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Abstract

We introduce and axiomatize dynamic variational preferences, the dynamic version of the varia-
tional preferences we axiomatized in [21], which generalize the multiple priors preferences of Gilboa
and Schmeidler [9], and include the Multiplier Preferences inspired by robust control and first used
in macroeconomics by Hansen and Sargent (see [11]), as well as the classic Mean Variance Prefer-
ences of Markovitz and Tobin. We provide a condition that makes dynamic variational preferences
time consistent, and their representation recursive. This gives them the analytical tractability

needed in macroeconomic and financial applications. A corollary of our results is that Multiplier
Preferences are time consistent, but Mean Variance Preferences are not.

JEL classification: C61; D81

Keywords: Ambiguity Aversion; Model Uncertainty; Recursive Utility; Robust Control; Time
Consistency



1 Introduction

In the Multiple Priors (MP) model agents rank acts h using the criterion

V (h) ≡ inf
p∈C

Ep [u (h)] , (1)

where C is a closed and convex subset of the set ∆ of all probabilities on states. This model has
been axiomatized by Gilboa and Schmeidler [9] with the goal of modeling ambiguity averse agents,
who exhibit the Ellsberg-type behavior first observed in the seminal paper of Ellsberg [5].
The nonsingleton nature of C reflects the limited information available to agents, which may

not be enough to quantify their beliefs with a single probability, and is instead compatible with a
nonsingleton set C of probabilities.
On the other hand, the cautious attitude featured by MP agents can also be viewed as the result

of the effect that an adversarial influence, which we may call “Nature,” has on the realizations of the
state. Under this view, Nature chooses a probability p over states with the objective of minimizing
agents’ utility, conditional on their choice of an act and under the constraint that the probability
p has to be chosen in a fixed set C. This interpretation of the MP model provides an intuitive
notion of ambiguity aversion, which can be regarded as the agents’ diffidence for any lack of precise
definition of the uncertainty involved in a choice, something that provides room for the malevolent
influence of Nature.1

In a recent paper, [21], we extended the MP representation by generalizing Nature’s constraint.
Specifically, in our extension the constraint on Nature is given by a cost c (p) associated with the
choice of probability, and agents rank acts according to the criterion:

V (h) ≡ inf
p∈∆

(Ep [u (h)] + c (p)) , (2)

where c is a closed and convex function on ∆. Preferences represented by (2) are called varia-
tional preferences (VP), and the function c is their ambiguity index. In [21] we axiomatize the

representation (2) and we discuss in detail its ambiguity interpretation.
The VP representation generalizes the MP representation, which is the special case where there

is an infinite cost for choosing outside the set C, with the cost being constant (and hence, without
loss of generality, zero) inside that set. In other words, the cost for Nature in the MP model is
given by the indicator function δC : ∆→ [0,∞] of C, defined as

δC (p) ≡
(
0 if p ∈ C,

∞ if p /∈ C,
(3)

and it is immediate to see that

inf
p∈∆

(Ep [u (h)] + δC (p)) = inf
p∈C

Ep [u (h)] .

The notion of ambiguity aversion has found an important application in the last years in the
literature, pioneered by Hansen and Sargent (see, e.g., [11] and [12] for details and references),
that applies the idea of robust control to agents’ choices in macroeconomic models. While the

initial definition of robust control was different from that of ambiguity aversion, the intuition is

1As Hart, Modica, and Schmeidler [13, p. 352] write “In Gilboa and Schmeidler [9] it is shown that preferences ...
are represented by functionals of the form f 7→ minq∈Q s u (f (s)) q (s), for some closed convex set Q ⊂ ∆ (S). So
the ambiguity averse decision maker behaves ‘as if ’ there were an opponent who could partially influence occurence
of states to his disadvantage (i.e., think of the opponent as choosing q ∈ Q).” This informed opponent interpretation
has found support in some recent experimental findings in the psychological and neuroscience literatures (see [18],
[19], [17], and [27]).
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closely related: an agent prefers a robust control if he is not confident that his (probabilistic)
model of the uncertainty is correct, and so he wants to avoid the possibility that a small error in
the formulation of the stochastic environment produces a large loss. Ambiguity aversion comes up
because the agents’ information is too limited to be represented by a single probabilistic model.
In the multiplier preferences model, the most important choice model used in this macroeco-

nomic literature (see [11]), the constraint on Nature is represented by a cost c based on a reference
probability q ∈ ∆: Nature can deviate away from q, but the larger the deviation, the higher the
cost. In particular, this cost is assumed to be proportional to the relative entropy R (pkq) between
the chosen probability p and the reference probability q; that is,

c (p) ≡ θR (pkq) ,

where θ > 0. Multiplier preferences are, therefore, the special case of variational preferences given
by

V (h) ≡ inf
p∈∆

(Ep [u (h)] + θR (pkq)) ,

and their analytical tractability is important in deriving optimal policies.

Even though the motivation behind multiplier preferences is similar to that used for MP pref-
erences, formally multiplier preferences are not MP preferences. In fact, in [21] we show that
they are an example of divergence preferences, a special class of variational preferences featuring
tractable cost functions, but which are not MP preferences. Variational preferences are, therefore,
the generalization needed in order to encompass both MP and multiplier preferences, as discussed

at length in [21].
In view of applications, however, the static analysis of [21] is insufficient and a dynamic exten-

sion is required. This is the purpose of the present paper, in which we introduce and axiomatize
dynamic variational preferences.
The first observation to make is that, while in a static environment acts are functions from

states to consequences, in a dynamic environment they are functions from times and states to
consequences. We impose on acts the usual measurability conditions ensuring that agents’ choices
are consistent with the information they have. As a result, agents’ evaluations are conditional to
time and state, and they are modelled by a family of (conditional) preferences %t,ω indexed by time
and state pairs (t, ω). In the main results of the paper, Proposition 1 and Theorem 1, we provide

necessary and sufficient conditions guaranteeing that agents’ preferences at time t are represented
by the preference functional Vt (h) : Ω→ R given by

Vt (h) ≡ inf
p∈∆

Ep
X
τ≥t

βτ−tu (hτ )

¯̄̄̄
¯̄Gt
+ ct (p |Gt )

 , (4)

and we show what restrictions on ct guarantee time consistency.2 Under time consistency the rep-
resentation (4) becomes recursive, and so it has the analytical tractability required in applications.
Besides tractability, time consistency has also an intuitive appeal. In fact, suppose that two acts

are the same in every contingency up to the present period, and the first is preferred to the second
according to the conditional preference in the next period in every state. Then time consistency
requires that the first act should be preferred to the second in the present period. Equivalently,
think of a plan as a sequence of conditional choices, so that the choice of a plan in the current
period includes a plan of choices in all future periods, conditional on all future contingencies. Then,

an agent is time consistent if he never formulates a plan of future choices that he wants to revise
later in some event that is conceivable today.

2Here β is a discount factor and Gt represents the information available to the agents at time t.
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1.1 The No-Gain Condition and Bayesian Updating

Our present work extends to the VP setting the recent dynamic version of the MP model provided
by Epstein and Schneider [6]. These authors give a condition, called rectangularity, that guarantees
time consistency of MP preferences. Since rectangularity is a restriction on the sets of probabilities
from which Nature can select at every time and state, it is natural that our corresponding condition
is formulated as a restriction on cost functions.
Specifically, our condition is given by (11) of Theorem 1. To facilitate the exposition, we present

it in a simplified form, dropping the time index (the reader may think of this as the condition for

the two-period version of the model). The agent has a partition G over the set of possible states
(see the picture at p. 7). Nature has a cost cΩ in the first period, so that cΩ(q) is Nature’s cost of
choosing the probability q over the states. To each event G in this partition a new, second period,
cost cG is associated. The announced condition requires that:

cΩ(q) = inf
{p:p(G)=q(G) ∀G∈G}

[β
X
G∈G

q(G)cG(qG) + cΩ(p)], (5)

where q(G) ≡
P

ω∈G q(ω), β is the discount factor, and

qG(ω) ≡
(

q(ω)/q (G) if ω ∈ G,
0 otherwise.

(6)

The condition has a simple interpretation. The choice of probability by Nature over two periods
can be thought of as consisting of two steps. The first period choice is a choice of probability over
the events that realize in the first period. The second period choice is a choice of probability over
states in every event, conditional on that event.
Nature can make this choice in a time consistent way: choose q in the first period, pay the

appropriate cost cΩ(q), wait for the realization of the second period event G, do nothing, pay
nothing, and get the probability qG on the states in the event G. The total cost of this is the term
in the l.h.s. of (5).
Alternatively, Nature can achieve the same result in a time inconsistent way, with total cost

given by the r.h.s. of (5). Nature can choose today a probability p that induces the same probability

over events in the second period as q does. This constraint is described by the condition p(G) =

q(G) for every event G. Nature pays for its choice p the appropriate cost, which is the term
cΩ(p) in the r.h.s. of (5). After the realization of the event G, the probability over states in that
event would be pG. Nature can now change the conditional probability to qG, and again pay the
appropriate cost, represented by the term cG(qG) in the r.h.s. of (5). Overall, in this second more
indirect way, Nature achieves the same result as in the first choice: a probability q(G) of every
event G in the first period, and a conditional probability qG if G obtains.
Condition (5) requires that this second, time inconsistent and convoluted, choice is not less

costly for Nature. A simple way of stating our main result is therefore the following: A decision
maker is dynamically consistent if and only if (he thinks that) Nature is dynamically consistent.3

In view of all this, we call (5), and more generally (11) of Theorem 1, a “no-gain condition.”
We will formally prove that the no-gain condition generalizes rectangularity, and it coincides with
it when cost functions are indicators δC .

3This dynamically consistent behavior of Nature reminds of the Principle of Least Action, a fundamental idea
in theoretical physics, which for example lies at the heart of both classical and quantum mechanics. In its meta-
theoretic form, this principle says that Nature is thrifty in all its actions, and so it acts in the simplest possible way.
The dynamic consistency of Nature can be viewed as a form of this important meta-theoretic principle because (5)
describes the simplest possible way for Nature to end up with a probability q(G) of every event G in the first period,
and a conditional probability qG if G obtains.
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Equation (5) provides a link between cost functions in different periods. One important aspect
of this link is that in the second period the probability over states conditional on the event G is the
conditional probability qG as defined by (6), namely according to Bayes’ Rule. This link extends
to variational preferences the connection between time consistency and Bayes’ Rule.
As well known, Subjective Expected Utility preferences are time consistent if and only if their

subjective beliefs are updated according to Bayes’ Rule. This result is generalized in [6] to MP
preferences by showing that they are time consistent if and only if their sets of subjective beliefs
are rectangular and updating is done belief by belief (prior by prior in the terminology of the MP
model) according to Bayes’ Rule. Our Theorem 1 further generalizes all these results by showing
that variational preferences are time consistent if and only if their cost functions satisfy the no-gain

condition and updating is done according to Bayes’ Rule.
Moreover, the recursive structure of the no-gain condition makes it possible to construct by

backward induction cost functions that satisfy it. This is shown by Theorem 2, which thus provides
a way to construct via (4) examples of variational preferences that are time consistent.

