10) ∧ even(y8, y9, y10, y11).

The small chunks can be encoded directly by observing that even(a, b, c, d) is equivalent to

(a ∨ b ∨ c ∨ d̄) ∧ (a ∨ b ∨ c̄ ∨ d) ∧ (a ∨ b̄ ∨ c ∨ d) ∧ (ā ∨ b ∨ c ∨ d)∧

(a ∨ b̄ ∨ c̄ ∨ d̄) ∧ (ā ∨ b̄ ∨ c ∨ d̄) ∧ (ā ∨ b ∨ c̄ ∨ d̄) ∧ (ā ∨ b̄ ∨ c̄ ∨ d).

For the cases where an odd number of the variables x1, . . . , x23 must be true, we can apply the

encoding described above to even(x̄1, x2, x3, . . . , x23).

The SAT problems obtained in this way are very hard. In order to make the problems more

tractable, we added further constraints in order to simplify the search performed by the solver.

This approach is known as streamlining (Gomes and Sellmann, 2004). The following restrictions

turned out to be successful:

• Instead of a faithful encoding of the sums in the Brent equations using the even predicate

as described above, we also used a more restrictive sufficient condition which instead of

requiring an even number of arguments to be true enforces that zero or two arguments

should be true. This predicate zero-or-two can be broken into at-most-two and not-exactly-

one, which can be efficiently encoded as

not-exactly-one(x1, . . . , xp) =

p
∧

i=1

(

xi →
∨

j,i

x j

)

at-most-two(x1, . . . , xp) = (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x̄4)

∧ (x̄1 ∨ x̄3 ∨ x̄4) ∧ (x̄2 ∨ x̄3 ∨ x̄4)

∧ (x̄1 ∨ y) ∧ (x̄2 ∨ y) ∧ (x̄1 ∨ x̄2 ∨ z)

∧ (x̄3 ∨ z) ∧ (x̄4 ∨ z) ∧ (x̄3 ∨ x̄4 ∨ y)

∧ at-most-two(y, z, x5, . . . , xp),

where y and z are fresh variables. The first two lines of at-most-two assert that at most two

variables of x1, x2, x3, x4 are true. If two or more of those variables are true then the new

variables y and z have to be both true, if one variable is true, then either y or z has to be

true, and if all four variables are false, then also y and z can be both false. Encoding this

information in y and z allows to recursively apply at-most-two with two arguments less. A

straightforward direct encoding as in the first two lines is used when p ≤ 4.

• We selected a certain portion, say 50%, of the variables α(ι)
i1 ,i2

, β(ι)
j1, j2

, γ(ι)

k1,k2
and instantiate

them with the values they have in one of the known solutions. The SAT solver then has to

5



solve for the remaining variables. It turns out that in many cases, it does not just rediscover

the known solution but finds a truly different one that only happens to have an overlap with

the original solution.

• Another approach was to randomly set half of the terms α(ι)
i1 ,i2
β

(ι)
j1, j2
γ

(ι)

k1,k2
with i2 , j1 and

j2 , k1 and k2 , i1 to zero. This strategy was motivated by the observation that in most of

the known solutions, almost all these terms are zero.

• A third approach concerns the terms α(ι)
i1,i2
β(ι)

j1, j2
γ(ι)

k1,k2
with i2 = j1 and j2 = k1 and k2 = i1.

Again motivated by the inspection of known solutions, we specified that for each ι either

one or two such terms should be one. More precisely, we randomly chose a distribution

of the 27 terms with i2 = j1 and j2 = k1 and k2 = i1 to the 23 summands of the scheme,

with the condition that 19 summands should contain one term each and the remaining four

summands should contain two terms each.

Each of the latter three approaches was used in combination with both the ‘even’ and the ‘zero-or-

two’ encoding of the Brent equations. The resulting instances were presented to the SAT solver

yalsat by Biere (2018). When it didn’t find a solution for an instance within a few minutes, the

instance was discarded and a new instance with another random choice was tried. A detailed

analysis of the effect of our optimizations on the performance of the solver is provided in a

separate paper (Heule et al., 2019a).

4. Recognizing Equivalences

From any given solution of the Brent equations we can generate many equivalent solutions.

For example, exchanging α with β and flipping all indices maps a solution to another solution.

This operation corresponds to the fact that (AB)⊤ = B⊤A⊤. It is also clear from the equations that

replacing α by β, β by γ, and γ by α maps a solution to another solution, although this operation

is less obvious in terms of matrix multiplication. Finally, for any fixed invertible matrix U, we

can exploit the fact AB = AUU−1B to map solutions to other solutions.

The operations just described form a group of symmetries of matrix multiplication which

was introduced by de Groote (1978), who used them for showing that Strassen’s scheme for

2 × 2 matrices is essentially unique: it is unique modulo the action of this symmetry group. To

describe the group more formally, it is convenient to express matrix multiplication schemes as

tensors,

23
∑

ι=1























α(ι)

1,1
α(ι)

1,2
α(ι)

1,3

α
(ι)

2,1
α

(ι)

2,2
α

(ι)

2,3

α
(ι)

3,1
α

(ι)

3,2
α

(ι)

3,3























⊗























β(ι)

1,1
β(ι)

1,2
β(ι)

1,3

β
(ι)

2,1
β

(ι)

2,2
β

(ι)

2,3

β
(ι)

3,1
β

(ι)

3,2
β

(ι)

3,3























⊗























γ(ι)

1,1
γ(ι)

1,2
γ(ι)

1,3

γ
(ι)

2,1
γ

(ι)

2,2
γ

(ι)

2,3

γ
(ι)

3,1
γ

(ι)

3,2
γ

(ι)

3,3























.

A scheme is correct if and only if it is equal, as element of (K3×3)⊗3, to
∑3

i, j,k=1 Ei,k ⊗ Ek, j ⊗ E j,i,

where Eu,v ∈ K3×3 refers to the matrix which has a 1 at position (u, v) and zeros everywhere else.

