
ar
X

iv
:1

50
6.

01
25

6v
1

 [
cs

.C
R

]
 3

 J
un

 2
01

5

PDF Steganography based on Chinese

Remainder Theorem

René Ndoundam, Stéphane Gael R. Ekodeck
University of Yaounde I, LIRIMA, Team GRIMCAPE, P.o.Box 812 Yaounde, Cameroon

IRD, UMI 209, UMMISCO, IRD France Nord, F-93143, Bondy, France;

Sorbonne Unversités, Univ. Paris 06, UMI 209, UMMISCO, F-75005, Paris, France

E.mail : ndoundam@gmail.com , ekodeckstephane@gmail.com

Abstract

We propose different approaches of PDF files based steganography,

essentially based on the Chinese Remainder Theorem. Here, after a

cover PDF document has been released from unnecessary characters

of ASCII code A0, a secret message is hidden in it using one of the

proposed approaches, making it invisible to common PDF readers,

and the file is then transmitted through a non-secure communication

channel. Where each of our methods, tries to ensure the condition

that the number of inserted A0 is less than the number of characters

of the secret message s.

Keywords: Steganography, PDF files and readers, Chinese Remainder The-
orem.

1 Introduction

Steganography consists in hiding a secret message in public document acting
as a covert, in a way that sent through a non-secure communication channel,
only the sender and the receiver are able to understand it, and anyone else
cannot distinguish the existence of an hidden message. It is one of the Infor-
mation hiding techniques as showed on figure 1, where Linguistic Steganog-
raphy is defined by Chapman et al [1] as, “the art of using written natural
language to conceal secret messages”, and Technical Steganography is defined
as a structure rather than a text, that can be represented by any physical
means such as invisible inks, microdots [1]. Most of the work in steganog-
raphy has been done on images, video clips, music, sounds and texts. But,

1

http://arxiv.org/abs/1506.01256v1

Figure 1: Classification of information hiding techniques

text steganography is the most complex, due to the lack of redundant infor-
mation in text files, whereas lot of redundancy is present in image or sound
files, leading to a high exploitation of those files in steganography [2].
There are several approaches encountered in the literature regarding the text
steganography such as, line shift, word shift, syntactic methods, etc. Subse-
quently we focused on the steganography based on PDF files.

2 PDF files based Steganography

PDF, created by Adobe Systems [3] for document exchange, is a fixed-layout
format for representing documents in a manner independent of the applica-
tion software, hardware, and operation system. PDF files are frequently used
nowadays and this fact makes it possible to use them as cover documents in
information hiding. Studies using these files as cover media, are very few.
Our proposal is based on the work of I-Shi et al. [6], in which secret data are
embedded at between-word or between-character locations in a PDF file, by
using the non-breaking space with American Standard Code for Information
Interchange (ASCII) code A0. I-Shi et al. [6] found in their study that, the
non-breaking space (A0) is a character when embedded in a string of text
characters, becomes invisible in the windows of several versions of common
PDF readers, and use that phenomenon for data hiding. They showed two
types of invisibility, based on the ASCII code A0.

The first one is created by specifying the width of A0 appearing in the
PDF reader’s window to be the same as that of the original white-space

2

represented by the ASCII code 20. The width of an ASCII code, is the width
of the character represented by the code as displayed in a PDF reader’s
window. Subsequently, A0 and 20 become white-spaces. Their approach
based on this first type of invisibility called alternative space coding, uses A0
and 20 in a PDF text alternatively as a between-word space to encode a
message bit b according to the following binary coding technique:

if b = 1; then replace 20 between two words by A0 ;
if b = 0; make no change.

This approach has the advantage of incurring no increase of the PDF file
size because it just replaces the space exhibited by the code 20 by another
exhibited by the code A0. However, if the between-word locations in a PDF
page are few, then only a small number of bits may be embedded.

The second one is created by setting the width of the ASCII code A0 to
be zero in a PDF page. They found in their study an A0 doesn’t appear in
a PDF reader’s window just like if it was nonexistent. Their approach called
null space coding, given a message character C, embeds it at a location L as
follows:

if the index of C as specified in Table 1 is m,
then embed m consecutive A0’s at location L.

In this approach they presented, Table 1 [6] contains ASCII codes se-
lected for message representations in their study, each one indexed with an
integer value.

The advantage of this approach is that the number of between-character
locations are higher than the between-word locations. This makes the effi-
ciency of the null space coding much higher. But an obvious disadvantage is
that the resulting PDF file size will be higher than the original one (the one
without A0’s embedded in it).

Our work is based on this last type of invisibility described by I-Shi et
al., such that our problematic is to reduce the weight difference between the
cover PDF file and the stego PDF file resulting from the embedding process,
while increasing the embedding capacity of the cover PDF file. In order to
reduce considerably the risks of detecting a cover communication based on
the file size.

3

3 Our Contribution

Given a secret message s to be conceal in a cover text message, the null space
coding developed by I-Shi et al., proceeds as follows:

• Firstly, s is compressed using the Huffman coding, where at the end a
file, containing a table where each line has a letter of s followed by a
value, is generated;

• Secondly, for each character of s a number of A0’s is inserted in the
cover text equivalent to the value generated by the Huffman coding for
that character, thus producing a stegotext.

• Thirdly, the file and the stegotext are transmitted through a non-secure
communication channel. We note that two files (the file containing
Huffman codes for the characters of the secret message and the PDF
file resulting from the embedding method) are transmitted.

Their method cannot guarantee that the number of embedded A0’s is less
than the number of characters of s or at least if s grows higher, the number
of inserted A0’s won’t explode.

Our aim is to propose different approaches, based on the Chinese Re-
mainder Theorem, which their goal is to attain the above conditions and
transmit one and only one file (more precisely only the stegotext), through
a non-secure communication channel.