Some papers have recently studied related issues, in particular dynamic aspects of the MP
model. We already mentioned Epstein and Schneider [6], which is in turn closely related to Wang
[31]. Some aspects of their work have been extended by Ghirardato, Maccheroni, and Marinacci

[8] and Hayashi [15]. More recently, Hanany and Klibanoff [10] proposed a dynamic version of the
MP model that is dynamically consistent but does not satisfy Consequentialism, while Siniscalchi
[28] focused on dynamic MP models that relax Dynamic Consistency. Finally, Ozdenoren and Peck
[25] have studied some dynamic games against Nature that lead to ambiguity averse behavior, thus
providing a game-theoretic underpinning of the game against Nature interpretation of ambiguity
we discussed above and in [21].

The paper is organized as follows. Section 2 introduces the setup and notation, Section 3

presents the axioms needed for our derivation, whereas Section 4 contains the main results of the
paper. Section 5 illustrates the main results with two important classes of variational preferences,
the multiple priors preferences of Gilboa and Schmeidler [9] and the multiplier preferences of Hansen
and Sargent [11]. Finally, Section 6 illustrates the analytical tractability of dynamic variational
preferences by showing their convenient differential properties. All proofs are collected in the
Appendix.

2 Setup

2.1 Information

Time is discrete and varies over T ≡ {0, 1, ..., T}. In our results we model information as an event
tree {Gt}t∈T , given and fixed throughout, which is defined on a finite space Ω. The elements of
this tree are partitions Gt of Ω consisting of non-empty sets, with G0 ≡ {Ω}, Gt+1 finer than Gt for
all t < T , and GT ≡ {{ω} : ω ∈ Ω}; in particular, Gt (ω) is the element of Gt that contains ω. For
non-triviality, we assume T, |Ω| ≥ 2.
The main interpretation we have in mind for this standard modelling of information is as

follows. Given an underlying (and possibly unverifiable) state space S, endowed with a σ-algebra
Σ, observations are generated by a sequence of random variables {Zt}t>0 taking values on finite
observation spaces Ωt. Each random variable Zt : S → Ωt is Σ-measurable and for convenience we
assume that they are surjective, so that all elements of Ωt can be viewed as observations generated

by Zt.
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The sample space
QT

t=1Ωt is denoted by Ω, and its points ω = (ω1, ..., ωT ) are the possible
observation paths generated by the sequence {Zt}. Given t ∈ T , denote by {ω1, ..., ωt} the cylinder

{ω1} × · · · × {ωt} ×Ωt+1 × · · · ×ΩT .

The event tree {Gt} records the building up of observations and it is given by G0 ≡ {Ω},

Gt ≡ {{ω1, ..., ωt} : ωτ ∈ Ωτ for each τ = 1, ..., t} ,

and GT ≡ {{ω} : ω ∈ Ω}. In other words, the atoms of the partition Gt are the observation paths
up to time t and they can be viewed as the nodes of the event tree {Gt}.
Denote by ∆ (Ω) the set of all probability distributions p : 2Ω → [0, 1]. The elements of ∆ (Ω)

represent the agent’s subjective beliefs over the observation paths. Their conditional distributions

p (ωt+1, ..., ωT | ω1, ..., ωt) ≡
p (ω1, ..., ωT )

p (ω1, ..., ωt)

are called predictive distributions and they represent the agent’s (subjective) probability that
(ωt+1, ..., ωT ) will be observed after having observed (ω1, ..., ωt).4 Using the standard notation
for conditional probabilities, the predictive distributions are given by the collection {p (· | Gt)}t>0.
Observe that in the literature on MP preferences, the probabilities p : 2Ω → [0, 1] are often

called priors and the conditional probabilities p (· | Gt) are called the Bayesian updates of the
priors. This terminology is, however, a bit confusing as in Statistics priors are often probabilities
on parameters (and posteriors are their Bayesian updates given observations). Here no parametric
representation is assumed for the probabilities p : 2Ω → [0, 1], and so we prefer not to use the term
prior for them.
We now illustrate these notions with few examples.

Example 1 Suppose that observations are given by heads and tails from a given coin. We can
set Ωt = {0, 1} for each t = 1, ..., T , so that Ω = {0, 1}T is the sample space. A possible p ∈ ∆ (Ω)
is the one that assigns equal probability to all observation paths ω; that is, p (ω) ≡ 2−T for each
ω ∈ Ω. In this case, p (ω1, ..., ωt) = 2−t and

p (ωt+1, ..., ωT | ω1, ..., ωt) =
p (ω1, ..., ωT )

p (ω1, ..., ωt)
= 2t−T .

For example, if T = 3, we have Ω = {0, 1}3 and Ω consists of 23 states. This case can be illustrated
with a simple binomial tree
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1

0

1

0

1

0

1
0

1
0

1
0

1
0

(1, 1, 1)

(1, 1, 0)

(1, 0, 1)

(1, 0, 0)

(0, 1, 1)

(0, 1, 0)

(0, 0, 1)

(0, 0, 0)

and the above probability p is such that p (ω) = 1/8 for all ω ∈ Ω, while its predictive distributions
are:

p (ω3 | ω1, ω2) = 1/2 and p (ω2, ω3 | ω1) = 1/4.

N
4We write p (ω1, ..., ωt) and (ωt+1, ..., ωT ) in place of p ({ω1, ..., ωt}) and Ω1 × · · · ×Ωt × {ωt+1} × · · · × {ωT }.
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In the next examples we assume that Ωt = Z for all t, so that Ω = ZT . For instance, in the
previous example we had Z = {0, 1}.

Example 2 Consider a p ∈ ∆ (Ω) that makes the sequence {Zt} i.i.d., with common marginal
distribution π : 2Z → [0, 1]. In this case, p is a product probability on 2Ω uniquely determined by
π as follows:

p (ω) ≡
TY
i=1

π (ωi) ∀ω ∈ Ω.

The predictive distributions are given by:

p (ωt+1, ..., ωT | ω1, ..., ωt) =
TY

i=t+1

π (ωi) ,

that is, p (ωt+1, ..., ωT | ω1, ..., ωt) = p (ωt+1, ..., ωT ). Hence, information is irrelevant for prediction.
N

Example 3 Consider a p ∈ ∆ (Ω) that makes the sequence {Zt} exchangeable, i.e.,

p (ω1, ..., ωT ) = p (ωi1 , ..., ωiT ) (7)

for all permutations i1, ..., iT . For simplicity, suppose Z = {0, 1} and set

υtl ≡
µ
t

l

¶
p

Ã
tX

i=1

ωi = l

!
,

where p
³Pt

i=1 ωi = l
´
is the probability of having l successes among t ∈ T trials. Some algebra

shows that here the predictive distributions are given by

p (ωt+1, ..., ωT | ω1, ..., ωt) =
υTl+k/

¡
T
l+k

¢
υtl/
¡
t
l

¢ ,

where l =
Pt

i=1 ωi and k =
PT

i=t+1 ωi. Because of exchangeability, only the quantities l and k

matter for the predictive distributions. Here information, as recorded by l and k, is relevant for
prediction. N

Example 4 Finally, suppose that p ∈ ∆ (Ω) makes the sequence {Zt} a homogeneous Markov
chain with transition function π : Ωt−1 × 2Z → [0, 1] for t ≥ 2, where π (ωt−1, ·) : 2Z → [0, 1] is
a probability measure on Z for each ωt−1 ∈ Ωt−1. Given an initial probability distribution π0 on
2Z , p is uniquely determined by π as follows:

p (ω) ≡ π0 (ω1)
TY
i=2

π (ωi−1, ωi) ∀ω ∈ Ω.

so that,

p (ωt+1, ..., ωT | ω1, ..., ωt) =
TY

i=t+1

π (ωi−1, ωi) . (8)

Also in this Markov example information matters for prediction. In particular, (8) shows that here

the relevant information is given by ωt. N
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2.2 Consumption Streams

The acts among which agents choose are here given by consumption processes. Formally, acts
are X-valued adapted processes of the form h = (h0, h1, ..., hT ), where each ht : Ω → X is Gt-
measurable and takes values on a convex consumption set X (e.g., X = R or ∆ (R)).

q

q

q

q

q
q
q
q
q
q
q
q
q

¡
¡
¡
¡
¡
¡¡

@
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@
@
@
@@³³

³³
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3 )
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000
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000
2 )
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000
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Denote by H the set of all acts; we equivalently write ht (ω) or h (t, ω) to denote consumption
at time t if ω obtains (and sometimes h (t,G) to denote consumption at time t if G ∈ Gt occurs).
Notice that in our finite setting acts can be regarded as functions defined on

S
t∈T Gt, that is, on

the set of all nodes.
We can identify H with the set of all maps h : Ω→ XT such that hτ (ω) = hτ (ω

0) if Gτ (ω) =

Gτ (ω
0); in this perspective h (ω) is the element (h0 (ω) , h1 (ω) , ..., hT (ω)) ∈ XT for any given ω.

For all α ∈ [0, 1], and all h, h0 ∈ H we set

(αh+ (1− α)h0) (t, ω) ≡ αh (t, ω) + (1− α)h0 (t, ω) ∀ (t, ω) ∈ T ×Ω.

If the values of an act y ∈ H depend only on time but not on state, that is, for every fixed t

y (t, ω) = y (t, ω0) = yt ∀ω, ω0 ∈ Ω,

with a little abuse of notation we write y = (y0, y1, ..., yT ) ∈ XT . Moreover, if y0 = ... = yT = x,
the act is called constant and, with another little abuse of notation, we denote it by x.

Example 5 Suppose as in Example 1 that Ω = {0, 1}T . A consumption process h = (h0, h1, ..., hT )
is such that:

h0 (ω) = h0 (ω
0) , ∀ω, ω0 ∈ Ω,

h1 (ω) = h1 (ω
0) , ∀ω, ω0 ∈ Ω with ω1 = ω01,

· ··
ht (ω) = ht (ω

0) , ∀ω, ω0 ∈ Ω with (ω1, ..., ωt) = (ω01, ..., ω
0
t) ,

· ··

In other words, h0 is a constant, h1 only depends on the first observation, and ht only depends on
the first t observations. N

7



2.3 Notation

We close by introducing some notation, which is usually a bit heavy in dynamic settings. If
p ∈ ∆ (Ω), we denote by p|Gt its restriction to the algebra A (Gt) generated by Gt, and by p (· |Gt )
the conditional probability given Gt.5 As we already observed, the conditional probabilities p (· |Gt )
are called predictive distributions.
For all t ∈ T , ∆ (Ω,Gt) denotes the set of all probabilities on A (Gt), hence ∆ (Ω,Gt) =©

p|Gt : p ∈ ∆ (Ω)
ª
. In particular, ∆ (Ω,GT ) = ∆ (Ω).

