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RELATION ALGEBRAS OF SUGIHARA, BELNAP, MEYER,

AND CHURCH

R. L. KRAMER, R. D. MADDUX

Abstract. Algebras introduced by, or attributed to, Sugihara, Belnap, Meyer,
and Church are representable as algebras of binary relations with set-theoretically
defined operations. They are definitional reducts or subreducts of proper re-
lation algebras. The representability of Sugihara matrices yields sound and
complete set-theoretical semantics for R-mingle.

1. Introduction

Sugihara’s matrix, described by A. Anderson and N. Belnap [4, pp. 335–6], was
introduced by T. Sugihara in 1955 [69]. A smaller one, obtained by using only one
element per integer instead of two, is taken by Anderson and Belnap as “the Sug-
ihara matrix”. R. K. Meyer introduced finite Sugihara matrices for his proof that
they are complete for the Dunn-McCall logic R-mingle, or RM [4, SS29.3.2]. Vari-
ous algebras, including all Sugihara matrices and perhaps others, are representable
as algebras of binary relations. Their operations are defined set-theoretically, and
need not be specified by tables. Since their operations are definable in the similar-
ity type of relation algebras, they are definitional reducts or subreducts of proper
relation algebras. This was proved already in [55] for finite Sugihara matrices of
even cardinality. In this paper we extend this result to all finite Sugihara matrices
plus Sugihara’s original infinite matrix and two others described by Anderson and
Belnap. We also show it for Belnap’s M0 and for matrices of Meyer and Church.
These algebras may be represented by a list of relations on a set, together with
some operations on relations selected from Table 1. We start with Belnap.

2. Belnap

Belnap’s M0 was first introduced in 1960 [11] by matrices for binary operations
∨, ∧, →, ∼, and unary operations N and M , on an eight-element set. From the
matrices for ∧ and ∨ it is apparent that the eight values appearing in them, namely
−3, −2, −1, −0, +0, +1, +2, and +3 (the last four are the designated values), form
a lattice isomorphic to the lattice of subsets of the 3-element set {−1,+0,−2}, with
+3 at the top and −3 at the bottom, where ∧ and ∨ are interpreted as intersection
and union. This observation does not occur in [11], but in subsequent literature
M0 is usually portrayed this way, by a Hasse diagram along with tables for → and
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• identity relation on U , Id = {〈x, x〉 : x ∈ U},
• diversity relation on U , Di = {〈x, y〉 : x, y ∈ U, x 6= y},
• universal relation on U , U2 = {〈x, y〉 : x, y ∈ U},
• union, A ∪B = {〈x, y〉 : 〈x, y〉 ∈ A or 〈x, y〉 ∈ B},
• intersection, A ∩B = {〈x, y〉 : 〈x, y〉 ∈ A and 〈x, y〉 ∈ B},
• converse, A−1 = {〈x, y〉 : 〈y, x〉 ∈ A},
• complement, A = {〈x, y〉 : x, y ∈ U, 〈x, y〉 /∈ A},
• converse-complement, ∼A = {〈x, y〉 : x, y ∈ U, 〈y, x〉 /∈ A},
• relative product,
A|B = {〈x, y〉 : for some z ∈ U , 〈x, z〉 ∈ A and 〈z, y〉 ∈ B},

• residual,
A → B = {〈x, y〉 : for all z ∈ U , if 〈z, x〉 ∈ A then 〈z, y〉 ∈ B},

• relativized converse-complement,
∼′A = {〈x, y〉 : 〈y, x〉 ∈ Di and 〈y, x〉 /∈ A},

• relativized relative product, A|′B = {〈x, y〉 : 〈x, y〉 ∈ Di , and
for some z ∈ U , 〈x, z〉 ∈ A ∩ Di and 〈z, y〉 ∈ B ∩ Di},

• relativized residual, A →′ B = {〈x, y〉 :
(

〈x, y〉 ∈ Di , and

for all z ∈ U , if 〈z, x〉 ∈ A ∩ Di and 〈z, y〉 ∈ Di then 〈z, y〉 ∈ B
)

}.

Table 1. Some relations on a set U and some operations on relations.

∼. See, for example, [4, SS18.4, SS22.1.3], [5, SSSS34.1–2], [67, p. 178], or [70, pp.
101–2]. It is described in [14, p. 117], [54], and [55, Theorem 4.1] as an algebra

M0 = 〈M0,∪, ∩, →, ∼〉, M0 = {∅, <, >, =, 6=, ≤, ≥, Q2},(1)

whose universe M0 consists of eight binary relations on the rational numbers Q: the
empty relation ∅, the less-than relation <, the greater-than relation >, the identity
relation =, the diversity relation 6=, less-than-or-equal ≤, greater-than-or-equal ≥,
and the universal relation Q2. These eight relations are the unions of subsets of
{<, >, =}. The Hasse diagram for M0 is shown in Figure 1. The operations of
M0 are union ∪, intersection ∩, residuation →, and converse-complementation ∼,
defined in Table 1 with U = Q. The logic called BM [70, p. 128] is defined by
an explicit finite axiomatization. By [70, Theorem 9.8.6] and its corollary, M0 is
characteristic for the logic BM. Because it has a single finite characteristic structure,
BM is a complete decidable logic. The universe M0 of M0 is also closed under
complementation , conversion −1, and relative multiplication |, and contains the
empty relation ∅, universal relation Q2, and identity relation Id on Q. Therefore
M0 is the universe of an algebra

M0 = 〈M0,∪, ∩, , ∅, Q2, |, −1, Id〉.

We refer to M0 as Belnap’s relation algebra. It is a proper relation algebra on
the set of rational numbers. Proper relation algebras were first defined in [46], [48,
Definition 4.23], and [50, SS2].

Definition 1. For any equivalence relation E, let

Sb(E) = 〈℘(E), ∪, ∩, , ∅, E, |,−1, Id〉,

where ℘(E) is the set of all subsets of E, ∪ is union, ∩ is intersection, is comple-

mentation with respect to E, | is relative multiplication, −1 is conversion, ∅ is the
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✉Q2+3

✉≥+2✉ 6=−0

✉>−2✉< −1 ✉
=+0

✉≤ +1

✉
∅−3

✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
✟✟

❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍❍

❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍❍

❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍❍

❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍❍

Figure 1. Lattice of relations in M0.

empty relation, and Id = {〈u, u〉 : 〈u, u〉 ∈ E} is the identity relation on the field of

E. Sb(E) is the algebra of subrelations of E. A proper relation algebra is

any subalgebra of the algebra of subrelations of an equivalence relation. An algebra

is representable if it is isomorphic to a proper relation algebra. For any set U ,

let

Re(U) = Sb(U2).

Re(U) is the algebra of relations on U . A proper relation algebra on U is

any subalgebra of Re(U).

Re(U) is the prototypical example of a relation algebra. Tarski’s original axioms
[72] were chosen because they are true in Re(U). Tarski’s axiom XII implies sim-
plicity, that is, any algebra satisfying XII has no non-trivial homomorphic images.
This axiom was later dropped in [24, 46] so that all proper relation algebras would
satisfy the axioms for relation algebras. It was noticed very early that Belnap’s M0

is a lattice with additional operations. What required nearly half a century after
its introduction in 1960 was the realization, first mentioned in 2007 [54], that M0

is a definitional reduct of M0 (see Definition 5). The proper relation algebra M0

was already known to Lyndon in 1956 [51]. In footnote 13, p. 307, Lyndon says,

“Every relation algebra without zero divisors that is of order not
exceeding 8 (there are 13 such) is commutative and isomorphic
to a complex algebra of either the additive rationals or a cyclic
group of order not exceeding 13.”

In the numbering system of [53], the 13 relation algebras without zero divisors
of order 8 or less are algebra 11 of order 2, algebras 12 and 22 of order 4, and
the ten algebras 13, 23, 33, 17, 27, 37, 47, 57, 67, and 77 of order 8. Algebras
11, 12, 23, 17, and 57 are isomorphic to proper relation algebras on sets of size
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1, 2, 3, 4, and 5, respectively, but on no larger or smaller sets. Algebras 22, 27,
47, 67, and 77 are isomorphic to proper relation algebras on sets of size at least
3, 6, 9, 8, and 9, respectively, and also on sets of all larger sizes. Algebra 47
shows up in SS8, where it is called Ch. It has Church’s diamond as a definitional
reduct. Algebra 37 is isomorphic to proper relation algebras on all sets of even
cardinality 6 or larger. Algebra 33 also shows up in SS8, where it is called Rm.
It has Meyer’s algebra RM84 as a definitional reduct. Algebra 33 is isomorphic
to proper relation algebras on sets of cardinality 7, and 9 or more, but not on
sets of size 8 [6, Theorem 4.2]. The representation on 7 elements appears in SS8.
Finally, algebra 13 is isomorphic to Belnap’s relation algebraM0. It is isomorphic to
proper relation algebras on sets of every infinite cardinality. All the representations
of these algebras on the smallest possible sets are unique [6]. The representation on
the rationals Q mentioned by Lyndon is unique because of Cantor’s theorem on the
categoricity of dense linear orderings without endpoints on countable sets. It is the
one relation algebra mentioned by Lyndon that requires the “additive rationals”.

Starting with [1, 2, 3], an extensive literature developed in the 1980s in which
M0 is known as the Point Algebra, because among its eight relations are the
three ways that two points on the rational number line can be related to each
other: either they are equal (=), or the first point is to the left of the second
point (<), or to the right (>). The Point Algebra and similar algebras based
on the relationships that hold between various combinations of points and regions
are widely used in computer science for spatial and temporal reasoning, and for
constraint satisfaction problems. Consult [49], where references to some of the
early work can be found. More recent papers that explicitly mention the Point
Algebra include [8, 9, 15, 16, 17, 19, 20, 25, 34, 35, 36, 40, 44, 45, 63].

3. Sugihara

A lattice is an algebra 〈S,∨,∧〉 with binary operations ∨ and ∧ that are asso-
ciative, commutative, and idempotent, such that the absorption laws A∧ (A∨B) =
A = A ∨ (A ∧B) hold. A lattice is a chain if A ∧ B is always either A or B, i.e.,
the ordering ≤ is linear, where A ≤ B iff A ∧B = A.

Definition 2. S = 〈S,∨,∧,→,∼〉 is a Sugihara chain if 〈S,∨,∧〉 is a chain, ∼
is an involution that reverses the ordering, i.e.,

∼∼A = A, A ≤ B iff ∼B ≤ ∼A,

and A → B = ∼A ∨B if A ≤ B, otherwise A → B = ∼A ∧ B. An element A ∈ S
is said to be designated if ∼A ≤ A.

Ten examples of Sugihara chains residing in Belnap’s M0 are shown in Table 2,
specified by their relations and operations. The chains {<,≤} and {>,≥} appear
in Belnap’s original proof [11, p. 145] of the variable-sharing property for the logic
E of Anderson-Belnap [4, SS21.1], which says that if A → B is a theorem of E then
A and B share at least one propositional variable. The same proof applies to the
logic R. Axioms (R1)–(R13) for R are shown in Table 6; see [4, SS27.1.1] or [5, pp.
xxiii–xxvi]. The axioms of R are valid in M0, and the rules of deduction preserve
validity, so A → B is not a theorem of R whenever A and B share no variable.

For every finite cardinality there is exactly one Sugihara chain having that car-
dinality. Because ∼ is order-reversing, finite Sugihara chains of odd cardinality
must have an element that is a fixed point for ∼, the one in the middle. Such an
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Universe Operations

{<,≤}, {>,≥}, {∅,Q2}, ∪, ∩, →, ∼,

{∅, <,≤,Q2}, {∅, >,≥,Q2}, ∪, ∩, →, ∼,

{<}, {>}, {∅, 6=}, ∪, ∩, →′, ∼′,

{∅, <, 6=}, {∅, >, 6=}, ∪, ∩, →′, ∼′.

Table 2. Ten examples of Sugihara chains in M0

element would be assigned as a truth value to a formula that is equivalent to its
own negation. Sugihara chains without fixed points under negation are called “nor-
mal” by Meyer [4, p. 400], so odd Sugihara chains are not normal. Sugihara chains
with even cardinality have no elements fixed by ∼, which interchanges the top and
bottom halves while reversing their order. Sugihara chains with even cardinality
were used by Meyer [4, p. 413, Corollary 3.1] to prove that the theorems of RM are
exactly those formulas that are valid in all finite Sugihara chains. His result was
used to prove [55, Theorem 6.2(iii)], which says that a formula is a theorem of RM
if and only if it is valid in every finite algebra in KRM (see Definition 9).

Infinite Sugihara chains are not determined by cardinality alone; see [7]. In
what Anderson and Belnap “have accordingly come to think of . . . as the Sugihara
matrix” [4, p. 337], the universe is the set Z∗ = {n : 0 6= n ∈ Z} of non-zero integers
and ∼(i) = −i for every non-zero i ∈ Z∗. This Sugihara chain was named SZ∗ by
Meyer [4, p. 414], who proved that the theorems of RM are exactly those formulas
valid in SZ∗ [4, p. 414, Corollary 3.5]. Having described SZ∗ , Anderson and Belnap
suggest, “Or one might insert 0 between −1 and +1, counting it designated” [4,
p. 337]. The resulting chain was called SZ by Meyer [4, p. 414]. It has a fixed point
for ∼, namely 0 = ∼0. No such fixed point occurs in the original chain of Sugihara
[69]. In this chain, the ordering is isomorphic to two copies of the integers, one after
the other, so we call it SZ+Z (with + denoting ordinal addition). In more detail, the
elements are si and tj for integers i, j ∈ Z, and the ordering is defined by si < sj
and ti < tj whenever i < j, and si < tj for any i and j. The Sugihara chains
SZ∗ , SZ, and SZ+Z are countably infinite but not isomorphic. We turn now to
the construction of proper relation algebras that have these and all finite Sugihara
matrices as definitional reducts.