4 Chinese Remainder Theorem

Theorem 1 Let {ni}
k
i=1 be a pairwise relatively prime family of positive in-

tegers, and let a1, ..., ak be arbitrary integers. Then there exists a solution
x ∈ Z to the system of congruence







x ≡ a1 mod n1

x ≡ a2 mod n2

· · ·

x ≡ ak mod nk

Moreover, any a′ ∈ Z is a solution to this system of congruence if and only
if a ≡ a′(mod N), where N =

∏k

i=1 ni

4

�

Given ai and ni, (1 ≤ i ≤ k), we present the classic method of construc-
tion of x from ai and ni as follows:

We first construct integers ei, (1 ≤ i ≤ k), such that for i, j = 1, · · · , k,
we have:

ej ≡

{

1 mod ni, if j = i

0 mod ni, if j 6= i
(1)

Then setting

x =
∑k

i=1 aiei

Allows to see that for j = 1, · · · , k we have

x ≡
∑k

i=1 aiei ≡ aj mod nj

As all the terms in this sum are zero modulo nj, except for the term i = j,
which is congruent to aj mod nj . To construct ei, (1 ≤ i ≤ k), satisfying (1),
let us define bi = N/ni, which is the product of all the moduli nj with j 6= i.
Then, ci and ei are defined as follows: ci = (bi)

−1 mod ni and ei = bici.

Garner’s algorithm is an efficient method for determining x, 0 ≤ a < N ,
given a(x) = (a1, a2, ..., ak), the residues of x modulo the pairwise co-prime
moduli n1, n2, ..., nk [9].

Garner’s algorithm for CRT [9]
Input: a positive integer M =

∏t

i=1mi > 1, with gcd(mi, mj) = 1 for all
i 6= j, and a modular representation v(x) = (v1, v2, · · · , vt) of x for the mi.
Output: the integer x in radix b representation.

1. For i from 2 to t do the following:
1.1. Ci ← 1.
1.2. For j from 1 to (i− 1) do the following:

u← m−1
j mod mi

Ci ← u× Ci mod mi

2. u← v1, x← u.
3. For i from 2 to t do the following:

u← (vi − x)× Ci mod mi, x← x+ u×
∏i−1

j=1mj

4. Return(x).

Time Complexity: O(n2)
This theorem is highly useful in a many contexts as, randomized primality
test, modular arithmetic, secret sharing, etc.

5

5 Preprocessing on the cover file

The PDF file f ∈ F , that would be used as cover, needs to be cleansed of all
A0’s contained in it. Meaning, going from the beginning of the file to its end,
if we cross a A0 with size different from 0, we replace it by a space character
(ASCII code 20), and if we cross a A0 of size 0, we remove it, as presented
by the following function.
Input: f: cover PDF file
Output: f: cover PDF file with no sequence of more than one A0

1. Open the file f ;
2. Browse the PDF file f character by character and

for each encountered A0 do:
2.1 If (sizeof(A0) > 0) then replace A0 by a space character;
2.2 else remove A0 from f ;

3. Save and close the file f ;
4. Return f ;

Where, sizeof(A0) is a function that retrieves the width of the non-
breaking space character, if exists, set in a cover PDF file f .
Time Complexity: O(|f |)

The reason why we apply this procedure on a cover PDF file, is to ensure
that the file has not been modified by a steganographic technique based
on ASCII code A0; and also, as A0 by default has the width of the space
character, it can be replaced by it, all this to avoid ambiguity between A0
inserted by our techniques and those found initially in the cover file.

6 Presentation of the different approaches

For the sender and the receiver to be able to communicate through a non-
secure channel, they have to agree on a secret key that would be use to
encrypt a secret message, that would be send one to another. Regarding our
approaches, the key k ∈ N, represents the number of bits (block length) in
which a secret message s ∈ {0, 1}∗ would be split into before its encoding.
And it’s previously selected by the sender and the receiver and shared through
a secure channel. Subsequently |s| denotes the length of the string s.

6

6.1 First Approach

6.1.1 Hiding method

We denote s the secret message, an integer k a secret key and f a cover PDF
file. Without loss of generality, we assume that the length of s is a multiple
of k. The first approach proceeds as follows:
Input: s: secret message; k: secret key; f: cover PDF file.
Output: f: cover PDF file with embedded A0 ’s

Step 1: two co-primes p1, p2, are computed from k such that,

p1 = 2⌈
k

2
⌉; p2 = p1 + 1.

Step 2: s is split in n blocks of length k stored the matrix sp such that:

sp[i, j] = s[(i− 1)k + j], 1 ≤ i ≤ n, 1 ≤ j ≤ k.

Step 3: each line of sp corresponding to a binary sequence, is transformed
in its decimal value dec[i] such that,

dec[i] =
∑k

j=1 sp[i, k − j + 1]× 2(j−1), 1 ≤ i ≤ n.

Step 4: for each decimal value dec[i] (1 ≤ i ≤ n), two remainders r[1, i]
and r[2, i], are computed such that

r[1, i] = dec[i] mod p1 and r[2, i] = dec[i] mod p2, 1 ≤ i ≤ n

Step 5: each r[j, i], (1 ≤ j ≤ 2 and 1 ≤ i ≤ n), obtained from the
previous step is transformed in its binary value stored in a matrix binr bit
by bit, such that:

binr[((i−1)×2+j), 1] · · · binr[((i−1)×2+j), ⌈k
2
⌉] = binDecomp(r[j, i], ⌈k

2
⌉),

1 ≤ j ≤ 2 and 1 ≤ i ≤ n

Where, binDecomp(r[j, i], ⌈k
2
⌉) is a function that returns the binary decom-

position of a remainder r[j, i] on ⌈k
2
⌉ bits of length.