For each E ∈ A (Gt), we set

∆ (E,Gt) ≡ {p ∈ ∆ (Ω,Gt) | p (E) = 1}

∆++ (E,Gt) ≡
(
p ∈ ∆ (Ω,Gt)

¯̄̄̄
¯ p (G) > 0 ∀G ∈ Gt : G ⊆ E

p (G) = 0 ∀G ∈ Gt : G * E

)
.

Denoting by supp p the support {ω ∈ Ω : p (ω) > 0} of p ∈ ∆ (Ω), for each subset E of Ω we have:

∆ (E) = {p ∈ ∆ (Ω) : supp p ⊆ E} and ∆++ (E) = {p ∈ ∆ (Ω) : supp p = E} .

In particular, ∆ (Gt (ω)) is the set of all predictive distributions that can be obtained by condi-
tioning on Gt (ω) from probabilities p ∈ ∆ (Ω) such that p (Gt (ω)) > 0, while ∆++ (Gt (ω)) is the
subset of ∆ (Gt (ω)) derived under the further condition that p ∈ ∆ (Ω) be such that p (ω0) > 0 for
all ω0 ∈ Gt (ω).

Similarly, for each E ∈ A (Gt) we have

∆ (E,Gt) =
©
p|Gt : p ∈ ∆ (E)

ª
and ∆++ (E,Gt) =

©
p|Gt : p ∈ ∆++ (E)

ª
.

If the vector space M (Ω,Gt) of all measures on A (Gt) is endowed with the product topology,
then ∆++ (E,Gt) is the relative interior of the convex set ∆ (E,Gt) (see Rockafellar [26], to which
we refer for the Convex Analysis terminology and notation).

3 Axioms

Let the binary relations %t,ω on H represent the agent’s preferences at any time-state node. Next

are stated several properties (axioms) of the preference relation, which will be used in the sequel.

Axiom 1 (Conditional preference–CP) For each (t, ω) ∈ T ×Ω:

(i) %t,ω coincides with %t,ω0 if Gt (ω) = Gt (ω
0) .

(ii) If h (τ, ω0) = h0 (τ, ω0) for all τ ≥ t and ω0 ∈ Gt (ω), then h ∼t,ω h0.

(i) says that preferences orderings are “adapted” and allows to write %t,G if G ∈ Gt. (ii) states
that at time t in event G only “continuation acts” matter for choice.

Axiom 2 (Variational preferences–VP) For each (t, ω) ∈ T ×Ω:

(i) %t,ω is complete and transitive.

(ii) For all h, h0 ∈ H and y, y0 ∈ XT , and for all α ∈ (0, 1), if αh+ (1− α)y %t,ω αh0 + (1− α)y

then αh+ (1− α)y0 %t,ω αh0 + (1− α)y0.

(iii) For all h, h0, h00 ∈ H, the sets {α ∈ [0, 1] : αh+ (1 − α)h0 %t,ω h00} and {α ∈ [0, 1] : h00 %t,ω

αh+ (1− α)h0} are closed.
5Notice that for all ω ∈ Ω with p (Gt (ω)) 6= 0, p (· |Gt ) (ω) = pGt(ω), as defined by (6).
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(iv) For all h, h0 ∈ H, if (h0 (ω0) , h1 (ω0) , ..., hT (ω0)) %t,ω (h00 (ω
0) , h01 (ω

0) , ..., h0T (ω
0)) for all

ω0 ∈ Ω, then h %t,ω h0.

(v) For all h, h0 ∈ H, if h ∼t,ω h0, then αh+ (1− α)h0 %t,ω h for all α ∈ (0, 1).

(vi) There exist x Ât,ω x0 in X such that for all α ∈ (0, 1) there is x00 ∈ X satisfying either
x0 Ât,ω αx00 + (1− α)x or αx00 + (1− α)x0 Ât,ω x.

The requirement here is that at every time-state node the agent has (unbounded) variational
preferences; see Maccheroni, Marinacci, and Rustichini [21] for a discussion of (i)-(vi).

Axiom 3 (Risk preference–RP) For any y ∈ XT and all x, x0, x00, x000 ∈ X, if¡
y−{τ,τ+1}, x, x

0¢ %t,ω

¡
y−{τ,τ+1}, x

00, x000
¢

holds for some (t, ω) ∈ T ×Ω and some τ ≥ t, then it holds for all (t, ω) ∈ T ×Ω and all τ ≥ t.6

This is a standard stationarity axiom.

Axiom 4 (Dynamic consistency–DC) For each (t, ω) ∈ T ×Ω with t < T , and all h, h0 ∈ H,
if hτ = h0τ for all τ ≤ t and h %t+1,ω0 h

0 for all ω0 ∈ Ω, then h %t,ω h0.

As Epstein and Schneider [6, p. 6] observe “According to the hypothesis, h and h0 are identical
for times up to t, while h is ranked (weakly) better in every state at t+ 1. ‘Therefore’, it should
be ranked better also at (t, ω). A stronger and more customary version of the axiom would require
the same conclusion given the weaker hypothesis that

ht (ω) = h0t (ω) and h %t+1,ω0 h
0 for all ω0 ∈ Gt (ω) .

In fact, given CP, the two versions are equivalent.” Again, we refer to [6] for a discussion of

dynamic consistency, which might be sometimes controversial in the presence of ambiguity.7

A state ω00 ∈ Ω is %t,ω-null if

h (τ 0, ω0) = h0 (τ 0, ω0) for all τ 0 ∈ T and all ω0 6= ω00 implies h ∼t,ω h0.

Axiom 5 (Full support–FS) No state in Ω is %0,Ω-null.

4 The Representation

We first extend to the current dynamic setting the notion of ambiguity index c we used in the static
setting of [21]. A dynamic ambiguity index is a family {ct}t∈T of functions ct : Ω×∆ (Ω)→ [0,∞]
such that for all t ∈ T :

(i) ct (·, p) : Ω→ [0,∞] is Gt-measurable for all p ∈ ∆ (Ω),8

(ii) ct (ω, ·) : ∆ (Ω) → [0,∞] is grounded,9 closed and convex, with dom ct (ω, ·) ⊆ ∆ (Gt (ω))

and dom ct (ω, ·) ∩∆++ (Gt (ω)) 6= ∅, for all ω ∈ Ω.
6Notation: y−{τ,τ+1}, x, x

0 ≡ (y0, ..., yτ−1, x, x0, yτ+2, ..., yT ) if τ < T and (y0, ..., yT−1, x) otherwise.
7 Inspection of our proofs shows that the weaker version of DC in which % is replaced by ∼ is enough to obtain

the results of the following section.
8Equivalently, ct (ω, ·) = ct (ω0, ·) for all ω,ω0 ∈ Ω such that Gt (ω) = Gt (ω0).
9That is, minp∈∆(Ω) ct (ω, p) = 0.
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Observe that the effective domains of the ct (ω, ·) consist of predictive distributions, that is, of
the conditional probabilities on the nodes Gt (ω). In the terminology more used in the MP model,
we would call them the Bayesian updates of the original priors p ∈ ∆ (Ω).

In our first result we characterize a dynamic version of variational preferences that do not
necessarily satisfy dynamic consistency. Notice that in (9) we consider ∆++ (Ω) in order to have
well defined conditional probabilities pGt(ω).

Proposition 1 The following statements are equivalent:

(a) {%t,ω} satisfy CP, VP, RP, and for each (t, ω) ∈ T ×Ω no state in Gt (ω) is %t,ω-null.

(b) There exist a scalar β > 0, an unbounded affine function u : X → R, and a dynamic
ambiguity index {ct} such that, for each (t, ω) ∈ T ×Ω, %t,ω is represented by

Vt (ω, h) ≡ inf
p∈∆++(Ω)

Z X
τ≥t

βτ−tu (hτ ) dpGt(ω) + ct
¡
ω, pGt(ω)

¢ ∀h ∈ H. (9)

Moreover, (β0, u0, {c0t}) represents {%t,ω} in the sense of (9) if and only if β0 = β, u0 = au+ b

for some a > 0 and b ∈ R, and {c0t} = {act}.

As a result, for all t ∈ T and all h ∈ H, the preference functional Vt (·, h) is a Gt-measurable
random variable

Vt (h) = inf
p∈∆++(Ω)

Ep
X

τ≥t
βτ−tu (hτ ) |Gt

+ ct (p |Gt )

 .

We call dynamic variational preferences the (families of) preferences satisfying CP, VP, RP, and
such that no state in Gt (ω) is %t,ω-null. It is natural to wonder what restriction on the dynamic

ambiguity index would characterize the dynamic variational preferences that satisfy dynamic con-
sistency. This condition, which we have called the “no-gain condition” in the Introduction, is given
in the next theorem, which is the main result of the paper.

Theorem 1 The following statements are equivalent:

(a) {%t,ω} satisfy CP, VP, RP, FS, and DC.

(b) There exist a scalar β > 0, an unbounded affine function u : X → R, and a dynamic
ambiguity index {ct} such that, for each (t, ω) ∈ T ×Ω, %t,ω is represented by

Vt (ω, h) ≡ inf
p∈∆++(Ω)

Z X
τ≥t

βτ−tu (hτ ) dpGt(ω) + ct
¡
ω, pGt(ω)

¢ ∀h ∈ H, (10)

and
ct (ω, q) = β

X
G∈Gt+1
q(G)>0

q(G)ct+1(G, qG) + min
{p∈∆(Gt(ω)):p|Gt+1=q|Gt+1}

ct(ω, p), (11)

for all q ∈ ∆ (Gt (ω)) and all t < T .

Moreover, (β0, u0, {c0t}) represents {%t,ω} in the sense of (10) if and only if β0 = β, u0 = au+ b

for some a > 0 and b ∈ R, and {c0t} = {act}.
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Therefore, dynamic variational preferences satisfy dynamic consistency if and only if their
dynamic ambiguity index has the recursive structure (11), that is, if and only if the no-gain
condition is satisfied and updating is done according to Bayes’ Rule.
In turn, (11) delivers the recursive representation

Vt (ω, h) = u (ht (ω)) + min
r∈∆(Ω,Gt+1)

µ
β

Z
Vt+1 (h) dr + γt (ω, r)

¶
(12)

of the agent’s preference functional Vt, where

γt (ω, r) = min
{p∈∆(Gt(ω)):p|Gt+1=r}

ct(ω, p) ∀r ∈ ∆ (Ω,Gt+1) , (13)

(see Lemma 6 in the Appendix).
In view of all this, we call recursive variational preferences the dynamic variational preferences

satisfying dynamic consistency, and we call recursive ambiguity indexes their dynamic ambiguity
indexes, that is, the dynamic indexes satisfying the no-gain condition (11) for some β > 0.