4. Definition of SI

For an arbitrary index set I ⊆ Z of integers, SI is a set of relations on ZQ, where
ZQ be the set of functions q : Z → Q that map the integers Z to the rationals Q.
By Theorem 1 in the next section, SI is the universe of a proper relation algebra
called SI . When I = {0}, Belnap’s M0 is a definitional reduct of S{0} (which
is isomorphic to Belnap’s relation algebra), and, when I = Z, Sugihara’s original
matrix SZ+Z is a definitional subreduct (but not a definitional reduct) of SZ.

Definition 3. Let I ⊆ Z.

(i) If q ∈ ZQ, we say that q is eventually zero if there exists some integer

n ∈ Z such that qi = 0 for every integer i > n.
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(ii) Let UI be the set of functions, called sequences, that map Z to Q, are

eventually zero, and are non-zero only on I:

UI = {q : q ∈ ZQ, (∃n∈Z)(∀i>n)(qi = 0), (∀i∈Z)(i /∈ I ⇒ qi = 0)}.

(iii) Define the identity and diversity relations

IdI = {〈q, q〉 : q ∈ UI}, DiI = {〈q, r〉 : q, r ∈ UI , q 6= r},

and, for every n ∈ Z,

Ln = {〈q, r〉 : q, r ∈ UI , qn < rn, and qi = ri whenever n < i},

Rn = {〈q, r〉 : q, r ∈ UI , qn > rn, and qi = ri whenever n < i}.

(iv) Define a set of relations and its set of unions

AtI = {IdI} ∪
⋃

n∈I

{Ln, Rn}, SI =
{

⋃

X : X ⊆ AtI

}

.

By Theorem 1 below, AtI is the set of atoms of a complete atomic proper relation
algebra called SI . Let I = ∅. Then U∅ is the set consisting of just the one sequence
q = 〈· · · , 0, 0, 0, · · ·〉 that is always zero. Notice that for every n ∈ Z, Ln = ∅ iff
Rn = ∅ iff n /∈ I. Hence At∅ = {Id∅} = {〈q, q〉} and S∅ = {∅, {q}}, so S∅ is
isomorphic to the proper relation algebra Re({q}).

Suppose I = {0}. In this case U{0} is the set of Z-indexed sequences of rational
numbers having 0 everywhere except possibly at index 0. There is a bijection
between U{0} and Q that maps q ∈ U{0} to q0 ∈ Q. Setting I = {0} in Definition
3 gives

At{0} = {Id{0}, L0, R0},

S{0} =
{

∅, Id{0}, L0, R0, Id{0} ∪ L0, Id{0} ∪R0, L0 ∪R0, (U{0})
2
}

.

For every relation X ⊆ (U{0})
2, let f(X) = {〈q0, r0〉 : 〈q, r〉 ∈ X}. Applying f to

the relations in At{0} produces the relations in M0:

f(∅) = ∅,

f(Id{0}) = {〈x, y〉 : x, y ∈ Q, x = y},

f(L0) = {〈x, y〉 : x, y ∈ Q, x < y},

f(R0) = {〈x, y〉 : x, y ∈ Q, x > y},

f(Id{0} ∪ L0) = {〈x, y〉 : x, y ∈ Q, x ≤ y},

f(Id{0} ∪R0) = {〈x, y〉 : x, y ∈ Q, x ≥ y},

f(L0 ∪R0) = {〈x, y〉 : x, y ∈ Q, x 6= y},

f(U{0}) = Q2.

In fact, f is an isomorphism from S{0} to Belnap’s relation algebra, so S{0} is also
called “Belnap’s relation algebra”. It contains copies of the ten Sugihara chains in
Table 2.

When I = Z the set SZ contains far more than is needed for the original Sugihara
chain. AtZ has countably many relations, so the cardinality of SZ is same as that
of the real numbers. By Theorem 1 in the next section, SZ is the universe of a
relation algebra SZ, called Sugihara’s relation algebra. By Theorem 2 in the
section after that, SZ contains countable chains isomorphic to SZ+Z.
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5. Structure of SI

In this section we show SI is the universe of the complete atomic proper relation
algebraSI . First we review Definition 3 for easy reference. For every set of integers
I ⊆ Z, UI is the set of functions from Z to Q that are eventually zero and non-
zero only on I, AtI = {IdI} ∪

⋃

n∈I{Ln, Rn}, and SI = {
⋃

X : X ⊆ AtI}, where
IdI = {〈q, q〉 : q ∈ UI}, and for every n ∈ I,

Ln = {〈q, r〉 : q, r ∈ UI , qn < rn, and qi = ri whenever n < i},

Rn = {〈q, r〉 : q, r ∈ UI , qn > rn, and qi = ri whenever n < i}.

Theorem 1. AtI is a partition of (UI)
2. AtI is the set of atoms of the complete

atomic proper relation algebra

SI = 〈SI ,∪,∩, , ∅, (UI)
2, |,−1, IdI〉.

Proof. To see that the relations in AtI are pairwise disjoint and their union is
(UI)

2, note that any two sequences q, r ∈ UI are either equal everywhere (are in
the identity relation IdI), or differ somewhere, in which case there is a largest integer
n where they differ, since they are both eventually zero. The pair 〈q, r〉 cannot be
in Lm or Rm if n < m since q and r agree at every such m by the choice of n, and
〈q, r〉 cannot be in Lm or Rm if n > m since q and r differ somewhere larger than
m, namely at n. Since q and r differ at n, one of them is not zero at n, so n ∈ I.
Since the ordering of the rationals is linear, either qn < rn or qn > rn but not both,
so the pair 〈q, r〉 must be in the relation Ln or Rn but not both. Therefore we have
a disjoint union:

(UI)
2 =

⋃

X∈AtI

X.

Since the relations in AtI form a partition of (UI)
2, the unions of arbitrary subsets

of AtI form a complete atomic Boolean algebra whose set of atoms is AtI . Thus
SI is closed under union, intersection, complementation, and contains ∅, (UI)

2,
and IdI . It remains to be verified that SI is closed under conversion and relative
multiplication. From their definitions it follows that Rn and Ln are converses of
each other. The converse of the identity relation is itself. Conversion distributes
over arbitrary unions of relations. We therefore have the following rules. For all
n ∈ I and X ⊆ AtI ,

(Ln)
−1

= Rn, Id
−1
I = IdI ,

(

⋃

X
)−1

=
⋃

X∈X

X−1.(2)

From (2) it follows that {
⋃

X : X ⊆ AtI} is closed under conversion. For closure
under relative multiplication, we reason as follows. The relative product of two
unions of sets of atoms is, by distributivity, the union of the relative products of
the atoms in the two sets. More exactly, if X ,Y ⊆ AtI then

⋃

X|
⋃

Y =
⋃

{X |Y : X ∈ X , Y ∈ Y}.

The relative product is again a union of atoms if the relative product of any two
atoms is a union of atoms. As we will see, the relative product of any two atoms
is an atom in every case except the relative product of a diversity atom and its
converse, in which case the relative product is the union of the identity relation
and all the diversity atoms with smaller index; see (10).
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Assume q, r, and s are distinct sequences in UI . Each sequence must differ from
the other two, so the cardinality of {qn, rn, sn} cannot be 1 for every n ∈ Z. On
the other hand, since q, r, and s are all eventually zero, the number of elements
of {qn, rn, sn} will eventually be constantly 1, since {qn, rn, sn} = {0} whenever n
is large enough. Hence there is an integer n at which {qn, rn, sn} contains either
exactly three or exactly two elements (hence n ∈ I because they can’t all be zero)
and |{qi, ri, si}| = 1 for all i > n (hence q, r, and s all agree beyond n). Although
any two of q, r, and s are equal beyond n, any pair of them could also agree beyond
an integer strictly smaller than n. In the first case, when {qn, rn, sn} has exactly
three elements, those elements must form a chain under the dense linear ordering
< on the rationals, and, since q, r, and s all agree beyond n, we may choose x, y, z
so that {x, y, z} = {q, r, s} and x Ln y Ln z (and x Ln z). This is listed as case (3)
below. If there are exactly two elements in {qn, rn, sn}, then one of them differs
from the other two, and the other two coincide. Therefore, for some x, y, z such
that {x, y, z} = {q, r, s}, we have xn 6= yn = zn and 1 = |{xi, yi, zi}| for every
i > n. If xn < yn = zn then x Ln y and x Ln z, while if xn > yn = zn then
x Rn y and x Rn z. Now y and z are distinct, but they agree beyond n and also
agree at n. Hence they disagree at some j < n, and agree beyond j, in which case
y Lj z or y Rj z. We may assume x, y, z were chosen so that y Lj z. This yields
the remaining two cases (4) and (5). Thus, given any three distinct q, r, s ∈ UI ,
there are x, y, z ∈ UI and n ∈ I such that {x, y, z} = {q, r, s}, |{qn, rn, sn}| > 1,
|{qi, ri, si}| = 1 for all i > n, and one of these three cases holds:

x Ln y Ln z and x Ln z,(3)

x Ln y Lj z and x Ln z for all j < n,(4)

x Rn y Lj z and x Rn z for all j < n.(5)

From the fact that these are the only possible cases, we will be able to deduce the
rules for computing relative products of pairs of relations in AtI . First we consider
the relative products with the identity relation.

IdI |IdI = IdI , Ln|IdI = IdI |Ln = Ln, Rn|IdI = IdI |Rn = Rn.(6)

We will only prove IdI |Ln = Ln. The other equations have similar proofs. Assume
〈q, r〉 ∈ IdI |Ln. Then there is some s such that 〈q, s〉 ∈ IdI and 〈s, r〉 ∈ Ln. The
latter two statements tell us that q = s and s Ln r, from which we conclude q Ln r
by the fact that equal objects have the same properties, hence 〈q, r〉 ∈ Ln, showing
that IdI |Ln ⊆ Ln. For the opposite inclusion, we assume 〈q, r〉 ∈ Ln and note that
by choosing s = q we get 〈q, s〉 ∈ IdI and 〈s, r〉 ∈ Ln, hence 〈q, r〉 ∈ IdI |Ln. Thus
IdI ⊆ IdI |Ln. Combining this with IdI |Ln ⊆ IdI , we obtain the desired equality.

Next we introduce notation for special relations in SI that arise from relative
products of diversity atoms. For any n,m ∈ I let

L[n,m] =
⋃

{Lk : n ≤ k ≤ m, k ∈ I}, L(−∞,n] =
⋃

{Lk : n ≥ k ∈ I},(7)

L[n,∞) =
⋃

{Lk : n ≤ k ∈ I}, L(−∞,∞) =
⋃

{Lk : k ∈ I}.(8)

Note that L[n,m] = ∅ if n > m, and L[n,n] = Ln. The same notation is used with
converses (change L to R in the equations above). The rules (2) imply

(

L[n,m]

)−1
= R[n,m],

(

L(∞,m]

)−1
= R(∞,m],

(

L[n,∞)

)−1
= R[n,∞),

(

L(−∞,∞)

)−1
= R(−∞,∞).



SUGIHARA RELATION ALGEBRAS 9

The relative product of diversity atoms Lm, Rn ∈ AtI can be computed according
to four basic rules. Rule (9) says that the relative product of a diversity atom with
itself is itself. Rule (10) says that the relative product of a diversity atom with
its converse is the union of the identity relation and all the diversity atoms having
equal or smaller index. Rules (11) and (12) say that the relative product of two
diversity atoms with distinct indices n and m is the one with the larger index.

Ln|Ln = Ln, Rn|Rn = Rn,(9)

Rn|Ln = Ln|Rn = IdI ∪ L(−∞,n] ∪R(−∞,n],(10)

Lm|Ln = Ln|Lm = Rm|Ln = Ln|Rm = Ln if m < n,(11)

Rm|Rn = Rn|Rm = Rn|Lm = Lm|Rn = Rn if m < n.(12)

To prove (9), assume 〈q, r〉 ∈ Ln|Ln, so there is some s ∈ UI such that 〈q, s〉 ∈ Ln

and 〈s, r〉 ∈ Ln. It follows that qn < sn, sn < rn, and q, r, and s all agree beyond
n. We also have qn < rn by the transitivity of the ordering < on Q, so 〈q, r〉 ∈ Ln.
This shows Ln|Ln ⊆ Ln. For the opposite inclusion, assume 〈q, r〉 ∈ Ln. Then
qn < rn, and q and r agree beyond n. By the density of <, we may choose s ∈ UI

so that s agrees with q and r beyond n and has some value sn between qn and
rn (such as the average of qn and rn) so that qn < sn < rn. The values of s on
arguments in I and smaller than n are arbitrary. This completes the proof of the
first equation in (9). The second equation has a similar proof.

To prove (10), assume 〈q, r〉 ∈ Rn|Ln. If q = r then 〈q, r〉 is in IdI , one of the
relations in the union on the right side of (10), as desired, so assume q 6= r. By the
definition of | there is some s ∈ UI such that 〈q, s〉 ∈ Rn, 〈s, r〉 ∈ Ln, and q, r, and
s agree beyond n. From 〈s, q〉 ∈ Ln, 〈s, r〉 ∈ Ln, and q 6= r we conclude that we are
in case (3) or (4) with s = x and {q, r} = {y, z}. Since q 6= r and {q, r} = {y, z},
〈q, r〉 is in some diversity atom whose index must be either n, as in case (3), or
some smaller integer j < n, which occurs in case (4). In either case, depending on
how q and r match up with y and z, we have 〈q, r〉 ∈ L(−∞,n] ∪R(−∞,n]. The pair
〈q, r〉 thus belongs to one of the relations on the right, proving

Rn|Ln ⊆ IdI ∪ L(−∞,n] ∪R(−∞,n].