A permutation π ∈ S 3 acts on a tensor A ⊗ B ⊗ C by permuting the three factors, and trans-

posing each of them if sgn(π) = −1. For example, (1 2) · (A ⊗ B ⊗ C) = B⊤ ⊗ A⊤ ⊗ C⊤ and

(1 2 3) · (A ⊗ B ⊗C) = B ⊗C ⊗ A. A triple (U,V,W) ∈ GL(K, 3)3 of invertible matrices acts via

(U,V,W) · (A ⊗ B ⊗ C) = UAV−1 ⊗ VBW−1 ⊗WCU−1.

A tuple (U,V,W, π) ∈ GL(K, 3)3×S 3 acts on a tensor A⊗B⊗C by first letting the permutation act as

described above, and then applying the matrices as described above. The set G = GL(K, 3)3×S 3

6



is turned into a group by defining the multiplication in such a way that the operation described

above becomes a group action. The action of the group G defined on tensors A⊗B⊗C is extended

to the whole space (K3×3)⊗3 by linearity. In other words, elements of G act on sums of tensors

by acting independently on all summands.

Two matrix multiplication schemes are called equivalent if they belong to the same orbit

under the action of G. Whenever a new matrix multiplication scheme is discovered, the question

is whether it is equivalent to a known scheme, for if it is, it should not be considered as new. A

common test for checking that two schemes are not equivalent proceeds by computing certain

invariants of the group action. For example, since permutation and multiplication by invertible

matrices do not change the rank of a matrix, we can count how many matrices of rank 1, 2,

and 3 appear in the scheme. If the counts differ for two schemes, then these schemes cannot be

equivalent. For example, Courtois et al. (2011) and Oh et al. (2013) proved in this way that their

schemes were indeed new. Writing a scheme in the form
∑23
ι=1(Aι ⊗ Bι ⊗Cι), we can encode this

invariant as the polynomial
∑23
ι=1(xrank(Aι) + xrank(Bι) + xrank(Cι)). Similarly, also the polynomials

23
∑

ι=1

xrank(Aι)+rank(Bι)+rank(Cι) and x
∑23
ι=1 rank(Aι) + x

∑23
ι=1 rank(Bι) + x

∑23
ι=1 rank(Cι)

are invariants, because changing the order of summation does not affect the relative order of the

factors in the tensor, and applying a permutation changes the relative order of the factors in every

summand in the same way.

When we have two schemes for which all three invariants match, they may nevertheless be

inequivalent. For checking whether a solution found by the SAT solver is really new, comparing

invariants is useful as a first step, but it is not sufficient. In fact, many solutions found by the SAT

solver were inequivalent although all three invariants stated above agreed. Fortunately, it is not

too hard to decide the equivalence of two given schemes by constructing, whenever possible, a

group element that maps one to the other. We can proceed as follows.

Suppose we are given two multiplication schemes S , S ′ and we want to decide whether there

exists a tuple (U,V,W, π) ∈ GL(K, 3)3×S 3 such that (U,V,W, π)·S = S ′. As far as the permutation

is concerned, there are only six candidates, so we can simply try each of them. Writing S =
∑23
ι=1(Aι ⊗ Bι ⊗ Cι) and S ′ =

∑23
ι=1(A′ι ⊗ B′ι ⊗ C′ι ), it remains to find U,V,W that map all the

summands of S to the summands of S ′, albeit possibly in a different order. We search for a

suitable order by the following recursive algorithm, which is initially called with Q being full

space K3×3 × K3×3 × K3×3.

Input: S , S ′ as above, a basis of a subspace Q of K3×3 × K3×3 × K3×3

Output: A triple (U,V,W) ∈ GL(K, 3)3 ∩ Q with (U,V,W) · S = S ′, or ⊥ if no such triple exists.

1 if S and S ′ are empty, then:

2 return any element (U,V,W) of Q with det(U) det(V) det(W) , 0, or ⊥ if no such element

exists.

3 for all summands A′ι ⊗ B′ι ⊗C′ι of S ′, do:

4 if rank(A1) = rank(A′ι) and rank(B1) = rank(B′ι) and rank(C1) = rank(C′ι ), then:

5 compute a basis of the space P of all (U,V,W) such that UA1 = A′ιV , VB1 = B′ιW,

WC1 = C′ιU by making an ansatz, comparing coefficients, and solving a homogeneous

linear system.

6 compute a basis of R = P ∩ Q.

7 if R contains at least one triple (U,V,W) with det(U) det(V) det(W) , 0, then:

7



8 call the algorithm recursively with the first summand of S and the ιth summand of S ′

removed, and with R in place of Q.

9 if the recursive call yields a triple (U,V,W), return it.

10 return ⊥.

The algorithm terminates because each recursive call is applied to a sum with strictly fewer

summands. The correctness of the algorithm is clear because it essentially performs an ex-

haustive search through all options. In order to perform the check in step 7, we can consider

a generic linear combination of the basis elements of R, with variables as coefficients. Then

det(U) det(V) det(W) is a polynomial in these variables, and the question is whether this polyno-

mial vanishes identically on K. Since we are interested in the case K = Z2, we can answer this

by an exhaustive search.

The recursive structure of the algorithm with up to 23 recursive calls at every level may

seem prohibitively expensive. However, the two filters in lines 4 and 7 turn out to cut down the

number of recursive calls considerably. A straightforward implementation in Mathematica needs

no more than about one second of computation time to decide whether or not two given schemes

are equivalent. Of course, we first compare the invariants, which is almost for free and suffices

to settle many cases.

For each scheme found by the SAT solver we have checked whether it is equivalent (for K =

Z2) to one of the schemes found earlier, or to one of the four known schemes found by Laderman,

Smirnov, Oh et al., and Courtois et al., respectively. From the roughly 270 000 solutions found

by the SAT solver that were distinct modulo the order of the summands, we isolated about 13 000

schemes that were distinct modulo equivalence. In the appendix, we list the number of schemes

we found separated by invariant.