Recall from the Introduction that the recursive formula (11) has a transparent interpretation
under the game against Nature interpretation of our setting, in which {ct} is a dynamic cost for
Nature. In fact, (11) suggests that the cost for Nature of choosing q at time t in state ω can
be decomposed as the sum of: the discounted expected cost of choosing q’s conditionals at time
t + 1,10 plus the cost γt

¡
ω, q|Gt+1

¢
of inducing q|Gt+1 as one-period-ahead marginal. By (11) and

(12), both Nature’s costs and agent’s preferences are recursive.

As (12) shows, in our recursive representation the evolution of ambiguity aversion is determined
by how the functions γt (ω, ·) depend on t and ω. This will emerge clearly in the next Subsection.
Here we observe that in applications some special specification of such dependence can be useful.
For example, in the standard setup Ω = ZT discussed in Section 2.1 we can assume a Markov-
ian structure, where γt (ω) depends on ω only through the last observation, or an independent
structure, where γt (ω) does not depend on t and ω (see Example 6 below).
Behaviorally, these dependence structures can be characterized by suitable stationarity require-

ments on the preferences %t,ω.

Finally, after the completion of an earlier version of this paper, we learned of independent work
by Detlefsen and Scandolo [1], who arrive at a condition related to (11) in studying conditions for
the time consistency of risk measures.

4.1 Going Backward

A main advantage of the recursive structure of the no-gain condition (11) is that it permits the

construction by backward induction of recursive ambiguity indexes, and so of recursive variational
preferences via (12) and (13).
The next result provides the key ingredient for the desired backward induction construction

Proposition 2 Let {ct} be a dynamic ambiguity index. For all t < T and ω ∈ Ω, set11

γt (ω, r) ≡ min
{p∈∆(Gt(ω)):p|Gt+1=r}

ct(ω, p) ∀r ∈ ∆ (Ω,Gt+1) .

The family {γt}t<T of functions γt : Ω×∆ (Ω,Gt+1)→ [0,∞] is such that for all t < T :

10 In fact, G∈Gt+1
q(G)>0

q(G)ct+1(G, qG) = ct+1 (q |Gt+1 ) dq.
11Here we adopt the convention that the minimum over the empty set is ∞.
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(i) γt (·, r) : Ω→ [0,∞] is Gt-measurable for all r ∈ ∆ (Ω,Gt+1).

(ii) γt (ω, ·) : ∆ (Ω,Gt+1)→ [0,∞] is grounded, closed and convex, with dom γt (ω, ·) ⊆ ∆ (Gt (ω) ,Gt+1)
and dom γt (ω, ·) ∩∆++ (Gt (ω) ,Gt+1) 6= ∅, for all ω ∈ Ω.

The index γt (ω, r) can be interpreted as the cost for Nature of inducing r as one-period-ahead
marginal, as suggested by (12) and (13). Since the properties of γt (ω, ·) on ∆ (Ω,Gt+1) are analo-
gous to those of a static (or dynamic) ambiguity index on the set of the agent’s subjective beliefs,
we call one-period-ahead ambiguity index a family {γt}t<T of functions that satisfies conditions (i)
and (ii) of Proposition 2.

Next we characterize recursive ambiguity indexes by means of one-period-ahead ones, thus
giving the desired backward induction construction of recursive ambiguity indexes. Here δC is the
indicator function defined in (3) and, given ω ∈ Ω, dω is the Dirac probability assigning mass 1 to
ω.

Theorem 2 Let {ct}t∈T be a family of functions from Ω×∆ (Ω) to [0,∞]. The following state-
ments are equivalent:

(a) {ct} is a recursive ambiguity index.

(b) There exist β > 0 and a one-period-ahead ambiguity index {γt} such that, for all ω ∈ Ω,

cT (ω, ·) = δ{dω}, and for all t < T

ct (ω, q) =

 β
P

G∈Gt+1
q(G)>0

q(G)ct+1(G, qG) + γt
¡
ω, q|Gt+1

¢
∀q ∈ ∆ (Gt (ω))

∞ ∀q ∈ ∆ (Ω) \∆ (Gt (ω)) .

In this case, {γt} is unique and satisfies (13).

The important implication is (b)⇒ (a), which allows to construct any recursive ambiguity index
by backward induction: it suffices to specify at any non-terminal node G = Gt (ω) a grounded,
closed and convex function γG on the set of all probabilities on the branches springing from G.
This decomposition of cost functions in one-period-ahead components is a key feature of our

derivation. The next example illustrates this feature by showing what happens in a binomial tree if

we take at each non-terminal node the relative Gini concentration index χ2 (pkq), defined in (19),
as one-period-ahead ambiguity index.

Example 6 Consider Example 1 with T = 2, that is, Ω = {0, 1}2. We have:

G1 = {{0} , {1}} and G2 = {{0, 0} , {0, 1} , {1, 0} , {1, 1}} ,

where {0} = {(0, 0) , (0, 1)} and {1} = {(1, 0) , (1, 1)}. Hence,

∆ (Ω,G1) = {(r, 1− r) : r ∈ [0, 1]} ,
∆ ({0} ,G2) = ∆ ({0}) = {(r, 1− r) : r ∈ [0, 1]} ,
∆ ({1} ,G2) = ∆ ({1}) = {(r, 1− r) : r ∈ [0, 1]} ,

and ∆ (Ω,G2) = ∆ (Ω). Let q ∈ ∆ (Ω) be the uniform distribution with q (ω) = 1/4 for all ω ∈ Ω,
and set ϕ (π) ≡ 2π2 + 2 (1− π)2 − 1 for each π ∈ [0, 1]. Define

γ0 (Ω, p) ≡ χ2
¡
pkq|G1

¢
= ϕ (p (0)) ∀p ∈ ∆ (Ω,G1) ,

γ1 ({0} , p) ≡ χ2
¡
pkq{0}

¢
=

(
ϕ (p (0, 0)) if p ∈ ∆ ({0}) ,
∞ otherwise,
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and

γ1 ({1} , p) ≡ χ2
¡
pkq{1}

¢
=

(
ϕ (p (1, 0)) if p ∈ ∆ ({1}) ,
∞ otherwise,

By Theorem 2, using these one-period-ahead ambiguity indexes we can construct a recursive dy-
namic index, given by:

c1 ({0} , p) = γ1 ({0} , p) ,

c1 ({1} , p) = γ1 ({1} , p) ,

and,

c0 (Ω, p) = β
£
p ({0}) c1

¡
{0} , p{0}

¢
+ p ({1}) c1

¡
{1} , p{1}

¢¤
+ γ0

¡
Ω, p|{{0},{1}}

¢
= β

·
(p00 + p01)ϕ

µ
p00

p00 + p01

¶
+ (p10 + p11)ϕ

µ
p10

p10 + p11

¶¸
+ ϕ (p00 + p01) ,

where we set pij = p (i, j) for i, j ∈ {0, 1} and we adopt the convention 0ϕ (0/0) = 0. N

5 Special Cases

5.1 Multiple Prior Preferences

We now show that Epstein and Schneider [6]’s characterization of dynamic MP preferences is
a special case of ours, modulo some minor differences (they do not assume unboundedness and
assume a slightly stronger version of dynamic consistency).
MP preferences are the special class of variational preferences satisfying the certainty indepen-

dence condition of Gilboa and Schmeidler [9]. In the present dynamic setting, this amounts to
consider:

MP(ii) For all h, h0 ∈ H, y ∈ XT , and α ∈ (0, 1), h %t,ω h0 if and only if αh + (1 − α)y %t,ω

αh0 + (1− α)y,

which is a stronger version of VP(ii) (in [21] we discuss the different behavioral implications of
these two axioms).
Under the stronger MP(ii), the ambiguity index ct (ω) becomes an indicator function, and

the no-gain condition (11) coincides with rectangularity, which is the condition that [6] used to
characterize recursive MP preferences.

Corollary 1 Let {%t,ω} be a family of dynamic variational preferences. The following statements
are equivalent:

(a) {%t,ω} satisfy MP(ii).

(b) For every t and ω, there exists a closed and convex subset Ct (ω) of ∆ (Ω) such that ct (ω) =
δCt(ω).

In this case, condition (11) is equivalent to

Ct (ω) =

 X
G∈Gt+1

pGr (G) : pG ∈ Ct+1 (G) ∀G ∈ Gt+1 and r ∈ Ct (ω)|Gt+1

 , (14)

for all ω ∈ Ω and t < T , where Ct+1 (G) = Ct+1 (ω
0) for all ω0 ∈ G, and Ct (ω)|Gt+1 is the set of

restrictions to the algebra generated by Gt+1 of the probabilities in Ct (ω).
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5.2 Multiplier Preferences

Given p, q ∈ ∆ (Ω), the relative entropy (or Kullback-Leibler distance) of p w.r.t. q is

R (pkq) ≡


P

ω∈Ω p (ω) log
p (ω)

q (ω)
if p¿ q,

∞ otherwise,

with the convention 0 ln (0/a) = 0 for all a ≥ 0. Analogously, if p, q ∈ ∆ (Ω,G), where G is a
partition of Ω, the relative entropy of p w.r.t. q on G is

RG (pkq) ≡


P

G∈G p (G) log
p (G)

q (G)
if p¿ q,

∞ otherwise,

again with the convention 0 ln (0/a) = 0 for all a ≥ 0.

Given a reference probabilistic model q ∈ ∆++ (Ω), we call dynamic multiplier preferences the
family of preferences on H represented for every t and ω by

Vt (ω, h) ≡ inf
p∈∆++(Ω)

Z X
τ≥t

βτ−tu (hτ ) dpGt(ω) + θβ−tR
¡
pGt(ω)kqGt(ω)

¢ ∀h ∈ H. (15)

The name is inspired by the robust control approach of Hansen and Sargent [11].12 They
interpret θ as a coefficient of uncertainty aversion, an interpretation we formalize and discuss in
[21]. Observe that, by a classical variational formula (see [4, p. 34]), we can equivalently write

(15) as:

Vt (ω, h) = −θβ−t log

Z exp

−X
τ≥t

βτ

θ
u (hτ )

 dqGt(ω)

 , (16)

a very convenient expression in calculations.

Next we show that dynamic multiplier preferences are recursive variational preferences and
their (recursive) ambiguity index is

ct (ω, p) = θβ−tR
¡
pGt(ω)kqGt(ω)

¢
(17)

for all t ∈ T , ω ∈ Ω, and p ∈ ∆ (Ω).

Theorem 3 For all q ∈ ∆++ (Ω), β > 0, unbounded affine u : X → R, and θ > 0, the dynamic
multiplier preferences represented by (15) are recursive variational preferences with ambiguity index
given by (17). In particular,

Vt (ω, h) = u (ht (ω)) + min
r∈∆(Ω,Gt+1)

µ
β

Z
Vt+1 (h) dr + θβ−tRGt+1

³
rk
¡
qGt(ω)

¢
|Gt+1

´¶
, (18)

for each h ∈ H, ω ∈ Ω, and t < T .