Step 6: Add a column at binr, the number of columns would then move
from ⌈k

2
⌉ to (1+⌈k

2
⌉); and for each line add a control bit at the end as shown

by the following:

1. for (i := 1 to (2×n - 1)) do binr[i, (1 + ⌈k
2
⌉)] := 0;

2. binr[2n, (1 + ⌈k
2
⌉)] := 1;

Step 7: each line of binr is embedded in a cover PDF file f , as described
by the following:

7

1. Get the first between-character location lc;
2. for (i := 1 to 2×n) do

2.1. for (j := 1 to (1 + ⌈k
2
⌉)) do

begin
2.1.1. if (binr[i, j] = 1) then Insert A0 at lc in the file f ;
2.1.2. Get the next between-character location lc

end;

The control bit is there to help, during the recovery procedure, to know
when to stop looking for embedded blocks in the cover file.
Time Complexity: O(n ∗ k)

6.1.2 Recovery method

To recover secret message from a stego PDF file encoded with the above pro-
cedure, the binary sequences encoded with A0’s in the file must be recover at
first, then remainders that produced those sequences, and with the k, com-
puter the values related to those remainders, as described by the following
procedure:
Input: f: stego-PDF file, k: secret key
Output: s: secret message

Step 1:two co-primes p1, p2, are computed from k such that,

p1 = 2⌈
k

2
⌉; p2 = p1 + 1.

Step 2: retrieve the different lines of binr as follows:

1. i := 1;
2. exist := true;
3. n := 0;
4. Get the first couple of characters (a, b) from f ;
5. while (exist and !feof(f)) do

begin
5.1. j := 1;
5.2. while (j ≤ (1 + ⌈k

2
⌉)) do

begin
if (a != A0 and b != A0) then binr[i,j] := 0;
else
if (a!= A0 and b = A0) then binr[i,j] := 1;
else

8

if (a = A0 and b = A0) then exist = false;
else j := j - 1;
endif;

endif;
endif
j := j + 1;
c := the next character in f;
a := b;
b := c;

end;
5.3. i := i +1;

end;
6. n := i - 1;

Step 3: remove from binr the (1 + ⌈k
2
⌉)th column, corresponding to the

control bit’s column.

Step 4: compute each r[j, i], (1 ≤ j ≤ 2 and 1 ≤ i ≤ n) from each line
of binr such that:

r[j, i] =
∑⌈k

2
⌉

l=1 binr[i, ⌈
k
2
⌉ − l + 1]× 2(l−1), 1 ≤ i ≤ n.

Step 5: compute each dec[i], 1 ≤ i ≤ n) using Garner’s algorithm such
that:

dec[i] = GarnerAlgorithm({p1, p2}, {r[1, i], r[2, i]})
1 ≤ i ≤ n.

Step 6: transform each dec[i] in its binary sequence sp[i, j], (1 ≤ j ≤ k)
bits such that:

(dec[i])2 = sp[i, 1]sp[i, 2] · · · sp[i, k]
︸ ︷︷ ︸

k bits

Step 7: merge all the binary string into one, the secret s, such that:

s[(i− 1)k + j] = sp[i, j], 1 ≤ i ≤ n, 1 ≤ j ≤ k.

Where GarnerAlgorithm take as input a list of co-primes p1, p2, a list of
remainders r[1, i], r[2, i], and outputs a unique value dec[i].
Time Complexity: O(n ∗ k)

9

6.1.3 Evaluation

In this approach, for each block of length k, 2 remainders r1, r2 are computed
respectively from p1 and p2. As p1 < p2, we can easily deduce that, the
number max of inserted A0’s from a remainder is:

log2(Max(r1, r2)) = log2(p1) = ⌈
k
2
⌉.

Thus, the number max of A0’s that can be inserted for a block of s is k.

So, to embed a full secret message s divided into n blocks of length k, the
maximum number of A0’s that would be needed is:

n ∗ k + 1 = |s|+ 1 > |s|.

We add 1 here because, for the last computed remainder, a A0 character
would be inserted at the end of the hiding procedure, serving as ending point
for the recovery method. From, all these comes out the following theorem.

Theorem 2 .
Given a secret message s, a secret key k such that number of blocks of length
k, is given by n = |s|

k
, and two primes p1, p2 such that p1 = 2⌈

k

2
⌉, p2 = p1+1,

the number N of A0’s insertions at between-character locations to perform
in a PDF file, is:

N ≤ |s|+ 1

�

Where N depends on the number of bits having value 1, contained in the
secret message s’s computed remainders.

6.2 Second Approach

6.2.1 Hiding method

In this particular approach, what would be considered as key is not k the
block length, but m, a value that allows to compute primes between 2 ×m
and 3×m, such that the base 2 logarithm of the product of all those primes
gives us the block length k, in which a secret message s would be divided in.
Those primes allows us to compute remainders, which their values would be
used to compute position where one A0 would inserted. The whole procedure
is defined as follows:
Input: s: secret message, m: secret key, f: cover PDF file

10

Output: f: stego-PDF file

Step 1: compute primes p1, p2, · · ·pt such that:

2×m ≤ p1 < p2 < · · · < pt ≤ 3×m

where, t is the number of primes computed between 2×m and 3×m.
Step 2: compute the block length k such that:

k = ⌊log2(prod)⌋

where, prod =
∏t

i=1 pi.
Step 3: s is split in n blocks of length k stored the matrix sp such that:

sp[i, j] = s[(i− 1)k + j], 1 ≤ i ≤ n, 1 ≤ j ≤ k.

Step 4: each line of sp corresponding to a binary sequence, is transformed
in its decimal value dec[i] such that,

dec[i] =
∑k

j=1 sp[i, k − j + 1]× 2(j−1), 1 ≤ i ≤ n.