5. Simplifying Solutions

We can use the symmetries introduced in the previous section not only to recognize that a

seemingly new scheme is not really new. We can also use them for simplifying schemes. A

scheme can for example be regarded as simpler than another scheme if the number of terms

α(ι)
i1 ,i2
β(ι)

j1, j2
γ(ι)

k1,k2
in it which evaluate to 1 is smaller. Calling this number the weight of a scheme,

we prefer schemes with smaller weight.

Ideally, we would like to replace every scheme S by an equivalent scheme with smallest

possible weight. In principle, we could find such a minimal equivalent element by applying all

elements of G to S and taking the smallest result. Unfortunately, even for K = Z2, the group G

has 1683 · 6 = 28 449 792 elements, so trying them all might be feasible if we had to do it for a

few schemes, but not for thousands of them. If we do not insist in the smallest possible weight,

we can take a pragmatic approach and just spend for every scheme S a prescribed amount of

computation time (say half an hour) applying random elements of G to S :

Input: a multiplication scheme S

Output: an equivalent multiplication scheme whose weight is less than or equal to the weight

of S .

1 while the time limit is not exhausted, do

2 pick a group element g at random

3 if weight(g(S )) < weight(S ), then set S = g(S )

4 return S

8



With this algorithm, we were able to replace about 20% of the new schemes found by the SAT

solver by equivalent schemes with smaller weight. It is not too surprising that no improvement

was found for the majority of cases, because the way we specified the problem to the SAT solver

already induces a bias towards solutions with a small weight.

The figure below shows the distribution of our 13 000 schemes according to weight, after

simplification. It is clear that the weight is always odd, hence the small gaps between the bars.

It is less clear why we seem to have an overlay of three normal distributions, but we believe that

this is rather an artifact of the way we generated the solutions than a structural feature of the

entire solution set.

weight

count

160 180 200 220 240 260 280 300
0

100

200

300

400

500

600

6. Generalizing the Coefficient Ring

At this point, we have a considerable number of new matrix multiplication schemes for the

coefficient field K = Z2. The next step is to lift them to schemes that work in any coefficient

ring. The SAT solver presents us with a solution for Z2 in which all coefficients are 0 or 1, and in

order to lift such a solution, we make the hypothesis that this solution originated from a solution

for an arbitrary coefficient ring in which all coefficients are +1, −1, or 0. The distinction between

+1 and −1 gets lost in Z2, and the task consists in recovering it. There is a priori no reason why

such a lifting should exist, and indeed, we have seen a small number of instances where it fails.

One such example is given in the appendix. Interestingly however, these examples seem to be

very rare. In almost all cases, a lifting turned out to exist.

In order to explain the lifting process, we return to the Brent equations discussed in Section 2.

We set variables corresponding to coefficients that are zero in the SAT solution to zero, which

simplifies the system considerably. According to the axioms of tensor products, we have (λA) ⊗

B ⊗ C = A ⊗ (λB) ⊗ C = A ⊗ B ⊗ (λC) for any A, B,C and every constant λ. We may therefore

select in every summand A ⊗ B ⊗C one variable appearing in A and one variable appearing in B

and set them to +1. This reduces the number of variables further. However, the resulting system

is still to hard to be solved directly.

Before calling a general purpose Gröbner bases engine, we apply some simplifications to

the system, which take into account that we are only interested in solutions whose coordinates

are −1 or +1. In particular, we can replace any exponent k appearing in any of the polynomials

by k mod 2, we can cancel factors that clearly do not vanish on the points of interest, and we

can replace polynomials of the from xy ± 1 by x ± y. These simplifications may bring up some

linear polynomials. By triangularizing the linear system corresponding to these polynomials,

9



we can eliminate some of the variables. We can then simplify again, and possibly obtain new

linear equations. The process is repeated until no further linear equations appear. We then

add for each variable x the polynomial x2 − 1 and compute a Gröbner basis with respect to a

degree order. If this leads to new linear polynomials, we return to iterating triangularization,

elimination, and simplification until no further linear equations show up, and then compute again

a degree Gröbner basis. The whole process is repeated until we obtain a Gröbner basis that

does not contain any new linear equations. If there are more than 15 variables left, we next

compute a minimal associated prime ideal of an elimination ideal involving only five variables,

and check whether adding it to the original system and computing a Gröbner basis leads to new

linear equations. If it does, we start over with the whole procedure. Otherwise, we compute the

minimal associated prime ideal of the whole system and return the solution corresponding to one

of the prime factors. The process is summarized in the following listing.

Input: A finite subset B of Q[x1, . . . , xn]

Output: A common root ξ ∈ {−1, 1}n of all the elements of B, or ⊥ if no such common root

exists.

1 Replace every exponent k appearing in an element of B by k mod 2

2 For every p ∈ B and every i with xi | p, replace p by p/xi

3 Replace every element of the form xy − 1 or −xy − 1 by x − y or x + y, respectively.

4 if B now contains linear polynomials, then:

5 Use them to eliminate some variables, say y1, . . . , yk

6 Call the procedure recursively on the resulting set of polynomials

7 if there is a solution, extend it to the eliminated variables y1, . . . , yk and return the result

8 if there is no solution, return ⊥.

9 Compute a Gröbner basis G of B ∪ {x2
i
− 1 : i = 1, . . . , n} with respect to a degree order

10 if G = {1}, return ⊥

11 if G contains linear polynomials, then call this procedure recursively and return the result

12 if n > 15, then:

13 Compute a basis P of one of the minimal associated prime ideals of 〈G〉 ∩Q[x1, . . . , x5].

14 Compute a Gröbner basis G′ of G ∪ P with respect to a degree order

15 if G′ contains linear polynomials, then call this procedure recursively and return the result

16 Compute a basis P of one of the minimal associated prime ideals of 〈G〉 ⊆ Q[x1, . . . , xn].

17 Return the common solution ξ of P.

An implementation of this procedure in Mathematica is available on the website of this ar-

ticle (Heule et al., 2019b). In this implementation, we use Singular (Greuel and Pfister, 2002)

for doing the Gröbner basis calculations and for the computation of minimal associated prime

ideals. Despite the large number of variables, Singular handles the required computations with

impressive speed, so that the whole signing process takes only about 20 seconds per solution on

the average. Only a small number of cases, which happen to have a few more variables than the

others, need much longer, up to a few hours.