The recursive formulation (18) is especially important because it makes it possible to use stan-
dard dynamic programming tools in studying optimization problems involving dynamic multiplier

preferences. This class of dynamic variational preferences is therefore very tractable, something
important for applications.
The recursive nature of multiplier preferences was already observed by Hansen and Sargent

(see [11, p. 64]).13 The contribution of Theorem 3 is to show that this is a very special case of the
general recursive representation given in Theorems 1 and 2. As a result, Theorem 3 provides the
proper theoretical underpinning for this crucial property of multiplier preferences.

12Clearly, the functionals βtVt (ω, h) = infp∈∆++(Ω) τ≥t β
τu (hτ ) dpGt(ω) + θR pGt(ω)kqGt(ω) represent

the same preferences.
13 Skiadas [29] studies the recursive structure of a continuous time version of a robust control preference functional.
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5.3 Mean-Variance Preferences

We conclude by observing that Theorem 3 does not hold when we replace the relative entropy with a
general convex statistical distance (see [20]). For example, consider the relative Gini concentration
index (or χ2-distance)

χ2 (pkq) ≡


P

ω∈Ω
(p (ω))2

q (ω)
− 1 if p¿ q,

∞ otherwise.
(19)

In [21] and [23] we show that
θ

2
χ2 (pkq) is the ambiguity index associated with the classic mean-

variance preferences. For example, on the domain of monotonicity of such preferences we have:Z
fdq − 1

2θ
Var (f) = min

p∈∆

µZ
fdp+

θ

2
χ2 (pkq)

¶
,

where q ∈ ∆++ (Ω) is again a reference probability.
It is easily seen that the dynamic ambiguity index given by

ct (ω, p) ≡
θ

2
β−tχ2

¡
pGt(ω)kqGt(ω)

¢
is not recursive, and so the dynamic variational preferences represented by

Vt (ω, h) ≡ inf
p∈∆++(Ω)

Z X
τ≥t

βτ−tu (hτ ) dpGt(ω) +
θ

2
β−tχ2

¡
pGt(ω)kqGt(ω)

¢
are not dynamically consistent.
It is possible, however, to construct a dynamically consistent version of (monotone) mean-

variance preferences along the lines of Example 6 by using the relative Gini concentration index as
a one-period-ahead ambiguity index.

6 Differential Properties

Optimization problems are pervasive in economic applications and the differential properties of the
involved preference functionals play a key role in their resolution. For this reason we now study the

differential properties of our recursive variational preference functionals, and we show that their
analytical tractability is adequate for applications.
This extends to the dynamic setting of this paper what we established in [21], where we showed

that in the static case variational preference functionals have nice differentiability properties.

In this section we set X = ∆ (R). Let F be the subset of H consisting of monetary (i.e., real
valued) acts.14 Throughout this section we consider a recursive variational preference functional
Vt (ω, ·) : H → R, as given by Theorem 1. We make the standard assumption that the associated
utility function u : X → R is concave (thus reflecting risk aversion) and strictly increasing on R.
Like Epstein and Wang [7], for ω ∈ Ω, t < T , and f ∈ F , we call one-period-ahead directional

derivative of Vt (ω, ·) at f the functional V 0
t (ω, f ; ·) : Et → R defined by

V 0
t (ω, f ; e) ≡ lim

λ↓0

Vt (ω, f + λe)− Vt (ω, f)

λ
∀e ∈ Et,

where Et is the subspace of F consisting of all processes e such that eτ = 0 if τ 6= t, t + 1. These
processes represent current and one-period-ahead consumption perturbations.
The functional Vt (ω, ·) is (one-period-ahead Gateaux) differentiable at f if V 0

t (ω, f ; ·) is linear
on Et. In this case, V 0

t (ω, f ; ·) is the (Gateaux) differential of Vt (ω, ·) at f .
14Under the usual identification of z ∈ R with dz ∈ X.
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Theorem 4 Let ω ∈ Ω and t < T . Then, Vt (ω, ·) is differentiable on F if and only if u is
differentiable on R and γt (ω, ·) is essentially strictly convex.15 In particular,

V 0
t (ω, f ; e) = u0 (ft (ω)) et (ω) + β

Z
et+1u

0 (ft+1) dρ ∀f ∈ F , e ∈ Et, (20)

where {ρ} = argminr∈∆(Ω,Gt+1)
¡
β
R
Vt+1 (f) dr + γt (ω, r)

¢
.

This result provides a full characterization of differentiability for the recursive variational prefer-
ence functional Vt (ω, ·), and it provides an explicit formula for evaluating the differential V 0

t (ω, f ; ·).
We proved a static version of this result (as well as of Theorem 5) in [21], and it is important that
Observe that the strict convexity of γt (ω, ·) holds for all divergence preferences, a large class of

variational preferences we introduced in [21] and that includes multiplier preferences. For example,
by Theorem 3 (and by some well known properties of the relative entropy, see [4, p. 34]), formula
(20) takes the following neat form for dynamic multiplier preferences :

V 0
t (ω, f ; e) = u0 (ft (ω)) et (ω) + β

R
et+1u

0 (ft+1) exp
³
−βt+1

θ Vt+1 (f)
´
dqGt(ω)R

exp
³
−βt+1

θ Vt+1 (f)
´
dqGt(ω)

for each f ∈ F and e ∈ Et.

As Vt (ω, ·) is concave, the powerful theory of superdifferentials can be used when Vt (ω, ·) is not
differentiable. Besides its intrinsic interest, this is also important conceptually as points of non-
differentiability, the so-called “kinks,” play an important role in some applications of the multiple
priors model and of the closely related Choquet expected utility model (see [3], [7], and [24]).
Denote by M (Gt (ω) ,Gt+1) the set of all measures on A (Gt+1) that vanish on each subset of

Gt (ω)
c. A one-period-ahead supergradient of Vt (ω) at f is an element (k,m) ofR×M (Gt (ω) ,Gt+1)

such that
V 0
t (ω, f ; e) ≤ ket (ω) + β

Z
et+1dm, ∀e ∈ Et.

The superdifferential ∂Vt (ω, f) of Vt (ω, ·) at f is the set of all one-period-ahead supergradients at
f . The superdifferential ∂Vt (ω, f) is a singleton if and only if Vt (ω, ·) is differentiable at f ; in this
case, ∂Vt (ω, f) = {V 0

t (ω, f ; ·)}.
The following result is the superdifferential version of Theorem 4.

Theorem 5 For all ω ∈ Ω, t < T , and f ∈ F , ∂Vt (ω, f) consists of all pairs

(u0 (ft (ω)) , u
0 (ft+1) dρ) (21)

such that u0 (ft (ω)) ∈ ∂u (ft (ω)), u0 (ft+1) is a Gt+1-measurable selection of ∂u (ft+1), and ρ ∈
argminr∈∆(Ω,Gt+1)

¡
β
R
Vt+1 (f) dr + γt (ω, r)

¢
.16

Eq. (21) provides an explicit formula for the superdiffential ∂Vt (ω, f), which is equivalent to
(20) when ∂Vt (ω, f) is a singleton, that is, when Vt (ω, ·) is differentiable at f .
Theorem 5 generalizes Epstein and Wang [7, Lemma 1], and we expect that this result can be

used to extend their asset pricing analysis to recursive variational preferences.
Summing up, Theorems 4 and 5 show that dynamic variational preference functionals have nice

differentiability properties, something we already established in and this extends

15For a formal definition of essential strict convexity see [26, p. 253]. Needless to say, a strictly convex functional
is a fortiori essentially strictly convex.
16Here ∂u (z) is the superdiffential of u at z, while u0 (ft+1) dρ is the measure with density u0 (ft+1) with respect

to ρ.
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7 Conclusions

Ambiguity adverse behavior is pervasive, and the theory of ambiguity aversion has found applica-
tions in macroeconomics, finance, even political analysis.
A widely accepted theory has been so far the theory of multiple priors of [9]. Different ap-

proaches, mostly found under the name of robust preferences, have made desirable an extension
of this theory to include a larger class of behaviors. The extension, in the static case, has been

provided by the theory of variational preferences introduced by [21]. This is, however, a theory
of static choice, while most of the applications we have mentioned are in dynamic environments:
hence, a further extension to the intertemporal problem is desirable. This paper provides such a
theory.
Our main results can be summarized as follows. The first, Proposition 1, characterizes the

intertemporal preferences that have a variational representation, the so-called dynamic variational
preferences (intuitively, variational decision makers can be viewed as making their choices “as if”
they think they are facing a malevolent opponent, which we call Nature).
The second result, Theorem 1, characterizes the dynamic preferences that are time consistent.

In particular, a variational decision maker is dynamically consistent if and only if he thinks that

Nature is also dynamically consistent.
The third result, Theorem 2, provides a decomposition of the cost function into one step ahead

costs, paid by Nature in every period. This decomposition makes it possible to use recursive
analysis in studying the dynamic choice problem of a decision maker with variational preferences.
The fourth result, Theorem 3, is an application of Theorem 1 and it shows that the dynamic

consistency of the widely used multiplier preferences introduced by Hansen and Sargent is a con-
sequence of our general Theorems 1 and 2.
The final results, Theorem 4 and 5, show that recursive variational preferences have nice differ-

ential properties, something crucial for their use in the optimization problems that arise in most

economic applications.
We close by observing that, though in the paper we assumed both Ω and T finite, we expect that

the extension to the infinite case can be carried out in standard ways. Moreover, even though in
our representation theorems we consider standard discounted utility, some results can be extended
to include hyperbolic discounting. For example, this can be done by weakening Axiom 3 along
the lines of Hayashi [14]. However, the motivation behind hyperbolic discounting is very different
from model uncertainty and for this reason here we prefer to use standard discounting in order to
better focus the paper.