For the converse, assume 〈q, r〉 ∈ IdI ∪ Lm ∪ Rm and m ≤ n. We will find s ∈ UI

such that 〈q, s〉 ∈ Rn and 〈s, r〉 ∈ Ln. Since q and r agree beyond m, they agree
beyond n as well. Choose values for s ∈ UI so that s agrees with q and r beyond
n. The values of s at arguments that are in I and smaller than n may be anything.
At n, choose a rational sn that is strictly smaller than both qn and rn, such as
sn = min(qn, rn)− 1. Here we are using the fact that the ordering of the rationals
does not have any endpoints. From sn < qn, sn < rn, and the agreement of q, r, and
s beyond n we get 〈s, q〉 ∈ Ln and 〈s, r〉 ∈ Ln, hence 〈q, s〉 ∈ Rn, so 〈q, r〉 ∈ Rn|Ln.
This shows Rn|Ln ⊇ IdI ∪ L(−∞,n] ∪ R(−∞,n], completing the proof of one of the
two equations in (10). The other equation may be proved similarly.

The proofs for (11) and (12) are somewhat simpler. We first show that if m < n
then (Lm ∪ Rm)|Ln ⊆ Ln. Assume 〈q, r〉 ∈ (Lm ∪ Rm)|Ln. Then there must
exist some s ∈ UI such that 〈q, s〉 ∈ Lm ∪ Rm and 〈s, r〉 ∈ Ln. It follows from
〈q, s〉 ∈ Lm ∪ Rm that qm 6= sm and q and s agree beyond m. Since m < n, this
tells us that qn = sn and q and s agree beyond n. From 〈s, r〉 ∈ Ln we know
sn < rn and s and r agree beyond n. We conclude that qn = sn < rn and q, r, and
s agree beyond n, hence 〈q, r〉 ∈ Ln. Assume 〈q, r〉 ∈ Ln and m < n. Then qn < rn
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and q and r agree beyond n. Let s ∈ UI have completely arbitrary entries up to
sm and agree with q beyond m. Since m < n, any such s agrees with r beyond n
and sn = qn < rn, so 〈s, r〉 ∈ Ln. Since q and s agree beyond m, their relationship
depends on the relation between qm and sm. If qm > sm then 〈q, s〉 ∈ Rm, and if
qm < sm then 〈q, s〉 ∈ Lm. Both kinds of s exist, so Ln ⊆ Rm|Ln ∩ Lm|Ln. From
the two inclusions we have proved, it follows that Ln = Rm|Ln = Lm|Ln. The
other equations in (11) and (12) can be proved similarly.

Rules (2), (6), (9), (10), (11), and (12) show that relative products of atoms are
unions of atoms, hence the set of unions of sets of atoms is closed under relative
multiplication, completing the proof of Theorem 1. �

Lemma 1. Relative multiplication is commutative in SI .

Proof. Relative multiplication distributes over arbitrary unions, so if X ,Y ⊆ AtI
then

⋃

X|
⋃

Y =
⋃

{X |Y : X ∈ X , Y ∈ Y}

=
⋃

{Y |X : X ∈ X , Y ∈ Y} (6), (10)–(12)

=
⋃

Y|
⋃

X .

�

Chains constructed in the next section will be shown in Theorem 2 to be Sugihara
chains by means of the following computational rules.

Lemma 2. Let I ⊆ Z. For all n,m ∈ I,

L(−∞,n]|L(−∞,m] = L(−∞,n] ∪ L(−∞,m],(13)

R(−∞,n]|R(−∞,m] = R(−∞,n] ∪R(−∞,m],(14)

L[n,∞)|L[m,∞) = L[n,∞) ∩ L[m,∞),(15)

R[n,∞)|R[m,∞) = R[n,∞) ∩R[m,∞),(16)

R(−∞,∞)|R[m,∞) = R[m,∞),(17)

R(−∞,∞)|L(−∞,m] = R(−∞,∞) ∪ IdI ∪ L(−∞,m],(18)

if n < m then L(−∞,n]|R[m,∞) = R[m,∞),(19)

if n ≥ m then L(−∞,n]|Rm = R(−∞,m] ∪ IdI ∪ L(−∞,n],(20)

L(−∞,n]|R[m,∞) =

{

R[m,∞) if n < m,

R(−∞,∞) ∪ IdI ∪ L(−∞,n] if n ≥ m.
(21)

Proof. In the computations proving (13)–(21) we use (2), (6)–(12), and the fact
that relative multiplication distributes over arbitrary unions of relations. (13) holds
because

L(−∞,n]|L(−∞,m] =
⋃

{Lk|Lℓ : n ≥ k ∈ I, m ≥ ℓ ∈ I}

=
⋃

{Lmax(k,ℓ) : n ≥ k ∈ I, m ≥ ℓ ∈ I} (11)

= L(−∞,max(n,m)]

= L(−∞,n] ∪ L(−∞,m].
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Taking converses of both sides in (13) gives (14). For (15),

L[n,∞)|L[m,∞) =
⋃

{Lk|Lℓ : n ≤ k ∈ I, m ≤ ℓ ∈ I}

=
⋃

{Lmax(k,ℓ) : n ≤ k ∈ I, m ≤ ℓ ∈ I} (11)

= L[max(n,m),∞)

= L[n,∞) ∩ L[m,∞).

Applying conversion to (15) gives (16). For (17),

R(−∞,∞)|R[m,∞) =
⋃

{Rk|Rℓ : k ∈ I, m ≤ ℓ ∈ I}

=
⋃

{Rmax(k,ℓ) : k ∈ I, m ≤ ℓ ∈ I} (12)

= R[m,∞).

For (18), by (7), (8), and distributivity we have

R(−∞,∞)|L(−∞,m] =
⋃

{Rk|Lℓ : k ∈ I, m ≥ ℓ ∈ I}.(22)

Assume k ∈ I and m ≥ ℓ ∈ I. If k 6= ℓ then

Rk|Lℓ ⊆ Rk ∪ Lℓ (11), (12)

⊆ R(−∞,∞) ∪ IdI ∪ L(−∞,m],

while if k = ℓ ≤ m then

Rk|Lℓ = Rk|Lk

= R(−∞,k] ∪ IdI ∪ L(−∞,k] (10)

⊆ R(−∞,∞) ∪ IdI ∪ L(−∞,m].

Along with (22), this shows

R(−∞,∞)|L(−∞,m] ⊆ R(−∞,∞) ∪ IdI ∪ L(−∞,m].(23)

For the other direction, note that Rm ⊆ R(−∞,∞) and Lm ⊆ L(−∞,m] since m ∈ I,
hence, by (10),

R(−∞,∞)|L(−∞,m] ⊇ Rm|Lm = R(−∞,m] ∪ IdI ∪ L(−∞,m].

What remains is to show R(−∞,∞)|L(−∞,m] ⊇ Rk whenever k ∈ I and k > m.
From k,m ∈ I we get Rk ⊆ R(−∞,∞) and Lm ⊆ L(−∞,m], so

Rk = Rk|Lm k > m

⊆ R(−∞,∞)|L(−∞,m],

completing the proof of (18). For (19), if n < m then

L(−∞,n]|R[m,∞) =
⋃

{Lk|Rℓ : k ∈ I, k ≤ n < m ≤ ℓ ∈ I}

=
⋃

{Rℓ : k ∈ I, k ≤ n < m ≤ ℓ ∈ I} (12)

= R[m,∞).

For (20), if n ≥ m then, by (10)–(12),

L(−∞,n]|Rm =
⋃

n≥k∈I

Lk|Rm
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=

(

⋃

n≥k∈I, k<m

Lk|Rm

)

∪
(

Lm|Rm

)

∪

(

⋃

n≥k∈I, k>m

Lk|Rm

)

=

(

⋃

n≥k∈I, k<m

Rm

)

∪
(

R(−∞,m] ∪ IdI ∪ L(−∞,m]

)

∪

(

⋃

n≥k∈I, k>m

Lk

)

= R(−∞,m] ∪ IdI ∪ L(−∞,n].

Finally we prove (21). The first case, in which n < m, holds by (19). If n ≥ m then

L(−∞,n]|R[m,∞) = L(−∞,n]|R[m,n] ∪ L(−∞,n]|R[n+1,∞)

= L(−∞,n]|R[m,n] ∪R[n+1,∞) (19)

=

(

⋃

m≤ℓ≤n, ℓ∈I

L(−∞,n]|Rℓ

)

∪R[n+1,∞)

=
⋃

m≤ℓ≤n, ℓ∈I

(

IdI ∪ L(−∞,n] ∪R(−∞,ℓ]

)

∪R[n+1,∞) (20)

= L(−∞,n] ∪ IdI ∪R(−∞,n] ∪R[n+1,∞)

= R(−∞,∞) ∪ IdI ∪ L(−∞,n].

�

6. Sugihara chains

Definition 4. For every I ⊆ Z, let

CI = {SI
n : − n ∈ I} ∪ {T I

n : n ∈ I},

C′
I = {SI

n : − n ∈ I} ∪ {T̂ I
n : n ∈ I},

where, for every n ∈ Z,

SI
n = R[−n,∞), T I

n = R(−∞,∞) ∪ IdI ∪ L(−∞,n−1],

T̂ I
n = R(−∞,∞) ∪ L(−∞,n−1].

It follows from (7) and (8) that the relations in CI and C′
I form chains under

inclusion. They are shown in Theorem 2 to be the universes of Sugihara chains.
When I = Z, the order types of CZ and C′

Z
are the same as Sugihara’s original SZ+Z,

and the resulting Sugihara chains are both isomorphic to SZ+Z:

· · · ⊆ SI
−2 ⊆ SI

−1 ⊆ SI
0 ⊆ SI

1 ⊆ · · · · · · ⊆ T I
−1 ⊆ T I

0 ⊆ T I
1 ⊆ T I

2 ⊆ · · · ,(CZ)

· · · ⊆ SI
−2 ⊆ SI

−1 ⊆ SI
0 ⊆ SI

1 ⊆ · · · · · · ⊆ T̂ I
−1 ⊆ T̂ I

0 ⊆ T̂ I
1 ⊆ T̂ I

2 ⊆ · · · .(C′
Z
)

In SZ+Z, the designated elements are the ones in the second, larger copy of Z. In
the Sugihara chain with universe CZ, the designated relations are the ones that
contain the identity relation on UZ, but all the relations in C′

Z
are disjoint from the

identity relation.
If I = ∅ then U∅ is a singleton containing just the function that is constantly

zero, and C∅ = C′
∅ = ∅. If I = {0} then S{0} is isomorphic to Belnap’s relation

algebra and

C{0} = {S
{0}
0 , T

{0}
0 }, C′

{0} = {S
{0}
0 },

S
{0}
0 = R0 = T̂

{0}
0 , T

{0}
0 = R0 ∪ Id{0}.
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We thus obtain the two Sugihara chains C{0} = {R0, R0 ∪ Id{0}} and C′
{0} = {R0},

which match up with the Sugihara chains {<,≤} and {<} in Table 2, under the
isomorphism f defined after Definition 3. For a final example, if I = {0, 1}, then

C{0,1} = {S
{0,1}
−1 , S

{0,1}
0 , T

{0,1}
0 , T

{0,1}
1 }, C′

{0,1} = {S
{0,1}
−1 , T̂

{0,1}
0 , T̂

{0,1}
1 },

S
{0,1}
−1 = R1, S

{0,1}
0 = T̂

{0,1}
0 = R0 ∪R1,

T
{0,1}
0 = R0 ∪R1 ∪ Id{0,1}, T

{0,1}
1 = L0 ∪R0 ∪R1 ∪ Id{0,1},

T̂
{0,1}
1 = L0 ∪R0 ∪R1.

Note that C{0,1} and C′
{0,1} can be extended by adding the empty relation at one

end, and the universal relation to C{0,1}, or the diversity relation to C′
{0,1}, at the

other end (or both), thus creating Sugihara chains of sizes 5 and 6. There are four
relations in S{0,1} that are fixed by ∼′, namely L0 ∪ L1, R0 ∪ L1, L0 ∪ R1, and
R0 ∪ R1. Two of these relations appear in the middle of two Sugihara chains of
length 5. The union of these two chains forms a definitional reduct of S{0,1} that
is isomorphic to the crystal lattice in SS8.

Theorem 2. For every I ⊆ Z, 〈CI ,∪,∩,→,∼〉 and 〈C′
I ,∪,∩,→

′,∼′〉 are Sugihara

chains. In particular, 〈CZ,∪,∩,→,∼〉 and 〈C′
Z
,∪,∩,→′,∼′〉 are isomorphic to the

original SZ+Z.

Proof. By (2) and (8),

∼SI
n = (SI

n)
−1

=
(

R[−n,∞)

)−1
= L[−n,∞) = R(−∞,∞) ∪ IdI ∪ L(−∞,−n−1] = T I

−n,

so

∼′SI
n = ∼SI

n ∩ DiI = T I
−n ∩DiI = T̂ I

−n.(24)

It is straightforward to verify that ∼ is an order-reversing involution on all relations,
and that ∼′ is an order-reversing involution on relations included in DiI . Therefore
we have ∼T I

−n = SI
n, and ∼′(T̂ I

−n) = SI
n since SI

n ∪ T̂ I
−n ⊆ DiI . It follows that

CI and C′
I are closed under converse-complementation ∼ and relativized converse-

complementation ∼′, respectively. Since ∼∅ = (UI)
2 and ∼′∅ = DiI , converse-

complementation and relativized converse-complementation are also order-reversing
involutions on CI ∪ {∅, (UI)

2} and C′
I ∪ {∅,DiI}, respectively. Turning to relative

products, we show for all n,m ∈ I,

SI
n|S

I
m = SI

n ∩ SI
m,(25)

SI
n|T

I
m = T I

m|SI
n =

{

SI
n if n ≤ −m,

T I
m if n > −m,

(26)

T I
m|T I

n = T I
m ∪ T I

n ,(27)

SI
n|T̂

I
m = T̂ I

m|SI
n =

{

SI
n if n ≤ −m,

T̂ I
m ∪ IdI if n > −m,

(28)

T̂ I
m|T̂ I

n = T̂ I
m ∪ T̂ I

n ∪ IdI .(29)

For (25) and (26) we have

SI
n|S

I
m = R[−n,∞)|R[−m,∞)

= R[−n,∞) ∩R[−m,∞) (16)
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= SI
n ∩ SI

m,

T I
m|SI

n =
(

R(−∞,∞) ∪ IdI ∪ L(−∞,m−1]

)

|R[−n,∞)

= R(−∞,∞)|R[−n,∞) ∪ IdI |R[−n,∞) ∪ L(−∞,m−1]|R[−n,∞)

= R[−n,∞) ∪R[−n,∞) ∪ L(−∞,m−1]|R[−n,∞) (17), (6)

=

{

R[−n,∞) if m− 1 < −n

R(−∞,∞) ∪ IdI ∪ L(−∞,m−1] if m− 1 ≥ −n
(21)

=

{

SI
n if n ≤ −m,

T I
m if n > −m.