7. Introducing Parameters

The idea of instantiating some of the variables based on a known scheme and then solving for

the remaining variables approach not only applies to SAT solving. It also has an algebraic coun-

terpart. Solving the Brent equations with algebraic methods is infeasible because the equations

10



are nonlinear, but observe that we only have to solve a linear system if we start from a known

scheme and only replace all γ(ι)

k1,k2
by fresh variables. Solving linear systems is of course much

easier than solving nonlinear ones.

More generally, we can select for each ι ∈ {1, . . . , 23} separately whether we want to replace

all α(ι)
i1 ,i2

’s or all β(ι)
j1, j2

’s or all γ(ι)

k1,k2
’s by fresh variables, and we still just get a linear system for

these variables. Once we make a selection, solving the resulting linear system yields an affine

vector space. One might expect this affine space will typically consist of a single point only, but

this is usually not the case.

A solution space with positive dimension can be translated into a multiplication scheme in-

volving one or more free parameters. Starting from the resulting parameterized scheme, we can

play the same game with another selection of variables, which may allow us to introduce further

parameters. If we repeat the procedure several times with random selections of which variables

are known, we obtain huge schemes involving 40 or more parameters. These parameters are

however algebraically dependent, or at least it is too costly check whether they are dependent or

not. We got better results by proceeding more systematically, as summarized int in the following

listing.

Input: A matrix multiplication scheme S =
∑23
ι=1(Aι ⊗ Bι ⊗ Cι). Write Aι = ((α(ι)

i, j
)), Bι = ((β(ι)

i, j
)),

Cι = ((γ(ι)
i, j

)).

Output: A family of matrix multiplication schemes with parameters x1, x2, . . .

1 for ι = 1, . . . , 23, do:

2 for every choice u, v ∈ {α, β, γ} with u , v, do:

3 replace all entries u(ι)
i, j

for i, j = 1, . . . , 3 in S by fresh variables

4 replace all entries v
(m)
i, j

for i, j = 1, . . . , 3 and m , ι in S by fresh variables

5 equate the resulting scheme S to
∑

i, j,k Ei, j ⊗ E j,k ⊗ Ek,i and compare coefficients

6 solve the resulting inhomogeneous linear system for the fresh variables introduced in

steps 3 and 4

7 substitute the generic solution, using new parameters xi, xi+1, . . . , into S

8 return S

With this algorithm and some slightly modified variants (e.g., letting the outer loop run back-

wards or transposing the inner and the outer loop), we were able to obtain schemes with alto-

gether up to 17 parameters. Although all new parameters introduced in a certain iteration can

only appear linearly in the scheme, old parameters that were considered as belonging to the

ground ring during the linear solving can later appear rationally. However, by manually applying

suitable changes of variables, we managed to remove all denominators from all the families we

inspected. Not even integer denominators are needed. We can also check using Gröbner bases

whether the parameters are independent, and for several families with 17 parameters they turn

out to be. In the language of algebraic geometry, this means that the solution set of the Brent

equations has at least dimension 17 as an algebraic variety.

One of our families is shown in the appendix, and some further ones are provided electron-

ically on our website. These families should be contrasted with the family found by Johnson

and McLoughlin in the the 1980s (Johnson and McLoughlin, 1986). In particular, while they

lament that their family contains fractional coefficients such as 1
2

and 1
3

and therefore does not

apply in every coefficient ring, our families only involve integer coefficients and therefore have

no such restriction. Moreover, their family has only three parameters, and with the method de-

scribed above, only 6 additional parameters can be introduced into it. The number of parameters

11



we managed to introduce into the known solutions by Laderman, Courtois et al., Oh et al., and

Smirnov are 0, 6, 10, and 14, respectively.

8. Concluding Remarks

Although we have found many new multiplication schemes with 23 multiplications, we did

not encounter a single scheme with 22 multiplications. We have checked all schemes whether

some of their summands can be merged together using tensor product arithmetic. For doing so,

it would suffice if a certain scheme contains some summands which share the same A’s, say,

and where the corresponding B’s, say, of these rows are linearly independent. We could then

express one of these B’s in terms of the others and eliminate the summand in which it appears.

For example, if B3 = β1B1 + β2B2, then we have A ⊗ B1 ⊗ C1 + A ⊗ B2 ⊗ C2 + A ⊗ B3 ⊗ C3 =

A ⊗ B1 ⊗ (C1 + β1C3)+ A ⊗ B2 ⊗ (C2 + β2C3). Since none of our schemes admits a simplification

of this kind, it remains open whether a scheme with 22 multiplications exists.

Another open question is: how many further schemes with 23 multiplications and coefficients

in {−1, 0, 1} are there? We have no evidence that we have found them all. In fact, we rather

believe that there are many further ones, possibly including schemes that are very different from

ours. There may also be parametrized families with more than 17 parameters, and it would be

interesting to know the maximal possible number of parameters, i.e., the actual dimension of the

solution set of the Brent equations.

References

Biere, A., 2018. CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT Entering the SAT Competition 2018. In:
Proc. of SAT Competition 2018 – Solver and Benchmark Descriptions. Vol. B-2018-1 of Department of Computer
Science Series of Publications B. University of Helsinki, pp. 13–14.

Biere, A., Heule, M., van Maaren, H., Walsh, T. (Eds.), 2009. Handbook of Satisfiability. Vol. 185 of Frontiers in Artificial
Intelligence and Applications. IOS Press.

Bläser, M., 2003. On the complexity of the multiplication of matrices of small formats. Journal of Complexity 19 (1),
43–60.