A Proofs and Related Material

An important tool for the proofs is Convex Analysis, we refer the reader to [26] and [16] for
notation, definitions, and results.
Here we just remind that a function I : C → (−∞,∞], defined on a non-empty subset C of RΩ,

is normalized if I (b1Ω) = b for all b ∈ R such that b1Ω ∈ C;17 it is a (finite) niveloid if I (C) ⊆ R
and I (ψ) − I (ϕ) ≤ supω∈Ω (ψ (ω)− ϕ (ω)) for all ψ,ϕ ∈ C; it is grounded if infψ∈C I (ψ) = 0,
it is proper if it is not identically ∞ and there is an affine function minorizing it. Niveloids are
comprehensively studied in Dolecki and Greco [2] and Maccheroni, Marinacci, and Rustichini [22].
When R ∈ {R,R+,R++,R−,R−−} and C = RΩ, I is a niveloid if and only if I is monotonic
(I (ψ) ≥ I (ϕ) for all ψ,ϕ ∈ RΩ such that ψ ≥ ϕ) and vertically invariant (I (ψ + b) = I (ψ) + b

for all ψ ∈ RΩ and b ∈ R). We will use the following lemmas:

171Ω is the constant vector (1, 1, ..., 1). Sometimes we will write b instead of b1Ω.
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Lemma 1 Let J : RΩ → R be concave, C ⊆ RΩ and I : C → [−∞,∞]. The following statements
are equivalent:
(a) J (ϕ) = infψ∈C (hϕ,ψi+ I (ψ)) for all ϕ ∈ RΩ;
(b) I : C → (−∞,∞] is proper and co I = −J∗.18

Lemma 2 Let C be a convex compact subset of RΩ, and I : C → (−∞,∞] a proper closed and
convex function. Then infψ∈riC I (ψ) = minψ∈C I (ψ) iff riC∩dom I 6= ∅ iff infψ∈riC I (ψ) <∞.19

Lemma 3 Let J : RΩ → R be a concave normalized niveloid, and G ⊆ Ω. The following statements
are equivalent:
(a) If ϕ,ψ ∈ RΩ are such that ϕ|G = ψ|G, then J (ϕ) = J (ψ);

(b) J (ϕ+ ψ) = J (ϕ) + ψ (G) if ϕ,ψ ∈ RΩ and ψ is constant on G;
(c) J (ϕ1Gc) = 0 for all ϕ ∈ RΩ;20

(d) domJ∗ ⊆ ∆ (G).

Next lemma is the first important step towards the proof of Proposition 1.

Lemma 4 The following statements are equivalent:
(a) {%t,ω} satisfy CP, VP, and RP.
(b) There exists a family {ct (ω, ·) : (t, ω) ∈ T ×Ω} of grounded, closed and convex functions

ct (ω, ·) : ∆ (Ω) → [0,∞], such that dom ct (ω, ·) ⊆ ∆ (Gt (ω)) and ct (ω, ·) = ct (ω
0, ·) if Gt (ω) =

Gt (ω
0), β > 0, and an unbounded affine u : X → R such that: for every t and ω, %t,ω is represented

by Vt (ω, ·), where

Vt (ω, h) ≡ min
p∈∆(Ω)

Z X
τ≥t

βτ−tu (hτ ) dp+ ct (ω, p)

 ∀h ∈ H. (22)

Moreover,
¡
β̄, ū, {c̄t (ω, ·)}

¢
represent %t,ω in the sense of (22) iff β̄ = β, ū = au+ b for some

a > 0 and b ∈ R and {c̄t (ω, ·)} = {act (ω, ·)}.
Finally, if |Gt (ω)| > 1, the following facts are equivalent:
(i) for all h ∈ H,

Vt (ω, h) = inf
p∈ri∆(Gt(ω))

Z X
τ≥t

βτ−tu (hτ ) dp+ ct (ω, p)

 ; (23)

(ii) no state in Gt (ω) is %t,ω-null;
(iii) dom ct (ω, ·) ∩ ri∆ (Gt (ω)) 6= ∅.

Notice that (22) can be rewritten as

Vt (ω, h) = min
p∈∆(Gt(ω))

Z X
τ≥t

βτ−tu (hτ ) dp+ ct (ω, p)

 ∀h ∈ H. (24)

Moreover, if |Gt (ω)| = 1, Gt (ω) is a singleton {ω}, ∆ (Gt (ω)) = ri∆ (Gt (ω)) and (iii) is auto-
matically satisfied, in this case both (22) and (23) collapse to Vt (ω, h) =

P
τ≥t β

τ−tu (hτ (ω)).

For the rest of the paper, we indifferently write ct (ω, ·), ct (ω), or ct,ω, and Vt (ω, ·), Vt (ω) or
Vt,ω.

18 co I denotes the closed and convex hull of I, J∗ the concave conjugate of J .
19 riC denotes the relative interior of C, dom I the effective domain of I.
20For every A ⊆ Ω, 1A is the vector defined by 1A (ω) ≡ 1 if ω ∈ A, 1A (ω) ≡ 0 if ω /∈ A.
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Proof. (a) ⇒ (b). A variation on the proof of Lemma A.1 of [6] (see also [30]) delivers the first
two steps:

Step 1. There exist β > 0 and an unbounded affine u : X → R such that, for all (t, ω) ∈ T × Ω,
%t,ω on XT is represented by Ut (y) ≡

P
τ≥t β

τ−tu (yτ ) for all y ∈ XT .

Step 2. For all (t, ω) ∈ T × Ω, and all h ∈ H there exists y = y (t, ω, h) ∈ XT (indeed constant)
such that y ∼t,ω h.

Then it is easy to check that:

Step 3. For all (t, ω) ∈ T × Ω, the correspondence Vt,ω : H → R, defined by Vt,ω (h) ≡ Ut (y) if
h ∼t,ω y ∈ XT , is a well defined function that represents %t,ω on H.

Each h ∈ H can be regarded as a function h : Ω → XT , and Ut : X
T → R is an affine

function for every t ∈ T . Set Ut (h) ≡ Ut ◦ h. By definition, Ut (h) : Ω → R and Ut (h) (ω
0) ≡

Ut (h (ω
0)) =

P
τ≥t β

τ−tu (hτ (ω
0)) for all ω0 ∈ Ω. In particular, if y (τ, ω0) = yτ for all τ ∈ T

and all ω0 ∈ Ω, then Ut (y) (ω
0) =

P
τ≥t β

τ−tu (yτ ) = Ut (y0, ..., yT ) for all ω0 ∈ Ω.21 Moreover,
Ut (αh+ (1− α)h0) = αUt (h) + (1− α)Ut (h

0) for all h, h0 ∈ H and α ∈ [0, 1]. Up to a cardinal
transformation of u, we can assume u (X) ∈ {R,R+,R++,R−,R−−}. For the rest of the proof the
case u (X) = R++ is considered (the arguments we use can be easily adapted to the remaining
ones).

Step 4. For all t ∈ T , {Ut (h) : h ∈ H} = u (X)Ω.

Proof. The inclusion ⊆ is trivial. If t < T and ψ ∈ u (X)
Ω, there exists ε > 0 such that

ψ−ε ∈ u (X)
Ω, choose xε ∈ X such that u (xε) =

³P
T>τ≥t β

τ−t
´−1

ε. For all ω0 ∈ Ω, there exists

xψ(ω
0) ∈ X such that u

³
xψ(ω

0)
´
= βt−T (ψ (ω0)− ε). Set

h (τ, ω0) ≡
(

xε if τ < T

xψ(ω
0) if τ = T .

This delivers, Ut (h (ω
0)) =

P
τ≥t β

τ−tu (hτ (ω
0)) =

P
T>τ≥t β

τ−tu (xε) + βT−tu
³
xψ(ω

0)
´
=

u (xε)
³P

T>τ≥t β
τ−t
´
+ ψ (ω0) − ε = ψ (ω0) for all ω0 ∈ Ω; as wanted. If t = T , set ε = 0

and choose xε arbitrarily. ¤

Step 5. For all (t, ω) ∈ T ×Ω, the correspondence It,ω : u (X)Ω → R, defined by It,ω (ψ) ≡ Vt,ω (h)

if ψ = Ut (h) for some h ∈ H, is a well defined, monotonic, and normalized function.

Proof. If h and h0 inH are such that ψ = Ut (h) = Ut (h
0), for all ω0 ∈ Ω we have

P
τ≥t β

τ−tu (hτ (ω
0)) =P

τ≥t β
τ−tu (h0τ (ω

0)) and h (ω0) ∼t,ω h0 (ω0). By VP(iv), h ∼t,ω h0 and Vt,ω (h) = Vt,ω (h
0).

This implies that It,ω is a well defined function since for every ψ ∈ u (X)
Ω there is h ∈ H

such that ψ = Ut (h). Monotonicity is proved along the same lines. As to normalization, if

b ∈ u (X), take xb ∈ X such that u
¡
xb
¢
=
³P

τ≥t β
τ−t
´−1

b, and the constant act xb to obtain

Ut
¡
xb
¢
(ω0) =

P
τ≥t β

τ−tu
¡
xb
¢
= b for all ω0 ∈ Ω, then b1Ω = Ut

¡
xb
¢
(where xb is regarded as a

constant act) and It,ω (b1Ω) = Vt,ω
¡
xb
¢
= Ut

¡
xb, xb, ..., xb

¢
= b. ¤

Step 6. Let (t, ω) ∈ T × Ω. For every ψ ∈ u (X)Ω and for every b ∈ R such that ψ + b ∈ u (X)Ω,
It,ω (ψ + b) = It,ω (ψ) + b.

Proof. Let ψ0 = Ut (h
0) , ψ00 = Ut (h

00) ∈ u (X)Ω, b0 = Ut (x
0) , b00 = Ut (x

00) ∈ u (X), VP(ii) guaran-
tees that for all α ∈ (0, 1), αh0+(1−α)x0 ∼t,ω αh00+(1−α)x0 implies αh0+(1−α)x00 ∼t,ω αh00+

21The identification between acts with consequences depending only on time (and not on state) and elements of
XT corresponds here to the equivalence between constant functions on Ω and real numbers.
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(1 − α)x00, i.e. Vt,ω (αh
0 + (1− α)x0) = Vt,ω (αh

00 + (1− α)x0) implies Vt,ω (αh0 + (1− α)x00) =

Vt,ω (αh
00 + (1− α)x00), hence It,ω (Ut (αh0 + (1− α)x0)) = It,ω (Ut (αh

00 + (1− α)x0)) implies that
It,ω (Ut (αh

0 + (1− α)x00)) = It,ω (Ut (αh
00 + (1− α)x00)), and, finally, It,ω (αψ0 + (1− α)b0) =

It,ω (αψ
00 + (1− α)b0) implies It,ω (αψ0 + (1− α)b00) = It,ω (αψ

00 + (1− α)b00). Replacing ψ0 with
ψ0/α ∈ u (X)

Ω, ψ00 with ψ00/α ∈ u (X)
Ω, b0 with b0/ (1− α) ∈ u (X), b00 with b0/ (1− α) ∈ u (X),

it follows that

It,ω (ψ
0 + b0) = It,ω (ψ

00 + b0) implies It,ω (ψ0 + b00) = It,ω (ψ
00 + b00) (25)

for all ψ0, ψ00 ∈ u (X)Ω, b0, b00 ∈ u (X). Let ψ ∈ u (X)Ω, then minω0 ψ (ω0) ∈ u (X), but It,ω
is monotonic and normalized, thus It,ω (ψ) ≥ It,ω (minω0 ψ (ω

0)) = minω0 ψ (ω
0) ∈ u (X), and

hence It,ω (ψ) ∈ u (X). Let b > 0, there is ε > 0 such that ψ − ε ∈ u (X)
Ω and It,ω (ψ) − ε ∈

u (X). By normalization and (25) It,ω ((ψ − ε) + ε) = It,ω (ψ) = It,ω ((It,ω (ψ)− ε) + ε) implies
It,ω (ψ + b) = It,ω ((ψ − ε) + (ε+ b)) = It,ω ((It,ω (ψ)− ε) + (ε+ b)) = It,ω (ψ) + b. If b < 0, then
It,ω (ψ) = It,ω ((ψ + b)− b) = It,ω (ψ + b)− b, as wanted. ¤

Moreover, from VP(v), it immediately follows that:

Step 7. Let (t, ω) ∈ T × Ω. For every ψ,ψ0 ∈ u (X)
Ω such that It,ω (ψ) = It,ω (ψ

0), and every
α ∈ (0, 1), It,ω (αψ + (1− α)ψ0) ≥ It,ω (ψ).