Step 5: for each decimal value dec[i] (1 ≤ i ≤ n), remainders r[1, i], r[2, i], · · · , r[t, i],
are computed such that

r[j, i] = dec[i] mod pj , 1 ≤ i ≤ n, 1 ≤ j ≤ t

Step 6: for each remainder r[j, i], 1 ≤ i ≤ n, 1 ≤ j ≤ t, we compute
positions pos[1, 1], · · · , pos[t, n], as described by the following procedure:

1. l := 0; i := 1; n := dec.length; h := t× pt;
2. while (i ≤ n) do

begin
2.1. for (j := 1 to t) do

pos[(t× (i− 1)) + j] := l + (j - 1) + (t× r[j, i]);
2.2. l := l + h;
2.3. i := i + 1;

end;

Step 7: sort the vector pos in the ascending order;

Step 8: for each pos[i], 1 ≤ i ≤ (n× t)− 1, insert one A0 at the pos[i]th

between-character location of f . And, at the pos[n× t]th between-character
location of f , insert two A0’s, to mark then end of the process.
Time Complexity: O(n ∗ k)

11

6.2.2 Recovery method

To recover secret message from a stego PDF file encoded with the above
procedure, the positions of all the A0’s in the file must be recover at first,
then remainders that produced those positions, and with the k, computer the
values related to those remainders, as described by the following procedure:
Input: f: stego-PDF file, m: secret key
Output: s: secret message

Step 1: compute primes p1, p2, · · ·pt such that:

2×m ≤ p1 < p2 < · · · < pt ≤ 3×m

Step 2: compute the block length k such that:

k = ⌊log2(prod)⌋

where, prod =
∏t

i=1 pi.
Step 3: compute the block length in the file f such that:

h = t× pt

Step 4: retrieve the positions where A0’s have been inserted as described
below:

1. i := 1; count := 1; n := 0; exist := true;
2. get the first couple (a, b) of characters from f ;
3. while (exist and !feof(f)) do

begin
if(a != A0 and b = A0) then
begin
pos[i] := count;
i := i + 1;

end;
else
if (a != A0 and b != A0) then do nothing;
else
if (a = A0 and b != A0) then count := count - 1;
else
if (a = A0 and b = A0) then exist := false;
endif;

endif;
endif;

endif;

12

count := count + 1;
c := the next character in f;
a := b;
b := c;

end;
4. n := (i - 1) / t;

Step 5: Compute the remainders from the table pos as follows:

1. l = 0; n = pos.length / t;
2. for (i := 1 to n) do

begin
2.1. for (j := 1 to t) do

f := [pos[(t× (i− 1)) + j]− (l + j − 1)] mod t;
r[f, i] := [pos[(t× (i− 1)) + f]− (l + f − 1)]/t;

2.2. l := l + h;
end;

Step 6: Compute each decimal value dec[i] of a block of s such that:

dec[i] = GarnerAlgorithm({p1, p2, · · ·pt}, {r[1, i], r[2, i], · · · , r[t, i]})
1 ≤ i ≤ n.

Step 7: transform each dec[i] in its binary sequence sp[i, j], (1 ≤ j ≤ k)
bits such that:

(dec[i])2 = sp[i, 1]sp[i, 2] · · · sp[i, k]
︸ ︷︷ ︸

k bits

Step 8: merge all the binary string into one, the secret s, such that:

s[(i− 1)k + j] = sp[i, j], 1 ≤ i ≤ n, 1 ≤ j ≤ k.

Where GarnerAlgorithm take as input a list of co-primes p1, p2, · · · pt, a
list of remainders r[1, i], r[2, i], · · · , r[t, i], and outputs a unique value dec[i].
Time Complexity: O(n ∗ k)

6.2.3 Evaluation

Let:

• ϑ(x) =
∑

p≤x, p prime ln(p),

• π(x) the number of prime numbers less or equal to x,

13

• p1, p2, · · ·pt are the prime numbers taken between 2m and 3m.

In this approach, for each block of length k, t A0’s are inserted in the
cover file. So to embed a full secret message s divided into n blocks of length
k, tn A0’s would be needed. This is the result we obtained, resume by the
following theorem. Regardless the number of blocks we need to embed, an
additional A0, would be added to allow the recovery method to stop when
all the hidden bits have been recovered.

Theorem 3 .
Given a secret message s, a secret key m, a set of primes p1, p2, · · · pt taken
between 2m and 3m, k the block length such that k = ⌊log2

∏t

i=1 pi⌋, and n

the number of blocks of length k, such that n = ⌈ |s|
k
⌉. The number N of A0’s

insertions at between-character locations, to perform in a PDF file is given
by:

N =

{

t + 1, if |s| ≤ k

(t ∗ n) + 1, if |s| > k

�

On one hand, as t is the number of primes taken between 2m and 3m,

t = π(3m)− π(2m)

And from the work of Hadamard and de la Vallée Poussin [10], which resulted
in the following theorem:
The Prime Number Theorem [10]:

Let π(n) denote the the number of primes among 1, 2, · · · , n. Then,

π(n) ∼ n
ln(n)

�

We can deduce that:

t ∼
3m

ln(3m)
−

2m

ln(2m)
(2)

On the other hand, from estimations of Rosser and Schoenfeld [11], we
have:

14

{

ϑ(x) < x(1 + 1
2ln(x)

), for 1 < x ≤ 41

ϑ(x) > x(1− 1
ln(x)

), for 41 < x

We can deduce that:

x− 3x
ln(3x)

− 2x
2ln(2x)

< ϑ(3x)− ϑ(2x) < x+ 3x
2ln(3x)

+ 2x
ln(2x)

.