For (27) we start with the observation that

T I
m|T I

n =
(

R(−∞,∞) ∪ IdI ∪ L(−∞,m−1]

)

|
(

R(−∞,∞) ∪ IdI ∪ L(−∞,n−1]

)

.

Multiplying this out yields these nine relative products.

R(−∞,∞)|R(−∞,∞) = R(−∞,∞), (9)

R(−∞,∞)|IdI = R(−∞,∞), (6)

R(−∞,∞)|L(−∞,n−1], = R(−∞,∞) ∪ IdI ∪ L(−∞,n−1], (18)

IdI |R(−∞,∞) = R(−∞,∞), (6)

IdI |IdI = IdI , (6)

IdI |L(−∞,n−1] = L(−∞,n−1], (6)

L(−∞,m−1]|R(−∞,∞) = R(−∞,∞) ∪ IdI ∪ L(−∞,m−1], (18), Lemma 1

L(−∞,m−1]|IdI = L(−∞,m−1], (6)

L(−∞,m−1]|L(−∞,n−1] = L(−∞,m−1] ∪ L(−∞,n−1]. (13)

Taking the union of the relations on the right gives us

T I
m|T I

n = R(−∞,∞) ∪ IdI ∪ L(−∞,m−1] ∪ L(−∞,n−1] = T I
m ∪ T I

n ,

so (27) holds. The proofs of (28) and (29) are somewhat simpler. They can be
obtained from the computations just given by deleting references to IdI on the left
sides of the equations, and expressing the relations on the right sides in terms of
IdI and the relations in C′

I . Recall from Definition 2 that in a Sugihara chain, → is
defined by

A → B =

{

∼A ∨B if A ≤ B,

∼A ∧B if A > B.

Substitute ∼B for B and apply ∼ to both sides. The double negation and De
Morgan laws for ∧, ∨, and ∼ hold in every Sugihara chain, so

∼(A → ∼B) =

{

A ∧B if A ≤ ∼B,

A ∨B if A > ∼B.

To show residuation and relativized residuation act like Sugihara’s →, we will use
the latter equation. By some elementary calculations starting from the definitions
in Table 1 of relative multiplication, converse-complementation, residuation and
their relativized counterparts, we get

∼(A → ∼B) = B|A, ∼′(A →′ ∼′B) = B|′A,(30)
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hence all we need to show is that for any A,B ∈ CI ,

B|A =

{

A ∩B if A ⊆ ∼B,

A ∪B if A ⊃ ∼B,
(31)

and for any A,B ∈ C′
I ,

B|′A =

{

A ∩B if A ⊆ ∼′B,

A ∪B if A ⊃ ∼′B.
(32)

Proof of (31). Because of commutativity (Lemma 1), there are just three cases that
arise by substituting into (31) when n,m ∈ I, A ∈ {SI

n, T
I
n}, and B ∈ {SI

m, T I
m}.

Case 1. A = SI
n, B = SI

m, ∼B = T I
−m. The first case in (31) applies because

SI
n ⊆ T I

−m. By (25), B|A = SI
m|SI

n = SI
n ∩SI

m = A∩B. This agrees with (31), and
shows that (31) holds.

Case 2. A = T I
n , B = T I

m, ∼B = SI
−m. The second case in (31) applies since

T I
n ⊃ SI

−m. By (27) we have B|A = T I
m|T I

n = T I
n ∪ T I

m = A ∪ B, as required for
(31) to hold.

Case 3. A = SI
n, B = T I

m, ∼B = SI
−m. Since A ⊂ B in this case, (31) simplifies

into the form proved below.

B|A = T I
m|SI

n =

{

SI
n if n ≤ −m

T I
m if n > −m

(26)

=

{

SI
n if SI

n ⊆ SI
−m

T I
m if SI

n ⊃ SI
−m

=

{

A if A ⊆ ∼B,

B if A ⊃ ∼B.

Proof of (32). Again there are three cases.

Case 1. A = SI
n, B = SI

m, ∼′B = T̂ I
−m. The first case in (32) applies because

SI
n ⊆ T̂ I

−m. By (25) and SI
n ∪ SI

m ⊆ DiI , B|′A = SI
m|SI

n ∩DiI = SI
n ∩ SI

m = A ∩B,
which agrees with (32).

Case 2. A = T̂ I
n , B = T̂ I

m, ∼′B = SI
−m. By T̂ I

n ⊃ SI
−m, the second case in (32)

applies. By (27) and T̂ I
n ∪ T̂ I

m ⊆ DiI , B|′A = T̂ I
m|T̂ I

n ∩ DiI = T̂ I
n ∪ T̂ I

m = A ∪B, so
(32) holds.

Case 3. A = SI
n, B = T̂ I

m, ∼′B = SI
−m. In this case A ⊂ B, so for (32) we need

only show

B|′A = T̂ I
m|SI

n ∩ DiI =

{

SI
n if n ≤ −m

T̂ I
m if n > −m

(28), T̂ I
m ∪ SI

n ⊆ DiI

=

{

A if A = SI
n ⊆ SI

−m = ∼′B,

B if A = SI
n ⊃ SI

−m = ∼′B.

This completes the proof that 〈CI ,∪,∩,→,∼〉 and 〈C′
I ,∪,∩,→

′,∼′〉 are Sugihara
chains. Because of the match between the order types when I = Z, illustrated in
the remarks preceding Theorem 2, we also conclude that

SZ+Z
∼= 〈CZ,∪,∩,→,∼〉 ∼= 〈C′

Z
,∪,∩,→′,∼′〉,
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which completes the proof of Theorem 2. �

The set of converses of a Sugihara chain is another Sugihara chain. Applying
this observation to CI , we let

S̆I
n = L[−n,∞),

T̆ I
n = L(−∞,∞) ∪ IdI ∪R(−∞,n−1],

C̆I = {S̆I
n : − n ∈ I} ∪ {T̆ I

n : n ∈ I}.

Then C̆I is the other copy of the Sugihara chain CI in SI . Observe that

XI = CI ∪ C̆I ∪ {IdI ,DiI , ∅, U
2}

is closed under union, intersection, converse-complementation, and residuation. In
addition, XI is closed and commutative under relative multiplication. All the rela-
tions in XI are dense. The only non-transitive relation in XI is DiI . When I = {0},
X{0} coincides with the entire universe of S{0}, reflecting the fact that the diversity
relation 6= is the only non-transitive relation in M0.

7. Reducts, relation algebras, and atom structures

Definition 5. A definitional reduct of an algebra A is obtained by omitting

some of the fundamental operations of A and adding some operations that are term-

definable in A. A definitional subreduct is a subalgebra of a definitional reduct.

For example, when defined as in (1), Belnap’s M0 is a definitional reduct of Bel-
nap’s relation algebra M0, but not conversely. They both have the same universe,
but M0 has operations not definable from the operations of M0. We use two meth-
ods to obtain definitional subreducts, called direct and relativized. They apply
to all relation algebras, although we will be primarily interested in applying them
to proper relation algebras (Definition 1), so we review basic definitions and facts
about relation algebras. Good resources for relation algebras are [37, 38, 43, 53],
especially the first two.

Definition 6. A relation algebra is an algebra A = 〈A,+, ·, , 0, 1, ; , ˘, 1
,
〉, con-

sisting of a set A, binary operations + and ; on A, unary operations and ˘ on A,
and a distinguished element 1

,
∈ A, called the identity element of A, such that

〈A,+, ·, , 0, 1〉 is a Boolean algebra and A satisfies the axioms

(x;y);z = x;(y ;z),(r1)

(x+ y);z = (x;z) + (x;z),(r2)

x = x;1
,
,(r3)

˘̆x = x,(r4)

(x+ y)̆ = x̆+ y̆,(r5)

(x;y)̆ = y̆ ;x̆,(r6)

x̆;x;y ≤ y,(r7)

where x ≤ y iff x + y = y. Define the diversity element by 0
,
= 1

,
. An element

a ∈ A is an atom if a 6= 0 and for all x ∈ A, if x ≤ a then x = 0 or x = a. A is

atomic if for every non-zero element x ∈ A there is an atom a ∈ A such that a ≤ x.
An element x ∈ A is symmetric if x̆ = x, dense if x ≤ x;x, and transitive if
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x;x ≤ x. The algebra A is symmetric if all its elements are symmetric, dense

if its elements are dense, commutative if it satisfies x;y = y ;x, and Boolean if

1
,
= 1.

Proper relation algebras are, indeed, relation algebras. Boolean relation algebras
are symmetric and also satisfy x;y = x ·y. Their name is based on the observation,
made after [47, Theorem 4.35], that if 〈A,+, ·, , 0, 1〉 is a Boolean algebra and x̆
is defined to be x, then 〈A,+, ·, , 0, 1, ·, ˘, 1〉 is a relation algebra. Each of the
identities 1

,
= 1 and x;y = x ·y characterizes Boolean relation algebras [38, Lemma

3.1]. Boolean relation algebras are representable [37, Theorem 17.5]. A relation
algebra A is simple (has no non-trivial homomorphic images) if and only if 1;x;1 =
1 whenever 0 6= x ∈ A [47, Theorem 4.10]. A relation algebra is integral (has no
zero divisors) if and only if 1

,
is an atom [47, Theorem 4.17]. In every relation

algebra, the converse ă of an atom a is an atom [47, Theorem 4.3(xii)], which
allows the following definition of atom structure. The definition of complex algebra
is the special case of [47, Definition 3.8] that applies to relation algebras.

Definition 7. [52, Definitions 2.1, 3.2]

(i) If U = 〈U,R, f, I〉 is a structure where R ⊆ U3, f : U → U , and I ⊆ U ,

then the complex algebra of U is

Cm(U) = 〈℘(U),∪,∩, , ∅, U, ; , ˘, I〉,

where ℘(U) is the powerset of U , 〈℘(U),∪,∩, , ∅, U〉 is the Boolean algebra

of all subsets of U , and for all X,Y ⊆ U , X̆ = {x̆ : x ∈ X} and X ;Y =
{z : x;y ≥ z ∈ At for some x ∈ X and y ∈ Y }.

(ii) The atom structure of an atomic relation algebra A is 〈At,R, ˘, I〉, where
At is the set of atoms of A, R = {〈x, y, z〉 : x, y, z ∈ At, x;y ≥ z}, and
I = {u : 1

,
≥ u ∈ At}.

The next theorem is the relation algebraic case of [47, Theorem 3.9]. The specific
conditions were first stated earlier in [50, SS4] in a slightly different but equivalent
form.

Theorem 3. [52, Theorem 2.2] The complex algebra Cm(U) of a structure U =
〈U,R, f, I〉 is a complete and atomic Boolean algebra with operators, and Cm(U) is
a relation algebra if and only if, for all x, y, z ∈ U ,

(i) if 〈x, y, z〉 ∈ R then 〈fx, z, y〉 ∈ R,

(ii) if 〈x, y, z〉 ∈ R then 〈z, fy, x〉 ∈ R,

(iii) x = y iff there is some u ∈ I such that 〈x, u, y〉 ∈ R,

(iv) if 〈v, w, x〉, 〈x, y, z〉 ∈ R then for some u ∈ U , 〈v, u, z〉, 〈w, y, u〉 ∈ R.

It follows from just (i), (ii), and (iii) that f is an involution on U (ffx = x for
all x ∈ U), fx = x for all x ∈ I, R is the union of cycles [50, (1), p. 710], which
are sets of the form

[x, y, z] = {〈x, y, z〉, 〈z, fy, x〉, 〈fz, x, fy〉,(33)

〈fy, fx, fz〉, 〈y, fz, fx〉, 〈fx, z, y)〉},

and finally, the complex algebra satisfies axioms (r2)–(r8). The associative law
(r1) is the only axiom that may fail, and (r1) holds if and only if (iv) holds. Every
relation algebra has a complete and atomic extension, called its perfect extension,
canonical extension, or canonical embedding algebra [48, Theorem 4.21],



18 R. L. KRAMER, R. D. MADDUX

from which we get the following special case of [47, Theorem 3.10 (Representation
Theorem)] that includes the appropriate conditions for relation algebras.

Theorem 4. [52, Theorems 3.13, 4.3] A relation algebra is complete and atomic if

and only if it is isomorphic to the complex algebra of its atom structure. An algebra

A = 〈A,+, ·, , 0, 1, ; , ˘, 1
,
〉 is a relation algebra if and only if it is isomorphic to a

subalgebra of the complex algebra of a structure satisfying conditions (i), (ii), (iii),
and (iv) in Theorem 3.