Bläser, M., 2013. Fast Matrix Multiplication. No. 5 in Graduate Surveys. Theory of Computing Library.
URL http://www.theoryofcomputing.org/library.html

Brent, R. P., 1970. Algorithms for matrix multiplication. Tech. rep., Department of Computer Science, Stanford.
Buchberger, B., 1965. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimen-

sionalen Polynomideal. Ph.D. thesis, Universität Innsbruck.
Buchberger, B., Kauers, M., 2010. Gröbner basis. Scholarpedia 5 (10), 7763,

http://www.scholarpedia.org/article/Groebner_basis .
Bürgisser, P., Clausen, M., Shokrollahi, M. A., 2013. Algebraic complexity theory. Vol. 315. Springer Science & Business

Media.
Courtois, N., Bard, G. V., Hulme, D., 2011. A new general-purpose method to multiply 3 × 3 matrices using only 23

multiplications. CoRR abs/1108.2830.
URL http://arxiv.org/abs/1108.2830

Cox, D., Little, J., OShea, D., 1992. Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics. Springer.
de Groote, H. F., 1978. On varieties of optimal algorithms for the computation of bilinear mappings i. the isotropy group

of a bilinear mapping. Theoretical Computer Science 7 (1), 1–24.
Drevet, C., Islam, M. N., Schost, É., 2011. Optimization techniques for small matrix multiplication. Theor. Comput. Sci.

412 (22), 2219–2236.
Dumas, J.-G., Giorgi, P., Pernet, C., 2008. Dense linear algebra over word-size prime fields: thefflas and ffpack packages.

ACM Trans. on Mathematical Software (TOMS) 35 (3), 1–42.
Gomes, C., Sellmann, M., 2004. Streamlined constraint reasoning. In: Principles and Practice of Constraint Programming

(CP 2004). Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 274–289.
Greuel, G.-M., Pfister, G., 2002. A Singular Introduction to Commutative Algebra. Springer.

12

http://www.theoryofcomputing.org/library.html
http://www.scholarpedia.org/article/Groebner_basis
http://arxiv.org/abs/1108.2830


Heule, M. J., Kauers, M., Seidl, M., 2019a. Local Search for Fast Matrix Multiplication. In: Proceedings of SAT’19. To
appear; also ArXiv 1903.11391.

Heule, M. J., Kauers, M., Seidl, M., 2019b. Matrix multiplication repository.
http://www.algebra.uni-linz.ac.at/research/matrix-multiplication/ .

Heule, M. J. H., 2018. Schur number five. In: McIlraith, S. A., Weinberger, K. Q. (Eds.), Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial In-
telligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18).
AAAI Press, pp. 6598–6606.
URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952

Heule, M. J. H., Kullmann, O., Marek, V. W., 2016. Solving and verifying the boolean Pythagorean triples problem via
cube-and-conquer. In: Creignou, N., Berre, D. L. (Eds.), Proceedings of the 19th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2016). Vol. 9710 of Lecture Notes in Computer Science. Springer, pp.
228–245.
URL https://doi.org/10.1007/978-3-319-40970-2_15

Huang, J., Smith, T. M., Henry, G. M., van de Geijn, R. A., 2016. Strassen’s algorithm reloaded. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis. SC’16. IEEE Press,
Piscataway, NJ, USA, pp. 59:1–59:12.
URL http://dl.acm.org/citation.cfm?id=3014904.3014983

Johnson, R. W., McLoughlin, A. M., 1986. Noncommutative bilinear algorithms for 3 × 3 matrix multiplication. SIAM
J. Comput. 15 (2), 595–603.
URL https://doi.org/10.1137/0215043

Laderman, J. D., 1976. A noncommutative algorithm for multiplying 3× 3 matrices using 23 multiplications. Bulletin of
the American Mathematical Society 82 (1), 126–128.

Landsberg, J. M., 2017. Geometry and complexity theory. Vol. 169. Cambridge University Press.
Le Gall, F., 2014. Powers of tensors and fast matrix multiplication. In: Proceedings of the 39th International Symposium

on Symbolic and Algebraic Computation. ISSAC’14. ACM, pp. 296–303.
URL http://doi.acm.org/10.1145/2608628.2608664

Makarov, O., 1987. A non-commutative algorithm for multiplying 5 × 5 matrices using one hundred multiplications.
USSR Computational Mathematics and Mathematical Physics 27 (1), 205 – 207.
URL http://www.sciencedirect.com/science/article/pii/0041555387901455

Oh, J., Kim, J., Moon, B.-R., 2013. On the inequivalence of bilinear algorithms for 3 × 3 matrix multiplication. Informa-
tion Processing Letters 113 (17), 640–645.

Pan, V. Y., 2018. Fast feasible and unfeasible matrix multiplication. CoRR abs/1804.04102.
URL http://arxiv.org/abs/1804.04102

Sedoglavic, A., 2017a. Laderman matrix multiplication algorithm can be constructed using strassen algorithm and related
tensor’s isotropies. CoRR abs/1703.08298.
URL http://arxiv.org/abs/1703.08298

Sedoglavic, A., 2017b. A non-commutative algorithm for multiplying 5 × 5 matrices using 99 multiplications. CoRR
abs/1707.06860.
URL http://arxiv.org/abs/1707.06860

Sedoglavic, A., 2017c. A non-commutative algorithm for multiplying 7 × 7 matrices using 250 multiplications. CoRR
abs/1712.07935.
URL http://arxiv.org/abs/1712.07935

Sedoglavic, A., 2019. Yet another catalogue of fast matrix multiplication algorithms. https://fmm.univ-lille.fr/ ,
accessed: 2019-03-17.

Smirnov, A. V., 2013. The bilinear complexity and practical algorithms for matrix multiplication. Computational Math-
ematics and Mathematical Physics 53 (12), 1781–1795.

Smirnov, A. V., 2017. Several bilinear algorithms for matrix multiplication. Tech. rep., Technical report.
Strassen, V., 1969. Gaussian elimination is not optimal. Numerische Mathematik 13 (4), 354–356.
Williams, V. V., 2012. Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings of the 44th Annual

ACM Symposium on Theory of Computing. STOC’12. ACM, New York, NY, USA, pp. 887–898.
URL http://doi.acm.org/10.1145/2213977.2214056

Winograd, S., 1971. On multiplication of 2 × 2 matrices. Linear algebra and its applications 4 (4), 381–388.