It is easy to show that ∀x ∈ R, x ≥ e5 we have:

x− 3x
ln(3e5)

− 2x
2ln(2e5)

≤ ϑ(3x)− ϑ(2x) ≤ x+ 3x
2ln(3e5)

+ 2x
ln(2e5)

From these estimations, we deduce that, for x ≥ e5:

2
10
x ≤ ϑ(3x)− ϑ(2x) ≤ 17

10
x.

Thus, putting m = x:

2

10
m ≤ k ≤

17

10
m. (3)

From (2) and (3), we can deduce the following corollary.

Corollary 1 .
∀m ≥ e5, the number N of A0’s insertions at between-character locations, to
perform in a PDF file is given by:

N ∼

{
3m

ln(3m)
− 2m

ln(2m)
+ 1, if |s| ≤ 17

10
m

(3m
ln(3m)

− 2m
ln(2m)

) ∗ n+ 1, if |s| > 17
10
m

6.3 Third Approach

6.3.1 Hiding method

Input: s: secret message; k: secret key; f: cover PDF file.
Output: f: cover PDF file with embedded A0 ’s

Step 1: two co-primes p1, p2, are computed from k such that,

p1 = 2⌈
k

2
⌉; p2 = p1 + 1.

Step 2: s is split in n blocks of length k stored the matrix sp such that:

sp[i, j] = s[(i− 1)k + j], 1 ≤ i ≤ n, 1 ≤ j ≤ k.

Step 3: each line of sp corresponding to a binary sequence, is transformed
in its decimal value dec[i] such that,

15

dec[i] =
∑k

j=1 sp[i, k − j + 1]× 2(j−1), 1 ≤ i ≤ n.

Step 4: for each decimal value dec[i] (1 ≤ i ≤ n), two remainders r[1, i]
and r[2, i], are computed such that

r[1, i] = dec[i] mod p1 and r[2, i] = dec[i] mod p2, 1 ≤ i ≤ n

Step 5: for each remainder r[j, i], 1 ≤ i ≤ n, 1 ≤ j ≤ 2, we compute
positions pos[1, 1], · · · , pos[2, n], as described by the following procedure:

1. l := 0; i := 1; n := dec.length; h := 2× p2;
2. while (i ≤ n) do

begin
2.1. for (j := 1 to 2) do

pos[2× (i− 1) + j] := l + (j - 1) + 2× r[j, i];
2.2. l := l + h;
2.3. i := i + 1;

end;

Step 6: sort the vector pos in the ascending order;

Step 7: for each pos[i], 1 ≤ i ≤ n × 2 − 1, insert one A0 at the pos[i]th

between-character location of f . And, at the pos[n× 2]th between-character
location of f , insert two A0’s, to mark then end of the process.
Time Complexity: O(n ∗ k)

6.3.2 Recovery method

Input: f: stego-PDF file, k: secret key
Output: s: secret message

Step 1:two co-primes p1, p2, are computed from k such that,

p1 = 2⌈
k

2
⌉; p2 = p1 + 1.

Step 2: compute the block length in the file f such that:

h = 2× p2

Step 3: retrieve the positions where A0’s have been inserted as described
below:

16

1. j := 1; l := h; i := 1; count := 1; n := 0; exist := true;
2. get the first couple (a, b) of characters from f ;
3. while (exist and !feof(f)) do

begin
if(a != A0 and b = A0) then
begin
pos[i] := count;
i := i + 1;

end;
else
if (a != A0 and b != A0) then do nothing;
else
if (a = A0 and b != A0) then count := count - 1;
else
if (a = A0 and b = A0) then exist := false;
end;

endif;
endif;

endif;
count := count + 1;
c := the next character in f;
a := b;
b := c;

end;
4. n := (i - 1) / 2;

Step 4: Compute the remainders from the table pos as follows:

1. l = 0; n = pos.length / 2;
2. for (i := 1 to n) do

begin
2.1. for (j := 1 to 2) do

f := [pos[(2× (i− 1)) + j]− (l + j − 1)] mod 2;
r[f, i] := [pos[(2× (i− 1)) + f]− (l + f − 1)]/2;

2.2. l := l + h;
end;

Step 5: Compute each decimal value dec[i] of a block of s such that:

dec[i] = GarnerAlgorithm({p1, p2}, {r[1, i], r[2, i]})
1 ≤ i ≤ n.

Step 6: transform each dec[i] in its binary sequence sp[i, j], (1 ≤ j ≤ k)
bits such that:

17

(dec[i])2 = sp[i, 1]sp[i, 2] · · · sp[i, k]
︸ ︷︷ ︸

k bits

Step 7: merge all the binary string into one, the secret s, such that:

s[(i− 1)k + j] = sp[i, j], 1 ≤ i ≤ n, 1 ≤ j ≤ k.

Time Complexity: O(n ∗ k)

6.3.3 Evaluation

In this approach, for each block of length k, 2 A0’s are inserted in the cover
file. So to embed a full secret message s divided into n blocks of length k, 2n
A0’s would be needed. Regardless the number of blocks we need to embed,
an additional A0, would be added to allow the recovery method to stop when
all the hidden bits have been recovered. The obtained result is resumed by
the following theorem.

Theorem 4 .
Given a secret message s, a secret key k such that number of blocks of length
k, is given by n = |s|

k
, and two primes p1, p2 such that p1 = 2⌈

k

2
⌉, p2 = p1+1,

the number N of A0’s insertions at between-character locations, to perform
in a PDF file is given by:

N =

{

3, if |s| ≤ k

2n+ 1, if |s| > k

�

6.4 Fourth Approach

In this particular approach, there is no need of a secret key. Here, we embed
only 3 A0’s, at 3 different positions in the cover file f . Their values, depend
only on length of the secret message that a sender wants to send through a
non-secure communication channel.