For an arbitrary relation algebra A, this structure may be constructed directly
from A as follows [56, Theorem 2.11]. An ultrafilter is a maximal proper subset
X ⊆ A such that x · y ∈ X whenever x, y ∈ X and x+ y ∈ X whenever x ∈ X and
y ∈ A. Let U be the set of ultrafilters of A. Let R be the set of triples 〈X,Y, Z〉
of ultrafilters such that X ;Y ⊆ Z, let f : U → U be defined by fX = {x̆ : x ∈ X},
and let I be the set of ultrafilters that contain 1

,
. Then the desired canonical

atom structure is 〈U,R, f, I〉. When A is complete and atomic, the canonical
atom structure is isomorphic to the atom structure of A.

Definition 8. Let A = 〈A,+, ·, , 0, 1, ; , ˘, 1
,
〉 be a relation algebra. Then Ar =

〈A,+, ·,→,∼〉 is the algebra obtained from A by deleting , 0, 1, ;, ˘, and 1
,
,

retaining + and ·, and adding operations → and ∼, defined by

x → y = x̆;y, ∼x = x̆,

and A′
r = 〈A,+, ·,→′,∼′〉 is the algebra obtained from A by deleting , 0, 1, ;, ˘,

and 1
,
, retaining + and ·, and adding operations →′ and ∼′, defined by

x →′ y = (x · 0
,
)̆ ;y · 0

,
· 0
,
, ∼′x = (x · 0

,
)̆ · 0

,
.

Ar is the direct reduct of A, and A′
r is the relativized reduct of A. An algebra

is a direct subreduct of A if it is a subalgebra of the direct reduct of A, and a

relativized subreduct of A if it is a subalgebra of the relativized reduct of A.

When applied to proper relation algebras, the operations →, ∼, →′, and ∼′ are
the ones (with the same names) defined in Table 1. For example, when defined as
in (1), Belnap’s M0 is the direct reduct of the proper relation algebra M0. The
next theorem is the main result of this paper. The part asserting that every finite
Sugihara chain of even cardinality is isomorphic to a direct subreduct of a proper
relation algebra was already proved in [55, Theorem 6.2]. The two innovations that
allow us to extend this result to infinite Sugihara chains and to finite Sugihara
chains of odd cardinality are sequences that are eventually zero and relativized
subreducts.

Theorem 5. For every I ⊆ Z, SI is a proper relation algebra such that

(i) the Sugihara chain 〈CI ,∪,∩,→,∼〉 is a direct subreduct of SI, and

(ii) the Sugihara chain 〈C′
I ,∪,∩,→

′,∼′〉 is a relativized subreduct of SI .

(iii) SZ∗ , Sugihara’s original SZ+Z, and all finite Sugihara chains of even car-

dinality are isomorphic to both direct subreducts and relativized subreducts

of the proper relation algebra SZ.

(iv) SZ and all Sugihara chains of odd cardinality are isomorphic to relativized

subreducts of the proper relation algebra SZ+, where Z+ = {n : 0 < n ∈ Z}.
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Proof. Recall that SI is the universe of the Sugihara relation algebra SI . By
Definition 3, (7), (8), and Definition 4, we have CI ⊆ SI and C′

I ⊆ SI . Furthermore,
CI is closed under ∪, ∩, →, and ∼, and C′

I is closed under ∪, ∩, →′, and ∼′ since
〈CI ,∪,∩,→,∼〉 and 〈C′

I ,∪,∩,→
′,∼′〉 are Sugihara chains by Theorem 2. It follows

by Definition 8 that 〈CI ,∪,∩,→,∼〉 is a direct subreduct ofSI and 〈C′
I ,∪,∩,→

′,∼′〉
is a relativized subreduct of SI . Thus (i) and (ii) hold. By Theorem 2,

〈CZ,∪,∩,→,∼〉 ∼= 〈C′
Z
,∪,∩,→′,∼′〉 ∼= SZ+Z,

so SZ+Z is isomorphic to both a direct and a relativized subreduct of SZ. All of
the subalgebras of SZ+Z are therefore also isomorphic to direct and relativized sub-
reducts of SZ. This includes SZ∗ and all finite Sugihara chains of even cardinality,
thus proving (iii).

For the Sugihara chains of odd cardinality we proceed differently. Suppose I has
a minimum element m ∈ I ⊆ Z. This means that {n : m > n ∈ I} = ∅. Therefore
L(−∞,m−1] =

⋃

∅ = ∅ by (7) and R[m,∞) = R(−∞,∞) by (8), so by (24),

SI
−m = R[m,∞) = R(−∞,∞) ∪ L(−∞,m−1] = T̂ I

m = ∼′(SI
−m).

Thus the relation SI
−m is fixed by ∼′. If I is also infinite, then 〈C′

I ,∪,∩,→
′,∼′〉

is isomorphic to SZ, by an isomorphism that sends the fixed point SI
−m = T̂ I

m to
0, which is the fixed point of negation in SZ. Taking I = Z+, we see that SZ

is isomorphic to a relativized subreduct of SZ+ . Every subalgebra of SZ is also
isomorphic to a relativized subreduct of SZ+ . This includes all finite Sugihara
chains of odd cardinality, so (iv) holds. �

Theorem 5 shows that every finite Sugihara chain S is isomorphic to a chain
of binary relations closed under the relevant operations. If the identity relation is
included in the relations occurring in the top half of this chain (this is the direct
method), then there cannot be a relation fixed by ∼ and S has even cardinality.
If S is odd it can be represented by the relativized method purely with diversity
relations. The element in the middle of S is mapped to a relation that is its own
relativized converse-complement. For example, Belnap’s relation algebra S{0} has
two Sugihara chains of length 3, namely {∅, <, 6=} and {∅, >, 6=} (see Figure 1 and
Table 2). Note how the relations in the middle, namely < and >, are fixed by
∼′. The Sugihara chains of length 3 are isomorphic to RM3, described on [4, p.
470] and [67, p. 92]. This is yet another algebra of relevance logic that can be
represented as an algebra of binary relations. Sugihara chains of even cardinality
are subalgebras of those with odd cardinality. Thus the normal Sugihara chains are
isomorphic to definitional subreducts of proper relation algebras by both the direct
and relativized methods, while non-normal ones need the relativized method.

From Theorem 5 we know that SZ∗ (“the Sugihara matrix” of Anderson and
Belnap) is isomorphic to a direct subreduct of SZ+ . In [14] there is a computation
intended to show that this is not possible. On [14, p. 123],

“Figure 5 shows some components of the canonical embedding al-
gebra of the Sugihara matrix SZ∗ . . . Unfortunately, this Boolean
algebra is not a relation algebra, let alone a transitive or a rep-
resentable one. To show that (r6) is not true, we give a concrete
counterexample.”

The ensuing computation at the bottom of [14, p. 122] ends with {[i) : i ≤ −2}, but
should end with {[i) : i ≥ −2}. When corrected, it confirms an instance of axiom
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✉Di{0,1} = ∼′(∅)

✉ L0 ∪R0 ∪ L1 = ∼′(L1)

✉∼′(L0 ∪ L1) = L0 ∪ L1 ✉R0 ∪ L1 = ∼′(R0 ∪ L1)

✉
L1 = ∼′(L0 ∪R0 ∪ L1)

✉∅ = ∼′(Di{0,1})

✟
✟
✟
✟
✟
✟

❍
❍
❍
❍
❍
❍

❍
❍
❍
❍
❍
❍

✟
✟
✟
✟
✟
✟

Figure 2. The crystal lattice

(r6) in Definition 6. It was reasonable to suspect this equation may not hold,
because it corresponds to a property of atom structures of relation algebras not
shared by the model structures of R. That property, identified and called “tagging”
by Dunn [30], says that if 〈x, y, z〉 ∈ R then 〈fy, fx, fz〉 ∈ R. In Theorem 3,
either one of (i) and (ii) can be replaced by tagging. None of these three conditions
necessarily holds in a model structure for R. Such structures do satisfy the condition
that if 〈x, y, z〉 ∈ R then 〈fz, x, fy〉 ∈ R. This condition, together with any one of
of the three conditions (i), (ii), and tagging, can be used in Theorem 3 instead of (i)
and (ii), because any of these combinations are enough to prove that R is a union
of cycles (33). To obtain relevant model structures for logics like R, one must add
the conditions expressing density, that 〈x, x, x〉 ∈ R for all x, and commutativity,
that if 〈x, y, z〉 ∈ R then 〈y, x, z〉 ∈ R.

By Theorem 5, the canonical embedding algebra of the Sugihara matrix SZ∗

is, in fact, isomorphic to the complete atomic proper relation algebra SZ+ , hence
also isomorphic to the complex algebra of the canonical atom structure of SZ+ .
Although SZ+ is commutative and dense, not all of its elements are transitive. For
example, the diversity relation DiZ+ is not transitive. However, SZ+ does have
subsets that contain only transitive (and dense) relations and are closed under the
relevant operations. As we have seen, a copy of the Sugihara matrix SZ∗ is among
them.

8. The crystal lattice, Church’s diamond, and Meyer’s RM84

The crystal lattice. The crystal lattice first appears in Routley [65], where it is
attributed to R. K. Meyer; see [18, pp. 65–6], [67, p. 250], and [70, pp. 95–7]. By
[70, Theorems 9.8.1, 9.8.3], the crystal lattice Cr is characteristic for the finitely
axiomatized logic CL [70, p. 114]. We can obtain the crystal lattice from S{0,1},
which is isomorphic to the relation algebra 283, the second of 83 relation algebras
listed in [53, Ch. 6, SSSS62–3].

Theorem 6. The crystal lattice is isomorphic to a relativized subreduct of S{0,1}.
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X →′ Y Di{0,1} L0 ∪R0 ∪ L1 L0 ∪ L1 R0 ∪ L1 L1 ∅
Di{0,1} Di{0,1} ∅ ∅ ∅ ∅ ∅

L0 ∪R0 ∪ L1 Di{0,1} L1 ∅ ∅ ∅ ∅
L0 ∪ L1 Di{0,1} L0 ∪ L1 L0 ∪ L1 ∅ ∅ ∅
R0 ∪ L1 Di{0,1} R0 ∪ L1 ∅ R0 ∪ L1 ∅ ∅

L1 Di{0,1} L0 ∪R0 ∪ L1 L0 ∪ L1 R0 ∪ L1 L1 ∅
∅ Di{0,1} Di{0,1} Di{0,1} Di{0,1} Di{0,1} Di{0,1}

X |′Y L0 R0 L1 R1

L0 L0 L0 ∪R0 L1 R1

R0 L0 ∪R0 R0 L1 R1

L1 L1 L1 L1 L0 ∪R0 ∪ L1 ∪R1

R1 R1 R1 L0 ∪R0 ∪ L1 ∪R1 R1

Table 3. Tables for the crystal lattice and S{0,1}

✉ A ∪B

✉B ✉A

✉
∅

✟
✟
✟
✟
✟
✟

❍
❍
❍
❍
❍
❍

❍
❍
❍
❍
❍
❍

✟
✟
✟
✟
✟
✟

Figure 3. The Church diamond

Proof. For a copy of the crystal lattice in S{0,1}, let

Cr = {∅, L1, L0 ∪ L1, R0 ∪ L1, L0 ∪R0 ∪ L1, Di{0,1}},

Cr = 〈Cr, ∪, ∩, →′, ∼′〉.

Inspection shows Cr is closed under union, intersection, relativized residuation,
and relativized converse-complementation. Comparison with [67, p. 250] or [70, pp.
95–7] shows Cr is the crystal lattice. The Hasse diagram and the action of ∼′ are
shown in Figure 2, while →′ is given in Table 3. Cr is the union of two Sugihara
chains of length 5 that intersect in all but one relation. To get these two chains,
delete either L0 ∪ L1 or R0 ∪ L1 from Cr. Cr is also a set of generators for S{0,1}

(since conversion and complementation are allowed). Table 3 shows the relativized
relative products of the diversity atoms of S{0,1}. �

Cr is used in [67, Theorem 3.22] for a proof of the variable-sharing property
that is simpler because it uses a smaller algebra, with only six elements instead of
eight, and the 2-element chains {<,≤} and {>,≥} in Belnap’s proof are replaced
by singletons {L0 ∪ L1} and {R0 ∪ L1}.

The Church lattice. The Church lattice [67, p. 379] is also called Church’s dia-
mond [68, p. 277].

Theorem 7. The Church lattice is the relativized reduct of a proper relation algebra

on any set with 9 or more elements.
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✉ ✉ ✉

✉ ✉ ✉

✉ ✉ ✉

A

B

Figure 4. Atoms of Church’s relation algebra: A = pairs con-
nected by solid lines, B = pairs connected by dotted lines

X →′ Y A ∪B A B ∅ ∼′

A ∪B A ∪B ∅ ∅ ∅ ∅
A A ∪B A B ∅ B
B A ∪B ∅ A ∅ A
∅ A ∪B A ∪B A ∪B A ∪B A ∪B

X |Y Id A B
Id Id A B
A A Id ∪A B
B B B Id ∪ A ∪B

Table 4. Tables for Church’s relation algebra

Proof. On any set U with at least 9 elements, let V1, V2, and V3 be a partition of
U into pairwise disjoint sets, each containing at least 3 elements. In the 9-element
case, V1, V2, and V3 are arranged in three columns as in Figure 4. Let

U = V1 ∪ V2 ∪ V3, Id = {〈u, u〉 : u ∈ U}, Di = {〈u, v〉 : u, v ∈ U, u 6= v},

A = Di ∩
(

(V1)
2 ∪ (V2)

2 ∪ (V3)
2
)

, B =
⋃

{Vi × Vj : 1 ≤ i, j ≤ 3, i 6= j}.