Steps 5—7 and the results we prove in [22] imply that: For all (t, ω) ∈ T × Ω, It,ω is a
concave and normalized niveloid on u (X)

Ω. The restriction of its concave conjugate to ∆ (Ω),
I∗t,ω (p) ≡ infψ∈u(X)Ω (hψ, pi− It,ω (ψ)) for all p ∈ ∆ (Ω), is the unique concave and upper semicon-
tinuous function I#t,ω on∆ (Ω) such that It,ω (ψ) = minp∈∆(Ω)

³
hψ, pi− I#t,ω (p)

´
for all ψ ∈ u (X)

Ω.

Moreover, the correspondence Jt,ω : RΩ → R, defined by Jt,ω (ϕ) ≡ It,ω (ϕ+ b) − b if ϕ ∈ RΩ
and b ∈ R is such that ϕ + b ∈ u (X)Ω, is a normalized concave niveloid and its concave
conjugate J∗t,ω coincides with I∗t,ω on ∆ (Ω) and takes value −∞ on RΩ\∆ (Ω).22 In particu-
lar Jt,ω (ϕ) = minp∈∆(Ω)

¡
hϕ, pi− I∗t,ω (p)

¢
for all ϕ ∈ RΩ. (See [22] for details.) By CP(i), if

Gt (ω) = Gt (ω
0), we can choose It,ω = It,ω0 and set ct,ω (p) ≡ −I∗t,ω (p) = −J∗t,ω (p) for all

p ∈ ∆ (Ω) and all (t, ω) ∈ T × Ω. Then ct,ω : ∆ (Ω) → [0,∞] is grounded, closed, and convex for
all (t, ω) ∈ T × Ω; ct,ω0 = ct,ω if Gt (ω) = Gt (ω

0); for all (t, ω) ∈ T × Ω, %t,ω is represented by
Vt,ω (h) = It,ω (Ut (h)) = Jt,ω (Ut (h)) = minp∈∆(Ω)

¡
hUt (h) , pi− I∗t,ω (p)

¢
, that is

Vt (ω, h) = min
p∈∆(Ω)

X
ω0∈Ω

p (ω0)
X
τ≥t

βτ−tu (hτ (ω
0)) + ct (ω, p)

 .

Step 8. Let (t, ω) ∈ T ×Ω. If ϕ1, ϕ2 ∈ RΩ and ϕ1|Gt(ω)
= ϕ2|Gt(ω)

, then Jt,ω
¡
ϕ1
¢
= Jt,ω

¡
ϕ2
¢
.

Proof. It suffices to show that: if ψ1, ψ2 ∈ u (X)Ω and ψ1|Gt(ω)
= ψ2|Gt(ω)

, then It,ω
¡
ψ1
¢
= It,ω

¡
ψ2
¢
.

For i = 1, 2, define

hi (τ, ω0) ≡
(

xε if τ < T

xψ
i(ω0) if τ = T

like in Step 4, with the precaution of choosing xψ
1(ω0) = xψ

2(ω0) if ω0 ∈ Gt (ω) (this is possible
since ψ1 (ω0) = ψ2 (ω0)). By construction, h1 (τ, ω0) = h2 (τ, ω0) for all τ ≥ t and ω0 ∈ Gt (ω).
CP(ii) implies h1 ∼t,ω h2 and It,ω

¡
ψ1
¢
= It,ω

¡
Ut
¡
h1
¢¢
= Vt,ω

¡
h1
¢
= Vt,ω

¡
h2
¢
= It,ω

¡
ψ2
¢
, as

wanted. ¤

By Lemma 3, dom ct,ω = domJ∗t,ω ⊆ ∆ (Gt (ω)). This concludes the proof of (a) ⇒ (b).

(b) ⇒ (a) and the uniqueness properties of (β, u, {ct (ω, ·)}) can be easily checked (though the
verification is a bit long).

22Jt,ω is the unique vertically invariant function that extends It,ω to RΩ.
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Step 9. Let (t, ω) ∈ T × Ω be such that |Gt (ω)| > 1. A state ω00 ∈ Gt (ω) is %t,ω-null if and only
if dom ct,ω ⊆ ∆ (Gt (ω) \ {ω00}) .

Proof. We show that if ω00 ∈ Gt (ω) is %t,ω-null, then Jt,ω
¡
ψ1
¢
= Jt,ω

¡
ψ2
¢
for every ψ1, ψ2 ∈ RΩ

such that ψ1|Gt(ω)\{ω00} = ψ2|Gt(ω)\{ω00}. By Lemma 3, dom ct,ω = domJ∗t,ω ⊆ ∆ (Gt (ω) \ {ω00}).
Again, it is sufficient to show it for ψ1, ψ2 ∈ u (X)

Ω. For i = 1, 2, define

hi (τ, ω0) ≡
(

xε if τ < T

xψ
i(ω0) if τ = T

and gi (τ, ω0) ≡


xε if τ < T

xψ
i(ω0) if τ = T and ω0 6= ω00

xε if τ = T and ω0 = ω00

where xε and xψ
i(ω0) are defined like in Step 4, with the precaution of choosing xψ

1(ω0) = xψ
2(ω0)

if ω0 ∈ Gt (ω) \ {ω00} (this is possible since ψ1 (ω0) = ψ2 (ω0)). Since g1 (τ, ω0) = g2 (τ, ω0) for all
τ ≥ t and ω0 ∈ Gt (ω), CP(ii) implies g1 ∼t,ω g2, while %t,ω-nullity of ω00 implies hi ∼t,ω gi for
i = 1, 2. Therefore, h1 ∼t,ω h2, and It,ω

¡
ψ1
¢
= It,ω

¡
Ut
¡
h1
¢¢
= Vt,ω

¡
h1
¢
= Vt,ω

¡
h2
¢
= It,ω

¡
ψ2
¢
.

The converse is easily checked. ¤

Therefore, if a state ω00 inGt (ω) is%t,ω-null, then dom ct,ω ⊆ ∆ (Gt (ω) \ {ω00}), and Vt (ω, h) 6=
∞ = infp∈ri∆(Gt(ω))

³R P
τ≥t β

τ−tu (hτ ) dp+ ct,ω (p)
´
for some (indeed all) h ∈ H. That is (i) ⇒

(ii). Conversely, if Vt (ω, h) 6= infp∈ri∆(Gt(ω))

³R P
τ≥t β

τ−tu (hτ ) dp+ ct,ω (p)
´
for some h ∈ H,

then, by Lemma 2, ri∆ (Gt (ω)) ∩ dom ct,ω = ∅. If, per contra, dom ct,ω is not contained in
∆ (Gt (ω) \ {ω00}) for some ω00 ∈ Gt (ω), then for all ω0 ∈ Gt (ω) there exists pω

0 ∈ dom ct,ω with
ω0 ∈ supp pω

0
, then |Gt (ω)|−1

P
ω0∈Gt(ω)

pω
0 ∈ ri∆ (Gt (ω)) ∩ dom ct,ω, which is absurd. Then

dom ct,ω ⊆ ∆ (Gt (ω) \ {ω00}) for some ω00, which must be %t,ω-null. This is (ii) ⇒ (i). The
equivalence between (i) and (iii) descends immediately from Lemma 2. ¥

Lemma 5 If {%t,ω} satisfy CP, FS, and DC, then for each t and ω, no state in Gt (ω) is %t,ω-null
provided |Gt (ω)| > 1.

Proof. Assume, per contra, that there exist ω◦ ∈ Ω and t◦ ∈ T such that |Gt◦ (ω
◦)| > 1 and

Gt◦ (ω
◦) contains a %t◦,ω◦-null state. W.l.o.g., ω◦ is %t◦,ω◦-null. By FS, t◦ > 0 and

h (τ 0, ω0) = h0 (τ 0, ω0) for all τ 0 ∈ T and all ω0 6= ω◦ implies h ∼t◦,ω◦ h0. (26)

Clearly, |Gt◦−1 (ω
◦)| ≥ |Gt◦ (ω

◦)| > 1. Next we show that ω◦ is %t◦−1,ω◦-null. In a finite number

of steps this leads to an absurd.
Assume that h (τ 0, ω0) = h0 (τ 0, ω0) for all τ 0 ∈ T and all ω0 6= ω◦. By (26) and CP(i), h ∼t◦,ω h0

for all ω ∈ Gt◦ (ω
◦). Moreover, if ω ∈ Gt◦−1 (ω

◦) \Gt◦ (ω
◦), then Gt◦ (ω) does not contain ω◦,

and h (τ 0, ω0) = h0 (τ 0, ω0) for all τ 0 ∈ T and all ω0 ∈ Gt◦ (ω). By CP(ii), h ∼t◦,ω h0 for all
ω ∈ Gt◦−1 (ω

◦) \Gt◦ (ω
◦). Therefore, h ∼t◦,ω h0 for all ω ∈ Gt◦−1 (ω

◦). Since |Gt◦−1 (ω
◦)| > 1 and

ht◦−1 is Gt◦−1 measurable, choose ω00 ∈ Gt◦−1 (ω
◦)−{ω◦} to obtain h (t◦ − 1, ω◦) = h (t◦ − 1, ω00) =

h0 (t◦ − 1, ω00) = h0 (t◦ − 1, ω◦) and conclude h (t◦ − 1, ω◦) = h0 (t◦ − 1, ω◦) and h ∼t◦,ω h0 for all
ω ∈ Gt◦−1 (ω

◦), DC implies that h ∼t◦−1,ω◦ h0. That is ω◦ is %t◦−1,ω◦-null. As wanted. ¥

A.1 Proof of Proposition 1

Axiom 6 (Strong full support–SFS) For each (t, ω) ∈ T ×Ω, no state in Gt (ω) is %t,ω-null.

For technical reasons we prove a slightly more general version of Proposition 1.
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Proposition 3 The following statements are equivalent:
(a) {%t,ω} satisfy CP, VP, RP, and no state in Gt (ω) is %t,ω-null if Gt (ω) is not a singleton.
(b) There exist a scalar β > 0, an unbounded affine function u : X → R, and a dynamic

ambiguity index {ct}, such that: for each (t, ω) ∈ T × Ω, %t,ω is represented by the functional
Vt (ω, ·) defined by (23).
(c) {%t,ω} satisfy CP, VP, RP, and SFS.
Moreover,

¡
β̄, ū, {c̄t}

¢
represent %t,ω in the sense of (b) iff β̄ = β, ū = au+ b for some a > 0

and b ∈ R and {c̄t} = {act}.