6.4.1 Hiding method

Input: s: secret message; f: cover PDF file.
Output: f: cover PDF file with embedded A0 ’s

Step 1: compute n, the length of the secret message s.
Step 2: insert one A0 at the nth between-character location in the file f .
Step 3: compute two co-primes p1, p2 such that,

18

p1 = 2⌊
n

2
⌋; p2 = p1 + 1.

Step 4: transform s in its decimal value dec such that,

dec =
∑n

i=1 s[i]× 2(n−i).

Step 5: compute two remainders r[1] and r[2] such that,

r[1] = dec mod p1 and r[2] = dec mod p2.

Step 6: for each remainder r[i] (1 ≤ i ≤ 2), we compute positions pos[1]
and pos[2] as follows:

pos[1] = n+ 2 ∗ r[1], and pos[2] = n+ 2 ∗ r[2] + 1.

Step 7: embed one A0 at pos[1]th and pos[2]th between-character loca-
tions in the file f .
Time Complexity: O(n)

6.4.2 Recovery method

Input: f: stego-PDF file,
Output: s: secret message

Step 1: browse the stego-PDF file, until we cross the first A0, and store
its position in n.

Step 2: compute two co-primes p1, p2 such that,

p1 = 2⌊
n

2
⌋; p2 = p1 + 1.

Step 3: browse the stego-PDF file, from the position n, until we cross the
second A0, store its position in pos[1] and the last A0, and store its position
in pos[2].

Step 4: permute if necessary the values of pos[1] and pos[2] as follows:

begin
1. pos[1] := pos[1] - n;
2. pos[2] := pos[2] - n;
3. if pos[1] is odd, permute with pos[2];

end;

Step 5: computes remainders r[1] and r[2] from positions pos[1] and
pos[2] as follows:

r[1] = pos[1]/2, and r[2] = (pos[2]− 1)/2.

19

Step 6: Compute the decimal value dec such that:

dec = GarnerAlgorithm({p1, p2}, {r[1], r[2]})

Step 7: transform dec in its binary sequence s on n bits length such that:

dec2 = s[1]s[2] · · · s[n]
︸ ︷︷ ︸

n bits

Time Complexity: O(n)

6.4.3 Evaluation

As with this method, we have the possibility to embed not more or less than
3 A0’s, no matter how long the message is, we’ve reached the following result.

Theorem 5 .
Given a secret message of length n and two primes p1, p2 such that p1 = 2⌊

n

2
⌋

and p2 = p1 + 1. The number N of A0’s insertions at between-character
locations, to perform in a PDF file is given by:

N = 3

�

The proof of this theorem is trivial, regarding the definition of the hiding
method.

7 Experimental results

We conducted experiments on our approaches to make sure we reach our goal,
which is to reduce the insertion of A0′s in a PDF file, to maintain a small
difference between cover and stego PDF files, while increasing the amount of
data that can be hidden in that PDF file serving as cover.

To have a better view of our results, we’ve chosen as inputs the following:
secret message s = ”This is a covert communication method.” (as in [6]),
with nchar = 38 characters and a random PDF file. For that input I Shi et
al. inserted 247A0′s in a pdf file. As described by the following table. Note:
C is Character, F is Frequency, N is the number of A0’s for a character and
B is Bits.

20

C F N F*N
LF 1 12 12

5 1 5
T 1 13 13
a 2 7 14
c 3 4 12
d 1 14 14
e 2 8 16
h 2 9 18
i 4 2 8

C F N F*N
m 3 5 15
n 2 10 20
o 4 3 12
r 1 15 15
s 2 11 22
t 3 6 18
u 1 16 16
v 1 17 17

Total 38 247

Table 1: Number of A0’s inserted with the method of I Shi et al.

Regarding our methods, at the beginning we preprocessed the cover file,
converted the secret message into its binary sequence, where each character
was replaced by its ASCII code binary representation.
As we have 38 characters each represented on 8 bits, we would have 304 bits
to hide in the cover PDF file. Let’s assume |s|, the total number of bits and
bin the binary sequence of the secret message s.

C H ASCII Code
LF 0A 00001010

20 00100000
T 54 01010100
a 61 01100001
c 63 01100011
d 64 01100100
e 65 01100101

C H ASCII Code
h 68 01101000
i 69 01101001
m 6D 01101101
n 6E 01101110
o 6F 01101111
r 72 01110010
s 73 01110011

C H ASCII Code
t 74 01110100
u 75 01110101
v 76 01110110

Table 2: ASCII codes of the secret message’s characters

Where C is Character, H is Hexadecimal (the hexadecimal ASCII code of
the character) and ASCII Code is the binary ASCII code of the character

7.1 First approach

To compute the the number N of inserted A0’s we use Theorem 2, and thus
we obtain to following results: C is Character, F is Frequency and B is Bits.

21

C F ASCII Code B
LF 1 00001010 2

5 00100000 5
T 1 01010100 3
a 2 01100001 6
c 3 01100011 12
d 1 01100100 3
e 2 01100101 8
h 2 01101000 6
i 4 01101001 16

C F ASCII Code B
m 3 01101101 15
n 2 01101110 10
o 4 01101111 24
r 1 01110010 4
s 2 01110011 10
t 3 01110100 12
u 1 01110101 5
v 1 01110110 5

Total 38 136

Table 3: Number of A0’s inserted.

In the column B, for each character we computed the number of bits
having value 1 in its ASCII code, multiplied by the its frequency in the
secret message s. Thus, one can see that:

• We’ve obtained a better result compare to results obtained with the
method of I Shi et al.: N < 247 A0’s

• We ensured the fact that the number of inserted A0’s is lower than the
number of bits of s: N < |s|.