13

http://www.algebra.uni-linz.ac.at/research/matrix-multiplication/
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
https://doi.org/10.1007/978-3-319-40970-2_15
http://dl.acm.org/citation.cfm?id=3014904.3014983
https://doi.org/10.1137/0215043
http://doi.acm.org/10.1145/2608628.2608664
http://www.sciencedirect.com/science/article/pii/0041555387901455
http://arxiv.org/abs/1804.04102
http://arxiv.org/abs/1703.08298
http://arxiv.org/abs/1707.06860
http://arxiv.org/abs/1712.07935
https://fmm.univ-lille.fr/
http://doi.acm.org/10.1145/2213977.2214056


Appendix

� List of all invariants appearing in our set of non-equivalent schemes. These tables are based

on the schemes for Z2 and include the few schemes that could not be lifted to Z. The numbers

on the right indicate how many schemes with the respective invariant we have found.

23
∑

ι=1

(xrank(Aι) + xrank(Bι) + xrank(Cι))

14x2 + 55x 1

2x3 + 25x2 + 42x 1

6x3 + 12x2 + 51x 1

4x3 + 18x2 + 47x 2

2x3 + 24x2 + 43x 3

4x3 + 21x2 + 44x 3

2x3 + 21x2 + 46x 3

2x3 + 23x2 + 44x 3

x3 + 27x2 + 41x 4

2x3 + 22x2 + 45x 4

4x3 + 19x2 + 46x 5

4x3 + 20x2 + 45x 5

25x2 + 44x 6

2x3 + 20x2 + 47x 7

24x2 + 45x 7

x3 + 26x2 + 42x 8

x3 + 16x2 + 52x 10

3x3 + 16x2 + 50x 16

x3 + 25x2 + 43x 17

23x2 + 46x 26

3x3 + 22x2 + 44x 31

x3 + 17x2 + 51x 47

x3 + 24x2 + 44x 47

3x3 + 17x2 + 49x 53

15x2 + 54x 58

3x3 + 21x2 + 45x 68

x3 + 23x2 + 45x 77

3x3 + 18x2 + 48x 102

3x3 + 20x2 + 46x 103

x3 + 22x2 + 46x 104

16x2 + 53x 110

x3 + 18x2 + 50x 111

x3 + 21x2 + 47x 138

x3 + 19x2 + 49x 139

3x3 + 19x2 + 47x 144

x3 + 20x2 + 48x 147

22x2 + 47x 375

17x2 + 52x 914

21x2 + 48x 1371

18x2 + 51x 2461

20x2 + 49x 2824

19x2 + 50x 3476

23
∑

ι=1

xrank(Aι)+rank(Bι)+rank(Cι)

x7 + 3x6 + 3x5 + 5x4 + 11x3 1

x7 + 3x6 + 3x5 + 4x4 + 12x3 1

5x6 + 2x5 + 7x4 + 9x3 1

4x6 + 6x5 + 13x3 1

4x6 + 2x4 + 17x3 1

4x6 + x5 + 3x4 + 15x3 1

4x6 + 5x5 + 2x4 + 12x3 1

4x6 + 6x5 + 3x4 + 10x3 1

4x6 + 3x5 + 2x4 + 14x3 1

5x6 + 2x5 + 6x4 + 10x3 1

4x6 + 5x5 + 7x4 + 7x3 2

4x6 + 6x5 + 5x4 + 8x3 2

4x6 + 3x5 + 10x4 + 6x3 2

4x6 + 3x5 + 4x4 + 12x3 3

3x6 + 4x5 + 5x4 + 11x3 3

4x6 + 5x5 + 4x4 + 10x3 3

3x6 + 5x5 + 5x4 + 10x3 3

5x6 + 2x5 + 5x4 + 11x3 3

4x6 + 3x5 + 9x4 + 7x3 3

3x6 + 4x5 + 7x4 + 9x3 3

4x6 + 3x5 + 11x4 + 5x3 4

4x6 + x5 + 2x4 + 16x3 4

4x6 + 5x5 + 6x4 + 8x3 5

3x6 + 5x5 + 4x4 + 11x3 5

3x6 + 4x5 + 4x4 + 12x3 5

4x6 + x5 + 9x4 + 9x3 5

4x6 + 3x5 + 7x4 + 9x3 5

4x6 + 5x5 + 5x4 + 9x3 5

4x6 + 3x5 + 8x4 + 8x3 5

4x6 + 2x5 + 12x4 + 5x3 6

3x6 + 4x5 + 8x4 + 8x3 6

4x6 + 3x5 + 5x4 + 11x3 8

4x6 + 2x5 + 2x4 + 15x3 8

4x6 + 3x5 + 6x4 + 10x3 9

4x6 + 2x5 + 11x4 + 6x3 14

4x6 + 4x5 + 2x4 + 13x3 16

4x6 + 4x5 + 8x4 + 7x3 34

4x6 + 2x5 + 10x4 + 7x3 42

4x6 + 2x5 + 3x4 + 14x3 43

4x6 + 4x5 + 3x4 + 12x3 53

4x6 + 3x4 + 16x3 58

4x6 + 4x5 + 7x4 + 8x3 70

4x6 + 10x4 + 9x3 71

4x6 + 2x5 + 9x4 + 8x3 72

4x6 + 2x5 + 8x4 + 9x3 95

4x6 + 4x5 + 4x4 + 11x3 105

4x6 + 4x5 + 6x4 + 9x3 105

4x6 + 4x4 + 15x3 106

4x6 + 2x5 + 4x4 + 13x3 107

4x6 + 2x5 + 7x4 + 10x3 145

4x6 + 4x5 + 5x4 + 10x3 146

4x6 + 2x5 + 5x4 + 12x3 174

4x6 + 2x5 + 6x4 + 11x3 221

4x6 + x5 + 8x4 + 10x3 224

4x6 + x5 + 4x4 + 14x3 342

4x6 + 9x4 + 10x3 631

4x6 + x5 + 5x4 + 13x3 637

4x6 + x5 + 7x4 + 11x3 700

4x6 + x5 + 6x4 + 12x3 767

4x6 + 5x4 + 14x3 913

4x6 + 8x4 + 11x3 2060

4x6 + 6x4 + 13x3 2121

4x6 + 7x4 + 12x3 2843

x
∑23
ι=1 rank(Aι) + x

∑23
ι=1 rank(Bι) + x

∑23
ι=1 rank(Cι)