Then {Id, A,B} is a partition of U2 into relations that are symmetric. The eight
unions of subsets of {Id , A,B} form a proper relation algebra Ch with {Id , A,B}
as its set of atoms. As noted in SS2, Ch is isomorphic to relation algebra 47 [53,
Ch. 6, SS56.13]. The relative products of atoms are shown in Table 4. Unions of
symmetric relations are symmetric, so Ch is a symmetric proper relation algebra,
called Church’s relation algebra. Symmetric relation algebras are commutative
because, by axiom (r6) and the symmetry of both the factors and the relative
product, x;y = (x;y)̆ = y̆ ;x̆ = y ;x. Not all symmetric relation algebras are dense,
but Ch is dense. The four diversity relations form Church’s diamond,

Ch = {A ∪B,A,B, ∅},

Ch = 〈Ch, ∪, ∩, →′, ∼′〉,

with a Hasse diagram in Figure 3. Tables for →′ and ∼′ are in Table 4. �
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✉{0, 1, 2, 3, 4, 5, 6}

✉{0, 3, 5, 6}✉{1, 2, 3, 4, 5, 6}

✉{3, 5, 6}✉{1, 2, 4} ✉
{0}

✉{0, 1, 2, 4}

✉
∅

✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
✟✟

✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
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✟
✟
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Figure 5. Hasse diagram for RM84

The Church lattice Ch validates the logic KR, which is axiomatized by axioms
(R1)–(R13) in Table 6 along with (X ∧∼X) → Y . The Lindenbaum algebra of KR
is a relation algebra [14, Lemma 6.7]. (The method for creating what is here called
a “Lindenbaum” algebra is due to Tarski [71], [73, Ch. XII]; see [39], [58, p. 122,
footnote 7], [42, p. 85, footnote 4], [41, p. 169, footnote 2].) Ch shows that KR is
“crypto-relevant” [67, p. 379], which means that the variable sharing property holds
for a formula X → Y if the only connective appearing is →. To show this, assign
the variables in X to A∪B and the variables in Y to A. Then X and Y are mapped
to A ∪ B and A since these are fixed by the operation →′, but (A ∪ B) →′ A = ∅
and the designated elements are A ∪B and A, so X → Y is not valid in Ch.

Meyer’s RM84. Anderson and Belnap [4, p. 334] present Meyer’s lattice, but
they do not give it a name. Instead, “RM84” is their name for Meyer’s theorem [4,
p. 417], which says that if X → Y is a theorem of RM then either X and Y share
a variable or both ∼X and Y are theorems of RM. When Routley, Plumwood,
Meyer, and Brady [67, p. 253] present Meyer’s lattice, they call it “RM84”, as is
done here. In [67, Theorem 3.26] they show RM84 verifies all theorems of R, but
fails to satisfy any of eight particular formulas that happen to be theorems of RM.
The proper relation algebra Rm, described here by subsets of the cyclic group of
order 7 and called Meyer’s relation algebra, is isomorphic to relation algebra 33
[53, Ch. 6, SS58.8].

Theorem 8. [55, Theorem 4.2] RM84 is the relativized reduct the proper relation

algebra Rm.

Proof. Let U = {0, 1, 2, 3, 4, 5, 6}, D = {1, 2, 3, 4, 5, 6}, and

R = {U,D, {0, 1, 2, 4}, {0, 3, 5, 6}, {1, 2, 4}, {3, 5, 6}, {0}, ∅}.

We use R as an index set for eight binary relations on U . For x, y ∈ U , let x ≡7 y
mean y − x is divisible by 7, and for every X ⊆ U , define a relation on U by

ρ(X) = {〈y, z〉 : y, z ∈ U, z + x ≡7 y for some x ∈ X}.
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X ∼X
∅ U

{3, 5, 6} {0, 3, 5, 6}
{1, 2, 4} {0, 1, 2, 4}

D = {1, 2, 3, 4, 5, 6} {0}
{0} D

{0, 1, 2, 4} {1, 2, 4}
{0, 3, 5, 6} {3, 5, 6}

U = {0, 1, 2, 3, 4, 5, 6} ∅

X |Y {0} {1, 2, 4} {3, 5, 6}
{0} {0} {1, 2, 4} {3, 5, 6}

{1, 2, 4} {1, 2, 4} D U
{3, 5, 6} {3, 5, 6} U D

X → Y ∅ {3, 5, 6} {1, 2, 4} D {0} {0, 1, 2, 4} {0, 3, 5, 6} U
∅ U U U U U U U U

{3, 5, 6} ∅ {0} ∅ {0, 3, 5, 6} ∅ ∅ {0} U
{1, 2, 4} ∅ ∅ {0} {0, 1, 2, 4} ∅ {0} ∅ U

D ∅ ∅ ∅ {0} ∅ ∅ ∅ U
{0} ∅ {3, 5, 6} {1, 2, 4} D {0} {0, 1, 2, 4} {0, 3, 5, 6} U

{0, 1, 2, 4} ∅ ∅ ∅ {1, 2, 4} ∅ {0} ∅ U
{0, 3, 5, 6} ∅ ∅ ∅ {3, 5, 6} ∅ ∅ {0} U

U ∅ ∅ ∅ ∅ ∅ ∅ ∅ U

Table 5. Tables for RM84

Then {ρ(X) : X ∈ R} is the universe of the proper relation algebra Rm, which is an
8-relation subalgebra of Re(U). Figure 5 shows the Hasse diagram for sets in R and
their images under ρ. The images of {0}, {1, 2, 4}, and {3, 5, 6} are atoms of Rm.
The converse-complements and relative products in Table 5 are stated in terms of
sets in R. The entry for X,Y ∈ R is the set Z ∈ R such that ρ(Z) = ρ(X)|ρ(Y ).
Converse-complements and relative products can also be computed directly by the
rules ∼X = {0 −7 x : x /∈ X, x ∈ U} and X |Y = {x +7 y : x ∈ X, y ∈ Y }, where
−7 and +7 are subtraction and addition modulo 7. As described here, RM84 is the
direct reduct of Rm. �

9. A relational completeness theorem for R-mingle

The logic R-mingle, or RM, was created by Dunn and McCall from Anderson
and Belnap’s relevance logic R by adding the mingle axiom A → (A → A); see [4,
SS8.15, SS27.1.1]. The rules of deduction for both R and RM are Adjunction (infer
A ∧B from A and B) and modus ponens (infer B from A → B and A). An axiom
set for RM is shown in Table 6; see [4, p. 341] or [5, pp. xxiii–xxvi].

If S is a Sugihara chain and the connectives of RM are interpreted as the cor-
responding operations (with the same names) in S, then any function from the
propositional variables to elements of S extends uniquely to a homomorphism from
the algebra of formulas to elements of S. A formula is valid in S if it is sent to a
designated element by every such homomorphism. Meyer [4, pp. 413–4, Corollaries
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A → A(R1)

(A → B) → ((B → C) → (A → C))(R2)

A → ((A → B) → B)(R3)

(A → (A → B)) → (A → B)(R4)

(A ∧B) → A(R5)

(A ∧B) → B(R6)

((A → B) ∧ (A → C)) → (A → (B ∧C))(R7)

A → (A ∨B)(R8)

B → (A ∨B)(R9)

((A → C) ∧ (B → C)) → ((A ∨B) → C)(R10)

(A ∧ (B ∨ C)) → ((A ∧B) ∨ C)(R11)

(A → ∼B) → (B → ∼A)(R12)

∼∼A → A(R13)

A → (A → A)(R14)

Table 6. Axioms of RM

3.1, 3.5] proved that the theorems of RM are the formulas valid in all finite Sugihara
chains, and that the theorems of RM are the formulas valid in SZ∗ . These results,
together with Theorem 2, imply that RM is complete with respect to the following
class of algebras.

Definition 9. Let K = 〈K,∪,∩,→,∼〉, where

(k1) K is a non-empty set of binary relations on a set U , called the base of K,

(k2) K is closed under the operations ∪, ∩, →, and ∼, defined in Table 1 using

the base U .

A formula A is valid in the algebra K if, for every homomorphism h from the

algebra of formulas to K, h(A) contains the identity relation on the base of K. Let

KRM be the class of algebras K = 〈K,∪,∩,→,∼〉 such that (k1), (k2), and

(k3) A|B = B|A for all A,B ∈ K,

(k4) A ⊆ A|A for all A ∈ K,

(k5) A|A ⊆ A for all A ∈ K.

A formula is valid in KRM if it is valid in every algebra in KRM.

Since K is not empty by (k1), the algebra K determines the base according to
the formula U = {a : 〈a, a〉 ∈ A ∪ ∼A, A ∈ K}. Condition (k2) implies that K

is also closed under |, since A|B = ∼(B → ∼A) by (30). From Theorem 2 and
Meyer’s results we get the following completeness theorem.

Theorem 9 ([55, Theorem 6.2(iii)]). The theorems of RM are the formulas valid

in KRM.

Proof. The axioms of RM are valid in KRM by Theorem 10 below. Validity is
preserved by Adjunction, for if Id ⊆ A and Id ⊆ B then Id ⊆ A ∩ B, and validity
is preserved by modus ponens, for if Id ⊆ A → B and Id ⊆ A, then Id = Id |Id ⊆
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A|(A → B) ⊆ B by Lemma 4(ii) below. Therefore all theorems of RM are valid in
KRM. For the converse, suppose X is not a theorem of RM. By Meyer’s theorems,
X fails in SZ∗ , SZ+Z, and in every sufficiently large finite normal Sugihara chain.
By Theorem 2, these algebras are isomorphic to algebras in KRM. Therefore there
are algebras in KRM in which X fails to be valid. �

We assume for the rest of this section that U is a set and K = 〈K,∪,∩,→,∼〉 is
an algebra satisfying conditions (k1) and (k2) of Definition 9. In each formula, we
interpret the connectives ∨, ∧, →, and ∼ as the operations ∪, ∩, →, and ∼, respec-
tively. Thus every formula denotes a relation that depends on the interpretation of
its variables. A formula is valid in K if it denotes a relation that contains Id , the
identity relation on U , no matter how its variables are interpreted. Implications
are analyzed as inclusions because of the following lemma.

Lemma 3 ([55, Theorem 5.1(17)]). For all A,B ⊆ U2, Id ⊆ A → B iff A ⊆ B.

According to Lemma 3, the validity of each axiom of RM can be equivalently
expressed as an inclusion between binary relations. For example, (R1) is valid in K

just because the inclusion A ⊆ A always holds. Evidently (R1), (R5), (R6), (R7),
(R8), (R9), (R10), (R11), and (R13) are true under the set-theoretical meanings
assigned to the connectives, by [55, Theorem 5.1(32), (33), (34), (35), (36), (37),
(38), (39), (40)], respectively. To analyze the remaining axioms of RM we recall
some other results from [55].

Lemma 4. [55, Theorem 5.1(18)(19)(21)(22)] For all A,B,C ⊆ U2,

(i) A → (B → C) = (B|A) → C,

(ii) A|(A → B) ⊆ B,

(iii) if A ⊆ B then B → C ⊆ A → C and C → A ⊆ C → B.

Axioms (R1), (R5)–(R11), and (R13) are valid for all binary relations. The
remaining five axioms do not hold for all relations, but will hold under conditions
on the relations that occur in them, and in some cases are equivalent to those
conditions. We now analyze (R2), (R3), (R4), (R12), and (R14). By [55, Theorem
5.1(55)], (R2) holds whenever B → C and A → B commute, but (R2) also holds
under the weaker hypothesis of Lemma 5 below, because inclusion in only one
direction is needed. (R2) holds if K is commutative under relative multiplication,
but fails in some non-commutative examples that have 16 relations. On the other
hand, (R2) is valid when recast as a rule of inference, for if A → B contains the
identity relation then so does (B → C) → (A → C) [55, Theorem 5.1(29)]. This
also follows immediately from Lemma 3 and Lemma 4(iii).

Lemma 5. For all A,B,C ⊆ U2, if (B → C)|(A → B) ⊆ (A → B)|(B → C) then

A → B ⊆ (B → C) → (A → C) and (R2) is valid, but the converse may fail.

Proof. First we prove the assumption implies the validity of (R2).

(A|(B → C))|(A → B)

= A|((B → C)|(A → B)) | is associative

⊆ A|((A → B)|(B → C)) assumption, | is monotonic

= (A|(A → B))|(B → C) | is associative

⊆ B|(B → C) Lemma 4(ii), | is monotonic
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⊆ C, Lemma 4(ii)

hence

C → C ⊆ ((A|(B → C))|(A → B)) → C Lemma 4(iii)

= (A → B) → ((A|(B → C)) → C) Lemma 4(i)

= (A → B) → ((B → C) → (A → C)). Lemma 4(i)

Since Id ⊆ C → C, it follows that (R2) is valid, i.e.,

Id ⊆ (A → B) → ((B → C) → (A → C)).

By Lemma 3, A → B ⊆ (B → C) → (A → C). However, the assumption and this
conclusion are not equivalent. To see this, let C = U2. Then A → C = U2, hence

(B → C) → (A → C) = (B → C) → U2 = U2,

so the conclusion holds for all A and B. Since A → C = U2, the assumption
becomes U2| (A → B) ⊆ (A → B) |U2. But this inclusion will fail whenever A → B
is not empty and has a domain that is not all of U . �

By [55, Theorem 5.1(54)], (R3) holds whenever A and A → B commute. In fact,
it holds under a weaker hypothesis to which it is not equivalent.

Lemma 6. If (A → B)|A ⊆ A|(A → B) then (R3) is valid. The converse may fail.

Proof. We have (A → B)|A ⊆ B by the hypothesis and Lemma 4(ii). Let C =
A → B, so that C|A ⊆ B. This formula can be rewritten as B ∩ (C|A) = ∅. This

is equivalent to (C−1|B) ∩ A = ∅, which is in turn equivalent to A ⊆ C−1|B, but

C−1|B = C → B, so A ⊆ C → B. Hence A ⊆ (A → B) → B and (R3) is valid
by Lemma 3. This conclusion does not imply the hypothesis, for if B = U2, then

A → B = A−1|B = A−1|U2 = U2, so the hypothesis is equivalent to U2|A ⊆ A|U2,
which fails if A is a relation on U whose domain is not all of U . On the other hand,

the conclusion of Lemma 6 holds since (A → B) → B = (U2)−1|U2 = U2. �

Lemma 7. (R4) is valid if and only if A is dense.