Note that the value 136 represents the maximum number of A0’s that can
be inserted in a cover PDF file, given the secret message taken as example
in this study.

7.2 Second approach

To compute the number N of inserted A0’s, we use the Corollary 1, by
replacing |s| by its value and k by its equation (3). Thus:

N ∼

{
3m

ln(3m)
− 2m

ln(2m)
+ 1, if |s| ≤ 17

10
m

(3m
ln(3m)

− 2m
ln(2m)

) ∗ n + 1, if |s| > 17
10
m

And as the number of A0’s depends on m, we vary the value of m to see
where its optimal value stands. Here are some of the obtained results:

In this approach, the block length k is not the secret key, but is com-
puted from m which is. And even the set of prime numbers used to compute
remainders is generated from it.

22

m k t n n*t
2 3 1 102 102
12 20 3 16 48
22 37 5 9 45
32 54 6 6 48
42 71 8 5 45
52 88 10 3 30
62 105 12 3 26
72 122 13 3 39
82 139 14 2 28

m k t n n*t
92 156 16 2 32
102 173 17 2 34
112 190 18 2 36
122 207 19 2 38
132 224 21 2 42
142 241 22 2 44
152 258 23 2 48
162 275 24 2 48
172 292 25 2 50

m k t n n*t
179 304 25 1 25
182 309 27 1 27
192 326 28 1 28
202 343 29 1 29
212 360 30 1 30
222 377 31 1 31
232 394 32 1 32
242 411 34 1 34
252 428 35 1 35

Table 4: Number of A0’s (N = n ∗ t), given the number of primes t and
number of blocks n, both obtained from m

By varying the different values of m, we came up we a certain number of
curves.

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500

M
a

x
im

u
m

 v
a

lu
e

 o
f

t

Value of k

Figure 2: Evolution of the number t, of prime numbers with respect to k

This curve shows the growth of t with respect to k (or m). We can see
that, the more k grows, the more the number of prime numbers that would
used in the computation of A0’s grows. And as each prime generates one A0,
the number of A0’s grows too.

Then, we generated a curve, showing that, the more k gets closed to |s|,
the more n, the number of blocks, decreases until it reaches the value 1;
where it remains constant no matter the value k (for k < |s|).

After having computed for each value ofm, the block length k, the number
of primes t and the number of block n of the secret message s, we generated

23

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900

N
u

m
b

e
r

o
f

b
lo

ck

Value of k

Figure 3: Evolution of the number of block with respect to k

a curve showing the growth of N the number of A0’s that would be use to
encode the secret message s, with respect to k (or m).

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900

N
u

m
b

e
r

o
f

in
se

rt
e

d
 A

0

Value k

Figure 4: Evolution of the number of A0’s with respect to k

One can see that, when k gets superior to |s|, N the number of A0’s
depends now on the number of primes t. Meaning that, the more t grows the
more the N grows. Where t’s growth is a consequence of the growth of s, as
shown by the first curve.

And for a value of k taken between 1 and |s|, the value of fluctuate, mak-
ing it difficult to choose the right value of the key m, that lowers the number
of inserted A0’s. But compare to the result of I Shi et al. for a value of
k ∈ [1, |s|], the max value (this is when k = 1) is less than the half of value

24

(247A0’s) they’ve obtained.

Also, one can see that the optimal value of N can be reached for k ∈
[1
4
|s|, 3

4
|s|]. For that, N < |s|, and there are certain cases (k ∈ [92, 102] and,

k ∈ [182, 222]) where N gets lower than the number of characters of the
secret message s, which is hard to generalize.

7.3 Third approach

To compute the number N of inserted A0’s, we use the Theorem 3, where :

N =

{

3, if |s| ≤ k

2n+ 1, if |s| > k

And as the number of A0’s depends on k, we vary the value of k to see where
its optimal value stands. Here are some of the obtained results:

k Value of N
1 609
2 305
3 205
16 39
|s|/4 9
|s|/2 5
3*|s|/4 5
|s| 3

5*|s|/4 3
3*|s|/2 3

Table 5: Number of A0’s with respect of k

From the above operations, whose some of the results are represented by the
figure below, we can see that:

• For k < 3, N > 247 A0′s > |s|. Which is not a good situation;

• For k = 3, N = 205 < 247 A0′s and N < |s|. Meaning, from here we
inserted less A0’s than with the method of I Shi et al.;

• For k ≥ 16, N < 247 A0′s and N < |s|. From this point, N starts to
get lower than the number of characters of s. As for k = 16, we have
N = 39, which is exactly the number of Characters contained in s.

25

76

152 228

304 380 456

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500

N
u

m
b

e
r

o
f

A
0

 i
n

se
rt

e
d

Value of the secret key k

nb = k

Figure 5: Evolution of the number of A0’s with respect to the key k

• For 152 ≤ k < |s|, N = 5. Meaning that at this point, the weight
difference between the cover and the stego file is almost invisible;

• For k ≥ |s|, N = 3. N remains constant no matter the value of the k.

So, to ensure that a minimum number of A0’s would be inserted in a
cover PDF file, the sender and the receiver, should agree on a secret key with
high value.

7.4 Fourth approach

First of all, compute the two remainders p1, p2 that would help us to compute
positions.

• p1 = 2⌊
304

2
⌋ = 2152;

• p2 = p1 + 1 = 2152 + 1.

Then, convert the bin in its decimal value dec and compute three positions
where one A0 would be inserted in the PDF. Those positions are:

• First position: pos[0] = |s| = 304

• Second position: pos[1] = 2 ∗ (dec mod p1) + |s|

• Third position: pos[2] = 2 ∗ (dec mod p2) + |s|

Whatever the values of the computed positions, only 3 A0′s will be inserted.
One can conclude that:

26

• The weight difference between the cover file and the stego file is 3 bytes;

• The number N of inserted A0’s is far smaller than the number inserted
using I Shi et al. method;

• We ensured the fact that the N ≤ |s|.