14



2x28 + x27 1

x34 + 2x31 1

x33 + x32 + x30 1

x33 + x32 + x29 1

2x32 + x28 1

x34 + 2x32 3

x32 + 2x30 3

x34 + 2x30 3

x33 + x31 + x29 4

2x33 + x32 5

x34 + 2x29 5

x34 + x30 + x29 6

x33 + 2x30 6

3x28 7

3x29 7

3x30 8

2x31 + x27 9

x29 + 2x28 9

x33 + x31 + x30 14

2x32 + x29 15

2x33 + x31 16

x30 + x28 + x27 16

x31 + x28 + x27 21

2x29 + x28 24

x33 + x30 + x29 24

2x32 + x30 26

x33 + 2x32 31

x33 + x30 + x28 37

x33 + x32 + x31 41

2x32 + x27 42

x33 + 2x31 45

x31 + 2x30 46

2x30 + x29 49

x29 + x28 + x27 51

3x32 51

x32 + x31 + x27 55

x32 + x31 + x28 56

x30 + 2x28 62

2x30 + x28 63

2x31 + x28 66

x30 + 2x29 70

2x30 + x27 71

3x31 77

2x29 + x27 85

x32 + x31 + x29 87

2x31 + x29 88

x33 + x29 + x27 96

2x31 + x30 97

2x32 + x31 110

x32 + x31 + x30 113

x31 + x29 + x27 128

x30 + x29 + x27 133

x31 + 2x28 133

x33 + 2x29 134

x32 + x30 + x29 135

x30 + x29 + x28 137

x31 + x30 + x27 138

x32 + 2x31 186

x31 + x30 + x28 279

x32 + x30 + x27 287

x31 + x30 + x29 291

x32 + x30 + x28 301

x31 + 2x29 353

x33 + x29 + x28 364

x33 + 2x28 392

x32 + 2x29 425

x33 + 2x27 485

x31 + x29 + x28 580

x32 + 2x27 674

x32 + x29 + x27 704

x33 + x28 + x27 738

x32 + 2x28 1230

x32 + x29 + x28 1470

x32 + x28 + x27 1510

� A multiplication scheme for the coefficient ring Z2 that cannot be extended to a scheme for Z

by replacing some of the 1’s by −1’s. It may still be possible to find a scheme with coefficients in

Z which reduces to this scheme modulo 2, but any such scheme must have at least one coefficient

with absolute value ≥ 2.




















0 0 0

0 0 0

1 0 0





















⊗





















0 1 0

0 1 0

0 1 0





















⊗





















1 0 0

0 1 1

0 1 1





















+





















0 0 0

0 0 0

0 0 1





















⊗





















0 0 0

1 0 0

1 0 0





















⊗





















1 1 1

0 0 0

0 0 0





















+





















0 0 0

0 0 0

0 1 1





















⊗





















0 0 0

1 0 0

0 0 0





















⊗





















0 0 1

0 0 1

0 0 1





















+





















0 0 0

1 0 0

0 0 0





















⊗





















1 0 0

0 0 0

0 0 0





















⊗





















1 1 1

0 0 0

0 0 0





















+





















0 0 0

1 0 0

1 0 0





















⊗





















1 0 0

0 0 0

0 0 0





















⊗





















1 0 1

0 0 0

0 0 0





















+





















0 0 0

1 0 0

1 0 0





















⊗





















0 0 1

0 0 0

0 0 0





















⊗





















0 0 0

0 1 0

0 1 0





















+





















0 0 0

0 1 0

0 0 0





















⊗





















0 1 1

0 1 1

0 1 1





















⊗





















0 0 0

0 0 0

0 1 1





















+





















0 0 0

0 1 0

1 0 0





















⊗





















0 1 1

0 1 0

0 1 0





















⊗





















0 0 0

0 1 0

0 1 1





















+





















0 0 0

0 1 0

0 1 0





















⊗





















0 0 0

1 0 1

0 0 0





















⊗





















0 0 0

0 0 0

0 0 1





















+





















0 0 0

0 1 0

0 0 1





















⊗





















0 0 0

1 0 0

0 0 1





















⊗





















0 1 0

0 0 0

0 0 1





















+





















0 0 0

0 0 1

0 0 1





















⊗





















0 0 0

0 0 0

1 0 1





















⊗





















0 1 0

0 0 0

0 0 0





















+





















0 0 0

0 1 1

0 0 0





















⊗





















0 0 0

0 0 0

0 0 1





















⊗





















0 1 0

0 0 0

1 1 0





















+





















1 0 0

0 0 0

0 0 0





















⊗





















0 1 0

0 1 0

0 0 0





















⊗





















1 0 0

1 0 0

1 0 0





















+





















1 0 0

0 0 0

1 0 0





















⊗





















1 1 0

1 1 0

0 0 0





















⊗





















1 0 0

0 0 0

0 0 0





















+





















0 1 0

0 0 0

0 0 0





















⊗





















0 0 0

0 1 1

0 1 1





















⊗





















0 0 0

0 0 0

1 0 0





















+





















1 1 0

0 0 0

0 0 0





















⊗





















0 0 0

0 1 0

0 1 0





















⊗





















0 0 0

1 0 1

1 0 0





















15



+





















1 1 0

0 0 0

1 1 0





















⊗





















0 0 0

1 1 0

0 0 0





















⊗





















0 0 0

0 0 1

0 0 0





















+





















1 1 0

0 0 0

1 0 1





















⊗





















0 0 0

1 0 0

0 1 0





















⊗





















1 0 0

0 0 1

0 0 0





















+





















0 0 1

0 0 0

0 0 1





















⊗





















0 0 0

0 0 0

1 1 0





















⊗





















1 0 0

0 0 0

0 0 0





















+





















0 1 1

0 1 1

0 0 0





















⊗





















0 1 1

0 0 0

0 1 1





















⊗





















0 0 0

0 0 0

1 0 0





















+





















1 1 1

0 0 0

0 0 0





















⊗





















0 0 0

0 0 0

0 1 0





















⊗





















1 0 0

1 1 0

0 0 0





















+





















1 1 1

1 0 1

0 0 0





















⊗





















0 1 1

0 0 0

0 0 0





















⊗





















0 0 0

0 1 0

0 0 0





















+





















1 1 1

0 1 1

0 0 0





















⊗





















0 1 1

0 0 0

0 1 0





















⊗





















0 0 0

0 1 0

1 0 0





















� A general multiplication scheme with 17 parameters. The parameters are x1, . . . , x17, and