Proof. By [55, Theorem 5.1(56)], (R4) is valid whenever A is a dense relation,
for if A ⊆ A|A then A → (A → B) ⊆ A → B. Suppose (R4) is valid when

B = ∼Id . Since A → ∼Id = A−1|∼Id = A−1|Id−1 = ∼A, (R4) is equivalent to
(A → ∼A) → ∼A, which is valid if and only if A → ∼A ⊆ ∼A, by Lemma 3. This
last inclusion can be equivalently transformed by the definitions of ∼ and → first

into A−1|∼A ⊆ A−1, then A−1 ⊆ A−1|A−1, and finally A ⊆ A|A, which asserts
that A is dense. �

The contraposition axiom (R12) is valid whenever A|B = B|A by [55, Theo-
rem 5.1(53)], but it is actually equivalent to A|B ⊆ B|A.

Lemma 8. (R12) is valid if and only if A|B ⊆ B|A.

Proof. By Lemma 3, (R12) is valid if and only if A → ∼B ⊆ B → ∼A for all

A,B ⊆ U2. Since A → ∼B = A−1|∼B = A−1|B−1 and B → ∼A = B−1|A−1, this
inclusion is equivalent to B−1|A−1 ⊆ A−1|B−1. Taking converses of both sides, we
get the equivalent inclusion A|B ⊆ B|A. �



28 R. L. KRAMER, R. D. MADDUX

By [55, Theorem 5.1(63)], (R14) holds if A is a transitive relation, but (R14) is
actually equivalent to the transitivity of A.

Lemma 9. (R14) is valid if and only if A is transitive.

Proof. By Lemma 3, (R14) is valid if and only if A ⊆ A → A. This inclusion can be

equivalently restated first as A ⊆ A−1|A, then A∩ (A−1|A) = ∅, then A|A∩A = ∅,
and finally A|A ⊆ A, which asserts that A is transitive. �

The following theorem gathers together the observations above and confirms that
the axioms of RM are valid in KRM, completing the proof of Theorem 9.

Theorem 10. Let K = 〈K,∪,∩,→,∼〉 be an algebra satisfying conditions (k1) and
(k2) in Definition 9. Then

(i) (R1), (R5), (R6), (R7), (R8), (R9), (R10), (R11), (R13) are valid in K,

(ii) (R2) and (R3) are valid in K if (k3), but neither is equivalent to (k3),
(iii) (R4) is valid in K if and only if (k4),
(iv) (R12) is valid in K if and only if (k3),
(v) (R14) is valid in K if and only if (k5).

10. Interpreting formulas as relations

Theorems 9 and 10 suggest an alternative approach to RM. Instead of adopting
14 axioms and two rules, simply define RM as the set of formulas valid in KRM.
It is then a theorem that RM can be axiomatized by (R1)–(R14) and the rules of
Adjunction and modus ponens.

To explore the theorems and rules of RM, assume that K = 〈K,∪,∩,→,∼〉 is an
algebra satisfying (k1) and (k2) in Definition 9. Even if K does not satisfy (k3),
(k4), or (k5), nine of the axioms of RM are valid in K by Theorem 10(i). Since
A∪∼A always contains the identity relation on U , A∨∼A is also valid in K. Thus
A ∨ ∼A is a theorem of RM.

Simple counterexamples show that B → (A ∨ ∼A) and (A ∧ ∼A) → C need
not be valid in K and are not theorems of RM. Counterexamples for relations in
general can be found on a 2-element set, but for RM it is more appropriate to use
the Sugihara chain {∅, <, ≤, Q2} from Table 2, which is an algebra in KRM. Just
let A, B, and C be <, Q2, and ∅, respectively. The formula ((A ∨ C) ∧ ∼A) → C
expressing Extensional Disjunctive Syllogism also fails under the same assignment,
so it is also not a theorem of RM.

The proof of Theorem 9 shows the rules of Adjunction andmodus ponens preserve
validity. Unlike the corresponding axiom, Extensional Disjunctive Syllogism (to
infer B from A ∨ B and ∼A) is admissible. To show this, assume Id ⊆ A ∪ B and

Id ⊆ ∼A. The second hypothesis is equivalent to Id ⊆ A−1. Taking the converse of
both sides, we get Id ⊆ A. By the first hypothesis, Id ⊆ A∩ (A∪B) = A∩B ⊆ B.
Intensional Disjunctive Syllogism is to infer B from A + B and ∼A, where A+ B
is intensional disjunction. Since A + B is defined as ∼A → B [4, SS27.1.4], this
rule is an instance of modus ponens. The E-rule [70, p. 8], also called BR1 [67, p.
289] and R5 [70, p. 193], is to infer (A → B) → B from A. Assume Id ⊆ A. Then

B = Id
−1|B ⊆ A−1|B = A → B, hence A → B ⊆ B, so Id ⊆ (A → B) → B by

Lemma 3. The admissibility of Suffixing, Contraposition, and several other rules
can be proved similarly at this point, without any appeal to commutativity, density,
or transitivity.
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To achieve RM, assume that K also satisfies (k3), (k4), and (k5), so that K ∈ KRM.
Then axioms (R2), (R3), (R4), (R12), and (R14) are also valid in K by Theorem
10(ii)(iii)(iv)(v). Alternate proofs of the admissibility of various rules, such as the E-
rule, Contraposition, and Suffixing, are possible using commutativity. A significant
example of a theorem of RM that requires all three hypotheses of commutativity,
density, and transitivity is (A → B) ∨ (B → A). Meyer called this formula RM64,
“Simple order”. Discussing its significance, he wrote [4, pp. 397–8],

“RM63 and RM64, in fact, decide that RM represents a much
longer step in the direction of classical logic (and, for that matter,
in the direction of an extensional approach to sentential logic)
than one would have thought from the heuristic considerations
by which we motivated its axioms and rules. . . .

“RM64 leaves shattered in the dust much of the motivation to
which previous opponents of the paradoxes have appealed. But
this just goes to show that one can have many reasons for disliking
the paradoxes; one very plausible ground for disliking them is that
they turn every minor inconsistency into a catastrophe. From this
charge, RM is yet free. If in other respects it moves in the direction
of classical logic, there is as yet no reason to rue that fact.”

The following lemma gives a relational proof that (A → B)∨ (B → A) is a theorem
of RM.

Lemma 10. If 〈K,∪,∩,→,∼〉 ∈ KRM then Id ⊆ (A → B) ∪ (B → A) for all

A,B ∈ K.

Proof. Note that K is closed under | by (30). Assume A,B ∈ K, and let C = (A →
A) ∩ (B → B). Apply ∼ to both sides and use (30) to get

∼C = ∼(A → A) ∪ ∼(B → B) = (∼A|A) ∪ (∼B|B).

It follows that ∼A|A ⊆ ∼C and ∼B|B ⊆ ∼C, so (∼A|A)|(∼B|B) ⊆ ∼C|∼C by the
monotonicity of |. By the associativity of | and our assumption that | is commutative
on relations in K, (∼A|B)|(∼B|A) ⊆ ∼C|∼C. Let D = (∼A|B) ∩ (∼B|A). From
D,∼C ∈ K it follows that D is dense and ∼C is transitive, so by the monotonicity
of |,

D ⊆ D|D ⊆ (∼A|B)|(∼B|A) ⊆ ∼C|∼C ⊆ ∼C.

By applying ∼ to both sides, (30), and Lemma 3, we conclude that

Id ⊆ C ⊆ ∼D = (B → A) ∪ (A → B).

�

RM64 is one reason given by Anderson and Belnap for the title of [4, SS29.5],
“Why we don’t like mingle.” They describe how to prove RM64, using axioms and
rules, from the “unhappy theorem” A → (∼A → A). Their suggestions for prov-
ing the latter formula include the mingle axiom, contraposition, and permutation,
thereby invoking both transitivity and commutativity, but commutativity is not
needed. By Lemma 3, A → (∼A → A) is valid if A ⊆ ∼A → A for every relation
A ∈ K. Since ∼A → A = ∼(∼A|∼A), this inclusion is equivalent to ∼A|∼A ⊆ ∼A,
which asserts that ∼A is transitive, as is indeed the case for every A ∈ K.

The Routley-Meyer semantics are called relational because every relevant model
structure contains a ternary relation. Instead of a ternary relation, the RM model
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structures of Dunn [29] have a binary accessibility relation, which corresponds to the
inclusion relation in the Sugihara chain CI [29, SS7]. In both cases, the elements of
the model structures are objects with no further structure. Formulas are interpreted
as sets of unstructured objects. This feature is advantageous because it provides
more general interpretations than semantics with special objects. For example,
Dunn [31] asks,

“What could be more natural than to interpret Rabc as that in
the context of the information a, the information b is relevant to
the information c?”

Three more examples (with variations) are presented by the eleven authors of [10],
based on three ways of grouping the arguments of R, called Modal (Absence-of-
Counterexample) Conditionals: Rx〈yz〉, Conditionals as Operators: R〈xy〉z, and
Conditional Logics: Rx〉y〈z. These interpretations address some issues, explained
on [10, p. 599].

“The story goes like this: whereas the binary relation invoked by
Kripke in the semantics of modal logics has several philosophically
interesting and revealing interpretations (as relative possibility, or
as a temporal ordering, or as the relation of being-morally-ideal-
from-the-point-of-view-of, or . . . ), the ternary relation invoked
by Routley and Meyer has no such standardly accepted interpre-
tations/applications. ‘Sure,’ the objector says (it helps here to
imagine the hint of a sneer), ‘there are mathematical structures
of the sort described by Routley and Meyer, and those structures
bear important and interesting relations to the logics described
by Anderson and Belnap, but these logics were supposed to tell us
something interesting about conditionality, or at least some im-
portant kind of conditionality, and it would take more than just
abstract mathematical structures to tell us that. I want to know
what it is that instantiates these structures that has anything to
do with conditionals.’ ”

Although “we say nothing about negation” and “this paper isn’t about negation”
[10, footnote 4], elsewhere Dunn [31] observed,

“The ‘Routley-Star’ has come under a lot of criticism both from
those within and outside of the relevance logic community, and
was more of a focus of Copeland’s [26] critical review than the
ternary accessibility relation.”

This is reflected by van Benthem [74], in his review of Copeland [26].

“Relevance logic is a subject whose motivation has turned out to
be surprisingly difficult to capture in an enlightening and convinc-
ing semantics. . . . the only general approach to date is a rather
abstract possible-worlds framework, proposed by R. and V. Rout-
ley. Here, relevant implication is explicated through some ternary
‘perspective’ relation among worlds, while the account of negation
employs an additional ‘reversal’ operation upon worlds. It fails
to satisfy the ‘requirements which distinguish an illuminating and
philosophically significant semantics from a merely formal model
theory.’ ”
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Much later in the review, van Benthem observes,

“Postulated operations in model structures may be viewed as the-
oretical terms, truth-definitions rather as some kind of correspon-
dence principles. Any demand for ‘realism’ ought to take these
different roles into account.

Even in this more charitable perspective, the Routley seman-
tics still has to prove its mettle. On the realistic side, its model
structures ought to admit of, if not a natural linguistic anchor-
ing, then at least one mathematical ‘standard example’, providing
some food for independent reflection.”

In our analysis, formulas are interpreted as sets of objects that do have structure.
Each object is a binary relation. Theorem 9 says that a formula is a theorem
of RM if and only if it contains the identity relation when regarded as a relation
belonging to a set of transitive dense binary relations that commute under relative
multiplication. We call this the formulas as relations approach.

Suppose A is an atomic proper relation algebra on a set U . Let U = 〈At,R,−1, I〉
be the atom structure of A. If A happens to be commutative and dense, then U is a
relevant model structure. The commutative dense atomic proper relation algebras
discussed in this paper are Belnap’s relation algebra M0 in SS2, Sugihara’s relation
algebra SZ in SS4 and, more generally SI for any I ⊆ Z in Theorem 1, Church’s
relation algebra Ch in Theorem 7, and Meyer’s relation algebra Rm in Theorem
8. In any case, the atoms in At are relations on U , the unary operation −1 of U
produces the converse of each atom, the distinguished element I of U is the set of
atoms contained in the identity relation of U , and the ternary relation R of U is
the set of triples 〈a, b, c〉 of relations that are atoms of A and satisfy a|b ⊇ c. In
brief, the ternary relation is set-theoretically defined as a|b ⊇ c and the Routley
star ∗ is conversion −1. These interpretations of R and ∗ are complete for RM

according to Theorem 9. They may satisfy the objector described in [10], who
wants “to know what it is that instantiates these structures”. For RM at least, we
could echo Dunn and ask, what could be more natural than to interpret Rabc as
a|b ⊇ c? For van Benthem and Copeland we suggest interpreting the “additional
‘reversal’ operation” as conversion. In the light of Theorem 9, RM could serve as a
mathematical “standard example” sought by van Benthem.

11. Summary and problems

Table 7 summarizes our results that some finite lattices with operators and all
subalgebras of three countably infinite Sugihara chains are isomorphic to defini-
tional subreducts of proper relation algebras. The widespread occurrence of repre-
sentability where it was not previously suspected could lead to further thoughts of
a fundamental, perhaps philosophical nature. This idea is elaborated in Problem
4, and there is further mathematical work proposed in Problems 1, 2, and 3.

Problem 1. What other algebras in the relevance logic literature are isomorphic

to definitional subreducts of proper relation algebras? For example, is every un-

countable Sugihara chain isomorphic to a definitional subreduct of a proper relation

algebra?

Remarks on Problem 1. Each of the logics CL, BM, and RM is characterized by
a single lattice.