We can resume our results, for the chosen secret message of 38 characters,
as shown by the following table :

I-Shi et al. 1st case 2nd case 3rd case 4th case
N 247 138 ∈ [25, 38[≥ 3 3

files 2 1 1 1 1

Table 6: Comparison of methods

With these experiments we’ve shown the effectiveness and the correctness
of our approaches.

8 Discussion

From the our results obtained, expressed in the previous section, we came
up with some observations, regarding the choice of a secret key, to embed a
secret message s, in a cover PDF file.

The number of signs that can be contained in a document page is closed
to 1500. Where a sign can be, space, punctuation, apostrophes, etc. Thus,
the number of between-character locations in that page is close to 1500 (210 <
1500 < 211). It implies that:

• In the first and fourth approaches: for each pi multiple of 1500, that is
to say that pi = 1500 ∗ α (α ≥ 1, 1 ≤ i ≤ 2), we would need α page(s)
to hide the number of A0’s generated by pi.

• In the second and third approaches: h = t× pt, where h is the number
of between character locations used to hide A0’s generated by t prime
numbers, and t in the third approach equals 2. for h multiple 1500,
that is to say that h = 1500 ∗ α (α ≥ 1), we would need α pages to
hide a block of the secret message s.

Thereby, the more h or pi is high, the more we would need a cover PDF
file with a high number of pages to embed our secret message. And here, the

27

amount of embbedable information would depend on the approach selected
for the purpose. Our approaches can be optimized even more, by using a
compression algorithm on the secret message as done in [6].

The advantage of our method is that it would be difficult to detect the
integration of secret information in the cover file, while the inconvenient is
that the file’s number of pages can grow exponentially as it depends on h or
pi.

9 Conclusion

A novel approach of PDF steganogaphy is proposed based on the Chinese
Remainder Theorem. In this paper we presented four different techniques
whose purpose is to increase the amount of information that can be hidden
in a cover PDF file, while reducing considerably the number of A0’s inser-
tions at between-character locations in that file, thus reducing the weight
difference between a cover file and a stego file in which a secret message
is embedded. We did this, by ensuring that the number of embedded A0’s
would be less than the number of characters of s or at least if s grows higher,
the number of inserted A0’s won’t explode. Experimental results show the
feasibility of the proposed methods and parameters to attain an optimal ef-
ficiency had been exposed. Further researches may be directed to improve
these methods, and also to applying the data hiding scheme to other appli-
cations like watermarking for copyright protection, authentication of PDF
files, etc.

10 Acknowledgments

This work was supported by UMMISCO , by LIRIMA and by the University
of Yaounde 1.

References

[1] L. Y. POR, B. Delina, “Information Hiding: A new Approach of
Text Steganography”, 7th WSEAS International Conference on Applied
Computer and Applied Computational Science, (Acacos ’08), Hangzhou,
China.

28

[2] Sharon Rose Govada, Bonu Satish Kumar, Manjula Devarakonda and
Meka James Stephen, “Text Steganography with Multi level Shielding”,
International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3,
July 2012.

[3] Adobe Systems Incorporated. Portable Document Format Reference
Manual, version 1.7, November 2006, (http://www.adobe.com).

[4] Shangping Zhong, Xueqi Cheng and Tierui Chen, “Data hiding in a kind
of pdf texts for secret communication”. International Journal of Network
Security, 4(1):17-26, 2007.

[5] Fahimeh Alizadeh, Nicolas Canceill, Sebastian Dabkiewicz, Diederik Van-
denne, “Using Steganography to hide messages inside PDF files”, SSN
Project Report, December 30, 2012.

[6] I-Shi Lee, Wen-Hsiang Tsai, “A new approach to covert communication
via PDF files”, Signal Processing, Vol. 90, 557-565, 2010.

[7] Hongmei Liu, Lei Li, Jian Li, Jiwu Huang, “Three novel algorithms for
hiding data in pdf files based on incremental updates”, Technical report,
Sun Yat-sen University, Guangzhou, China, 2007.

[8] Victor Shoup, ”A Computational Introduction to Number Theory”, Cam-
bridge University Press, Version 2, 23-24, 2008.

[9] Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, ”Handbook
of Applied Cryptography”, CRC Press, 816 pages, 16 oct. 1996.

[10] L. Lavasz, J. Pelikan, K. Vesztergombi, ”Discrete Mathematics, Elemen-
tary and Beyond”, Springer, 302 pages, 2000.

[11] J.B. Rosser, L. Schoenfeld, ”Approximate formulas for some functions
of prime numbers”, Illinois Journal of Mathematics, Vol. 6, 64-94, 1962.

29

http://www.adobe.com

	1 Introduction
	2 PDF files based Steganography
	3 Our Contribution
	4 Chinese Remainder Theorem
	5 Preprocessing on the cover file
	6 Presentation of the different approaches
	6.1 First Approach
	6.1.1 Hiding method
	6.1.2 Recovery method
	6.1.3 Evaluation

	6.2 Second Approach
	6.2.1 Hiding method
	6.2.2 Recovery method
	6.2.3 Evaluation

	6.3 Third Approach
	6.3.1 Hiding method
	6.3.2 Recovery method
	6.3.3 Evaluation

	6.4 Fourth Approach
	6.4.1 Hiding method
	6.4.2 Recovery method
	6.4.3 Evaluation

	7 Experimental results
	7.1 First approach
	7.2 Second approach
	7.3 Third approach
	7.4 Fourth approach

	8 Discussion
	9 Conclusion
	10 Acknowledgments