we use the following shortcuts:

xi, j = xi x j + 1 p1 = x9 x6,8 + x6

p2 = x5 x1,4 + x1 p3 = x16 x3,15 + x3

p4 = x13 x11,12 + x11 p5 = x2 x10x1,4 − x10 x17x1,4 + x2x4

p6 = x2 x5x10x1,4 − x5x17x10x1,4 + x2x4,5 + x1x2x10 − x1x17 x10





















1 −1 −1

1 0 0

0 0 0





















⊗





















0 1 0

0 0 0

0 0 0





















⊗





















−1 0 0

1 0 0

1 0 0





















+





















1 −1 0

0 0 0

1 0 0





















⊗





















1 1 0

0 0 0

0 0 0





















⊗





















1 0 0

0 0 0

0 0 0





















+





















x4,5 0 p2

x4,5 0 p2

p6 0 p2x17





















⊗





















0 −x1,4 x1,4

0 0 0

0 x4 −x4





















⊗





















0 0 0

0 0 0

1 0 0





















+





















0 1 1

0 0 0

1 0 0





















⊗





















0 1 0

0 0 0

−1 0 0





















⊗





















−1 0 0

0 0 1

0 0 1





















+





















0 1 1

0 0 0

0 0 1





















⊗





















0 0 0

0 0 0

1 1 0





















⊗





















0 0 0

0 0 1

0 0 1





















+





















0 1 1

0 0 0

0 0 0





















⊗





















0 1 0

0 0 0

0 1 0





















⊗





















0 0 0

1 0 −1

1 0 −1





















+





















0 1 0

1 0 0

0 0 0





















⊗





















1 1 0

1 0 0

−1 0 0





















⊗





















1 0 0

−1 1 0

0 0 0





















+





















0 x15,16 0

0 x15,16 0

0 p3 0





















⊗





















0 0 0

0 −1 1

0 0 0





















⊗





















0 x14x15 x14 x15

0 −x3,15 x15

0 0 0





















16



+





















0 1 0

0 0 −1

0 0 0





















⊗





















0 0 0

0 0 1

0 −1 0





















⊗





















0 0 0

0 1 0

1 0 0





















+





















0 1 0

0 0 0

0 0 0





















⊗





















1 1 0

1 1 0

−1 −1 0





















⊗





















0 0 0

1 −1 0

0 0 0





















+





















x4 0 x1,4

x4 0 x1,4

p5 0 x17x1,4





















⊗





















0 p2 −p2

0 0 0

0 −x4,5 x4,5





















⊗





















0 0 0

0 0 0

1 0 0





















+





















0 0 0

1 −1 0

0 1 0





















⊗





















0 0 0

−1 0 0

1 0 0





















⊗





















0 1 0

0 0 0

0 0 0





















+





















0 0 0

p1 0 x8,9

0 0 0





















⊗





















x7x8 0 x8

x7x8 0 x6,8

−x7x8 0 −x6,8





















⊗





















0 0 0

0 0 0

1 −1 0





















+





















0 0 0

1 0 0

0 0 0





















⊗





















1 0 0

1 0 0

−1 0 0





















⊗





















−1 1 0

1 −1 0

x7 −x7 0





















+





















0 0 0

x6,8 0 x8

0 0 0





















⊗





















x7x8,9 0 x8,9

x7x8,9 0 p1

−x7 x8,9 0 −p1





















⊗





















0 0 0

0 0 0

−1 1 0





















+





















0 0 0

0 1 1

1 −1 −1





















⊗





















0 0 0

0 0 0

1 0 0





















⊗





















0 0 −1

0 0 1

0 0 1





















+





















0 0 0

0 1 1

0 −1 0





















⊗





















0 0 0

0 0 1

1 0 0





















⊗





















0 1 1

0 0 −1

0 0 −1





















+





















0 0 0

0 1 1

0 0 0





















⊗





















0 0 0

0 0 1

0 0 0





















⊗





















0 −1 −1

0 1 1

0 1 1





















+





















0 0 0

0 0 0

1 0 0





















⊗





















p4 x12,13 −x12,13

0 0 0

p4 x10 x12,13 −x10x12,13





















⊗





















x12 0 −x12

0 0 0

x2 x11,12 0 −x11,12





















+





















0 0 0

0 0 0

−1 0 0





















⊗





















x11,12 x12 −x12

0 0 0

x11,12 x10x12 −x10x12





















⊗





















x12,13 0 −x12,13

0 0 0

p4x2 0 −p4





















+





















0 0 0

0 0 0

0 1 0





















⊗





















0 0 0

1 −x14 x14 + 1

0 0 0





















⊗





















0 1 1

0 0 0

0 0 0





















+





















0 x15 0

0 x15 0

0 x3,15 0





















⊗





















0 0 0

0 1 −1

0 0 0





















⊗





















0 x14x15,16 x14 x15,16

0 −p3 x15,16

0 0 0





















+





















0 0 0

0 0 0

−x10 0 1





















⊗





















0 0 0

0 0 0

0 1 −1





















⊗





















0 0 0

0 0 0

x17 0 −1





















17


	1 Introduction
	2 The Brent Equations
	3 SAT Encoding and Streamlining
	4 Recognizing Equivalences
	5 Simplifying Solutions
	6 Generalizing the Coefficient Ring
	7 Introducing Parameters
	8 Concluding Remarks