32 R. L. KRAMER, R. D. MADDUX

Name Method Type PRA Full PRA
Belnap M0 Direct reduct S{0} Re(U{0})
Sugihara SZ+Z, SZ∗ , finite even Direct subreduct SZ Re(UZ)
Sugihara SZ+Z, SZ, SZ∗ , finite Relativized subreduct SZ Re(UZ)
crystal Cr Relativized subreduct S{0,1} Re(U{0,1})
Church Ch Relativized reduct Ch Re(9)
Meyer RM84 Direct reduct Rm Re(7)

Table 7. Definitional subreducts of proper relation algebras (PRAs)

• The crystal lattice Cr is characteristic for CL,
• Belnap’s M0 is characteristic for BM, and
• each of the Sugihara chains SZ∗ , SZ, and SZ+Z is characteristic for RM.

These lattices can be represented as algebras of subsets of relevant model structures.
This was done for CL by two relevant model structures, one with 45 triples of
elements of {T,T∗, a, a∗}, and the other with 49, the largest possible number of
triples that can be used for this purpose [70, pp. 95–100]. Both structures produce
the table on [70, p. 97]. The relevant model structure in Table 3 is

〈{L0, R0, L1, R1}, C,
−1, ∅〉,

C = {〈a, b, c〉 : a, b, c ∈ {L0, R0, L1, R1}, a|
′b ⊇ c}.

It has only 24 triples, and is isomorphic to the restriction of the canonical atom
structure of S{0,1} to the diversity atoms. The table for →′ coincides with the
table on [70, p. 97] when T = L1, T

∗ = R1, a = L0, and a
∗ = R0. Other numbers

of triples besides 24, 45, and 49 work, but the choice made here has the feature
that the ternary relation holds among binary relations, instead of unstructured
objects. The ternary relation is set-theoretically defined as “the relativized relative
product of the first two contains the third”, and the Routley star ∗ is conversion
−1. Similarly, BM was characterized in [70, pp. 100–104] by a single finite relevant
model structure with 13 triples of elements of {T, a, a∗}, which is isomorphic to the
canonical atom structure of S{0}. In the notation of SSSS2–3, that structure is

〈{<,>,=}, C,−1, {=}〉

C = {〈a, b, c〉 : a, b, c ∈ {<,>,=}, a|b ⊇ c}.

The points T, a, and a
∗ match up with the binary relations =, <, and > on the

rationals. The Routley-Meyer ternary relation in this case is “the relative product
of the first two contains the third”, and the Routley star is conversion. The atom
structure of the complete atomic proper relation algebra SZ is

〈AtZ, C,
−1, {IdZ}〉,

C = {〈a, b, c〉 : a, b, c ∈ AtZ, a|b ⊇ c}.

This relevant model structure is characteristic for RM, and its ternary relation is
the product-inclusion relation.

In the previous examples, the ternary relation of the Routley-Meyer semantics
is the product-inclusion relation, possibly relativized. The logic KR is different.
The atom structure of the canonical extension of the free symmetric dense relation
algebra on countably many generators is a relevant model structure characteristic
for KR. The same structure can be constructed by letting the atoms be maximal
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KR-theories. In both cases the atoms are not binary relations, nor can they be
represented as relations, because there are symmetric dense relation algebras that
are not representable. For example, there are three non-representable symmetric
dense relation algebras with four atoms, but none smaller. The 65 symmetric
relation algebras with four atoms are numbered 165–6565 in [53]. The three that
are non-representable and dense are 3665, 4265, and 5065.

On the other hand, many symmetric dense relation algebras are representable,
such as Church’s proper 3-atom relation algebra Ch. The atom structure of Ch is a
relevant model structure verifying KR that is characteristic for a complete decidable
extension of KR. Once again, its ternary relation is the relativized product-inclusion
relation and its Routley star is conversion. Problem 1 asks how far this kind of
analysis can be extended. What other algebras can be represented with binary
relations?

Problem 2. If a relation algebra is finite, integral, possibly commutative, and every

one of its diversity atoms is dense, transitive, and distinct from its converse, must

that algebra be representable?

Remarks on Problem 2. There are three relation algebras with five atoms that
contain the crystal lattice. In the numbering system of [53], they are 283, 2983, and
4383 (the second, twenty-ninth, and forty-third algebras in a list of 83 algebras in
[53, Ch. 6, SSSS62-3] whose atoms are the identity element 1

,
, plus two diversity

atoms r, s, and their converses r̆, s̆). Algebras 283 and 4383 are commutative, but
2983 is not commutative. The two commutative algebras are representable. In fact,
283 is isomorphic to S{0,1}. What about the non-commutative algebra 2983? Is it
representable? This is the smallest particular instance of Problem 2.

Problem 3. Explore the structure of algebras in KRM. Does the traditional ax-

iomatic approach to RM yield a finite equational axiomatization for the variety

generated by KRM?

Remarks on Problem 3. SI ∈ KRM for every I ⊆ Z. Preliminary investigation
shows KRM has many algebras that are not linearly ordered. What else is in KRM?

Problem 4. Do the product-inclusion relations A|B ⊇ C and A|′B ⊇ C on binary

relations have any bearing on the concepts of relevance and conditionality? Do the

residuations A → B and A →′ B have any bearing on entailment? How do the De

Morgan negations ∼A and ∼′A compare and contrast with the Boolean negation A?
How are relative multiplication and conversion related to fusion and the Routley

star? Is KRM a mathematical standard example of Routley-Meyer semantics?

Remarks on Problem 4. We will comment on each of the questions in Problem
4 in the order they occur. We start with a ternary relation on ordered pairs. On
[10, p. 599], the authors say,

“[I]n the semantics given by Routley andMeyer, the crucial ternary
relationR is involved in the semantics as follows: for any sentences
A and B at any point x in any model M :

(R) x |=M A → B iff for all y, z such that Rxyz, if y |=M A then z |=M B.

. . . In order to provide a philosophically illuminating semantics of
the relevant conditional, we need to say more about what these
models are: what the points are, what the ternary relation R
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is, and why compound sentences—in particular conditionals—are
evaluated in the way that they are. What’s more, this explication
had better make it clear how these models relate to conditional-
ity; otherwise the semantics can be fairly accused of arbitrariness,
or of ad hocness, or of simply copying the phenomenon to be ex-
plained. In short, the semantics are ‘merely formal’ and philo-
sophically unilluminating—at least if we want to understand the
meaning of a conditional. So more is required.”

Later, on [10, p. 601], they suggest,

“What’s going on (or what may be seen as such) is that our condi-
tional calls for a broader perspective on our universe of candidate
counterexamples; it calls us to recognize ‘pair points’ in addition
to our ‘old’ points.”

We follow their lead and use ordered pairs as pair points. Let R be the set of
triples of the form 〈〈a, b〉, 〈c, a〉, 〈c, b〉〉, and let x = 〈a, b〉, y = 〈c, a〉, and z = 〈c, b〉.
Then Rxyz holds, so the phrase “such that Rxyz” may be deleted from (R), and
“for all y, z” can be replaced by “for all c”. We also replace x, y, z with the pairs
〈a, b〉, 〈c, a〉, and 〈c, b〉, respectively, and, to reduce the clutter, we drop the angle
brackets, the commas, and the subscript M . The result is

ab |= A → B iff for all c, if ca |= A then cb |= B.(→)

Clauses for the other connectives are

ab |= A ∨B iff ab |= A or ab |= B,(∨)

ab |= A ∧B iff ab |= A and ab |= B,(∧)

ab |= ∼A iff ba 6|= A.(∼)

Commutativity, density, and transitivity, which are required for RM, can be added
in three more clauses,

if ab |= A and bc |= B then, for some d, ad |= B and dc |= A,(comm)

if ab |= A then, for some c, ac |= A and cb |= A,(dense)

if ab |= A and bc |= A then ac |= A.(trans)

If we wish to have connectives ¬ for Boolean negation and ∗ for Routley star, we
add two more clauses.

ab |= ¬A iff ab 6|= A,(¬)

ab |= A∗ iff ba |= A.(∗)

Finally, add a clause defining validity in M (reinstated as a subscript),

|=M A iff for all a, aa |=M A.(valid)

By Theorem 9, the clauses (→), (∨), (∧), (∼), (comm), (dense), and (trans) yield
sound and complete semantics for RM. To get sound and complete semantics for
“classical” RM in the sense of [60, 61], add connectives ¬ and ∗ to the language,
and add clauses (¬) and (∗). The question is, what do these semantics say about
conditionality, or entailment, or Boolean and De Morgan negation? Do they say
anything about relevance?
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To illustrate the connection between fusion and relative multiplication, recall
that ◦ is defined by A ◦ B = ∼(A → ∼B) [4, p. 269], [5, p. xxiii]. When formulas
are regarded as relations, A ◦ B = B|A by (30). Consider the triple 〈x, y, z〉 =
〈ab, ca, cb〉 ∈ R, and note that {y}|{x} = {ca}|{ab} = {cb} = {z}, hence {x}◦{y} =
{z}, in conformity with the usual connection between fusion and the Routley-Meyer
ternary relation [59, (v) p. 414]. Of course, the distinction between fusion ◦ and
relative multiplication | disappears under the assumption of commutativity.

Fusion appears as an associative and sometimes commutative operation in var-
ious algebras arising from relevance logics. Algebraization is mathematically illu-
minating, but it is open to the charge that “. . . algebraic characterizations . . . are
merely formal, exhibiting no connection with the intended meanings of the logi-
cal constants,” [26, p. 405]. Algebras of subsets of relevant model structures do
interpret ∨ and ∧ as union and intersection, but the other connectives arise ab-
stractly from the ternary relation R and the unary operation ∗ according to (R)
and x |= ∼A iff x∗ 6|= A. “If the only constraint on ∗ is that the resulting theory
should validate the right set of sentences, then we are indeed in the presence of
merely formal model theory,” [26, p. 410], and “. . . it is completely obscure what
meaning is given to negation in the Routley-Meyer theory . . . ,” [26, p. 408]. For
RM, according to the interpretation of formulas as relations, the Routley star is
conversion and the meaning of negation is ∼A = A−1. Anderson and Belnap ask
[4, p. 345], “How then to interpret ◦? We confess puzzlement.” For RM, the answer
is A ◦ B = B|A. Are these answers “merely formal”? Is the meaning of negation
“completely obscure”? Do these answers help us understand fusion and star?

Perhaps the semantics of RM provided by KRM is a mathematical “standard
example”. Maybe the semantics of BM and CL provided by S{0} and S{0,1} are
also mathematical examples. The historical difference is that the logics BM and
CL were built around M0 and Cr, unlike RM, which arose entirely through choices
of axioms based on purely logical considerations. Nevertheless, these choices led
to KRM, giving interpretations for fusion and Routley star drawn from nineteenth
century algebraic logic, rather than simply constrained so that “the resulting theory
should validate the right set of sentences.” Unlike Belnap’s M0, the Point Algebra
did not arise from relevance logic, and would have been intensely studied even if
relevance logic never existed. Similarly, the definition of KRM is independent of
relevance logic, in spite of having been discovered by a careful analysis of RM.

Works that may be useful for Problem 4 include [4, 5, 10, 12, 13, 21, 22, 23, 26,
27, 28, 31, 32, 33, 60, 61, 64, 66, 75, 76, 77].

12. Concluding remarks

In the introduction [14, SS1], the concept of dynamic semantics is described.

“Collections of binary relations can be viewed as a sort of dynamic
interpretation for a logic, that is thought to describe the impact a
sentence has on a situation via specifying a set of possible resulting
situations. Special types of dynamic semantics are those in which
the binary relations constitute a relation algebra or a relevant
family of operations.”

Comparison of definitions shows that a relevant family of relations (“operations”
was a misprint) is a direct reduct of a proper relation algebra on a set. The con-
cluding remarks begin [14, SS7],
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“As the reader has surely realized by now, constructing a dynamic
semantics with certain closure properties is not a trivial enterprise
because of the nonrepresentability result of Lyndon (1950).”

Of course, for non-representable relation algebras the construction of dynamic se-
mantics for their logics is not possible. The first part of this sentence was an
understatement for such cases. However, no non-representable relation algebra ap-
pears in [14], certainly not Lyndon’s [50], nor is there any formula valid in proper
relation algebras that is not also a theorem of R. For such formulas, consult [55, 62].
In other cases, such as the logic BM, dynamic semantics are possible because M0 is
the direct reduct of the Point Algebra, which was noted in [14]. As we have shown,
there are dynamic semantics for the logic CL and the logic of Meyer’s RM84 (which
has not been axiomatized, so far as we know).

For any particular relevant model structure, it may not be readily apparent
whether it is representable as a definitional reduct of a proper relation algebra.
When it is, its logic has a dynamic semantics. Unless non-representability has been
proved, it is not safe to assume that dynamic semantics cannot be found; see the
remarks following Theorem 5. Similarly, any particular formula has a meaning if
regarded as a statement about binary relations. In the theory of relation algebras,
this meaning matters. It was the target of the axiomatizations by McKinsey in 1940
[57] and Tarski in 1941 [72], directed as they were at the Peirce-Schröder calculus
of binary relations.

The concept of representability was present in the theory of relation algebras
from its inception, as the title of the 1948 abstract [46] makes clear, but was absent
from relevance logic until 2007. The representability of finite Sugihara matrices
and the resulting dynamic semantics for RM are only a decade old. Even today
it is possible to construct new and unsuspected dynamic semantics for rather old
algebras and logics, as has been done here. The 1952 Jónsson-Tarski Representation
Theorem [47, 3.10], stated here as Theorem 4, could be regarded as a successful
application of the Routley-Meyer ternary relation and the Routley star, one that
provides Routley-Meyer semantics for all relation algebras. But the Jónsson-Tarski
Representation Theorem preceded the introduction of Routley-Meyer semantics
by two decades. Shortly before his death, Meyer was informed of the relational
completeness theorem for RM [55, Theorem 6.2]. His response was an email message
that ended with “KEEP’EM COMING”. In this paper we have tried to do so.
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