Proof. (a) ⇔ (b) immediately descends from Lemma 4.
(c) ⇒ (a) is trivial.
(b) ⇒ (c). Since (b) ⇒ (a), if Gt (ω) is not a singleton, no state in Gt (ω) is %t,ω-null. Let

Gt (ω) be a singleton {ω}. Then ∆ (Gt (ω)) = {dω}, and Vt (ω, h) =
P

τ≥t β
τ−tu (hτ (ω)) for all

h ∈ H. Since u is unbounded, there are x1, x2 ∈ X such that u
¡
x1
¢
> u

¡
x2
¢
. Consider the acts

hi (τ, ω0) ≡
(

x1 if (τ, ω0) 6= (T, ω)
xi if (τ, ω0) = (T, ω)

h1 (τ, ω0) = h2 (τ, ω0) for all τ ∈ T and all ω0 6= ω. If ω where %t,ω-null, we would have h1 ∼t,ω h2,
but Vt

¡
ω, h1

¢
=
P

τ≥t β
τ−tu

¡
x1
¢
>
P

T>τ≥t β
τ−tu

¡
x1
¢
+ βT−tu

¡
x2
¢
= Vt

¡
ω, h2

¢
. Therefore ω

is not %t,ω-null. ¥

Since for every t and ω, ri∆ (Gt (ω)) =
©
pGt(ω) : p ∈ ri∆ (Ω)

ª
, (23) is equivalent to

Vt (ω, h) = inf
p∈ri∆(Ω)

Z X
τ≥t

βτ−tu (hτ ) dpGt(ω) + ct
¡
ω, pGt(ω)

¢ ∀h ∈ H. (27)

Consider the Gt measurable functions Vt (·, h) : Ω→ R and ct (·, p) : Ω→ [0,∞], (27) becomes

Vt (·, h) = inf
p∈ri∆(Ω)

Ep
X

τ≥t
βτ−tu (hτ ) |Gt

 (·) + ct (·, p |Gt (·))

 ∀h ∈ H, (28)

or

Vt (h) = inf
p∈ri∆(Ω)

Ep
X

τ≥t
βτ−tu (hτ ) |Gt

+ ct (p |Gt )

 ∀h ∈ H. (29)

By Lemma 5, if {%t,ω} satisfies CP, VP, RP, DC and FS, then it admits this representation.

A.2 Dynamic Consistency

Lemma 6 Let {%t,ω} be a family of preferences on H for which there exist a scalar β > 0, an

unbounded affine function u : X → R, and a dynamic ambiguity index {ct}, such that: for each
(t, ω) ∈ T ×Ω, %t,ω is represented by:

Vt (ω, h) ≡ min
p∈∆(Gt(ω))

Z X
τ≥t

βτ−tu (hτ ) dp+ ct (ω, p)

 ∀h ∈ H.

The following statements are equivalent:
(a) {%t,ω} satisfy DC.
(b) For all t < T , ω ∈ Ω, and q ∈ ∆ (Gt (ω)) ,

ct (ω, q) = β
X

G∈Gt+1
q(G)>0

q(G)ct+1(G, qG) + min
p∈∆(Gt(ω)):p|Gt+1=q|Gt+1

ct(ω, p). (30)
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(c) For all t < T and ω ∈ Ω,
ct (ω, ·) = co (t (ω, ·) (31)

where (t (ω, q) ≡ β
P

G∈Gt+1
G⊆Gt(ω)

q(G)ct+1(G, qG) + infp∈ri∆(Gt(ω)):p|Gt+1=q|Gt+1
ct(ω, p), for all q ∈

ri∆ (Gt (ω)).
(d) Vt (ω, h) = u (ht (ω))+minr∈∆(Ω,Gt+1)

³R
βVt+1 (h) dr +minp∈∆(Gt(ω)):p|Gt+1=r

ct(ω, p)
´
for

all t < T , ω ∈ Ω, and h ∈ H.

Proof. Like in the proof of Lemma 4, up to a cardinal transformation of u, we can assume
u (X) ∈ {R,R+,R++,R−,R−−}. For the rest of the proof the case u (X) = R++ is considered (the
arguments we use can be easily adapted to the remaining ones). For all t ∈ T , ω ∈ Ω, ϕ ∈ RΩ,
y ∈ X T define

Jt (ω, ϕ) ≡ min
p∈∆(Gt(ω))

(hϕ, pi+ ct (ω, p)) = inf
p∈ri∆(Gt(ω))

(hϕ, pi+ ct (ω, p)) (32)

and Ut (y) ≡ Vt (ω, y) =
P

τ≥t β
τ−tu (yτ ). Then Jt : RΩ → RΩ (Gt), where RΩ (Gt) the set

of all Gt-measurable functions. Notice that: (32) coincides with the property dom ct (ω, ·) ∩
ri∆ (Gt (ω)) 6= ∅ of dynamic ambiguity indexes; u (X)Ω = {Ut ◦ h : h ∈ H} (see Lemma 4);
Vt (ω, h) = Jt (ω,Ut ◦ h) for all (t, ω, h) ∈ T ×Ω×H and if t < T

Ut ◦ h = u ◦ ht + β (Ut+1 ◦ h) and Vt (h) = u ◦ ht + Jt (β (Ut+1 ◦ h)) .23 (33)

Step 1. Let t < T and ω ∈ Ω, Jt (ω, ξ) = minr∈∆(Ω,Gt+1)

³R
ξdr +minp∈∆(Gt(ω)):p|Gt+1=r

ct(ω, p)
´
=

infr∈∆++(Gt(ω),Gt+1)

³R
ξdr + infp∈ri∆(Gt(ω)):p|Gt+1=r

ct(ω, p)
´
for all ξ ∈ RΩ (Gt+1).24

Proof. Denote by G = {G1, ..., Gg} the set of all elements of Gt+1 contained in Gt (ω), and by
∆G the set ∆ (Gt (ω) ,Gt+1) (brutally: the probabilities on Gt+1 with support in {G1, ..., Gg}).
For all ξ =

P
G∈Gt+1 ξG1G ∈ R

Ω (Gt+1), Jt (ω, ξ) = minp∈∆(Gt(ω))

£P
ω∈Ω p(ω)ξ(ω) + ct,ω(p)

¤
=

minp∈∆(Gt(ω)) [
Pg

i=1 ξGi
p (Gi) + ct,ω(p)] = minr∈∆Gminp∈∆(Gt(ω)):p|Gt+1=r

[
Pg

i=1 ξGi
p (Gi) + ct,ω(p)]

= minr∈∆G
³Pg

i=1 r (Gi) ξGi
+minp∈∆(Gt(ω)):p|Gt+1=r

ct,ω(p)
´
the observation that if r ∈ ∆ (Ω,Gt+1)

\∆G there is G ∈ Gt+1 such that G * Gt (ω) with r (G) > 0 and hence there is no p ∈ ∆ (Gt (ω))

such that p|Gt+1 = r delivers the first equality. The second is proved in the same way. ¤

Step 2. Let t < T and ω ∈ Ω. The function γt (ω, ·) : ∆ (Ω,Gt+1)→ [0,∞], defined by

γt (ω, r) ≡ min
p∈∆(Gt(ω)):p|Gt+1=r

ct(ω, p) ∀r ∈ ∆ (Ω,Gt+1) ,24

is closed, convex, grounded, and dom γt (ω, ·) ⊆ ∆ (Gt (ω) ,Gt+1).

Proof. If r ∈ ∆ (Ω,Gt+1) \∆ (Gt (ω) ,Gt+1), there is G ∈ Gt+1 such that G * Gt (ω) with r (G) > 0,
then there is no p ∈ ∆ (Gt (ω)) such that p|Gt+1 = r and γt (ω, r) =∞. Therefore dom γt (ω, r) ⊆
∆ (Gt (ω) ,Gt+1) = ∆G. For ξ ∈ RΩ (Gt+1), by Step 1, Jt (ω, ξ) = minr∈∆(Ω,Gt+1)

¡R
ξdr + γt (ω, r)

¢
.

Hence, Jt (ω, 0) = 0 implies that minr∈∆(Ω,Gt+1) γt (ω, r) = 0, and γt (ω, ·) is grounded. Let
r, s ∈ ∆G and α ∈ (0, 1), then γt (ω,αr + (1− α) s) = minp∈∆(Gt(ω)):p|Gt+1=αr+(1−α)s ct(ω, p) ≤
min p,q∈∆(Gt(ω))

p|Gt+1=r,q|Gt+1=s
ct(ω,αp + (1− α) q) ≤ min p,q∈∆(Gt(ω))

p|Gt+1=r,q|Gt+1=s
(αct(ω, p) + (1− α) ct(ω, q)) =

αγt (ω, r) + (1− α) γt (ω, s). Therefore γt (ω, ·) is convex. Let b ∈ R and rn ∈ ∆G, be such
that rn → r and γt (ω, rn) ≤ b for all n ≥ 1. For all n there exists p̄n such that γt (ω, rn) =

23 In fact, for all ω ∈ Ω, (Ut ◦ h) (ω) = u (ht (ω)) + τ≥t+1 β
τ−tu (hτ (ω)) = (u ◦ ht) (ω) +

β τ≥t+1 β
τ−(t+1)u (hτ (ω)) = (u ◦ ht) (ω) + βUt+1 (h (ω)) = (u ◦ ht) (ω) + β (Ut+1 ◦ h) (ω) and

Vt (ω, h) = Jt (ω,Ut ◦ h) = Jt,ω (β (Ut+1 ◦ h) + u ◦ ht) = Jt,ω (β (Ut+1 ◦ h) + u ◦ ht) 1Gt(ω) =

Jt,ω (β (Ut+1 ◦ h) + u (ht (ω))) 1Gt(ω) = Jt,ω (β (Ut+1 ◦ h) + u (ht (ω))) = Jt,ω (β (Ut+1 ◦ h)) + u (ht (ω)) .
24With the convention that the minimum over the empty set is ∞.
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minpn∈∆(Gt(ω)):pn|Gt+1=rn
ct(ω, p

n) ≤ ct(ω, p̄
n) ≤ b and p̄n|Gt+1 = rn. Take a convergent subsequence

p̄nj → p̄ of p̄n, since ct(ω, ·) is closed ct(ω, p̄) ≤ b, moreover, p̄ (G) = limj p̄
nj (G) = limj rnj (G) =

r (G) for all G ∈ Gt+1. In turn this implies γt (ω, r) ≤ ct(ω, p̄) ≤ b and γt (ω, ·) is closed. ¤

This implies that:

Step 3. Let t < T and ω ∈ Ω. The function νt (ω, ·) : ∆ (Ω) → [0,∞] defined by νt (ω, q) ≡
γt
¡
ω, q|Gt+1

¢
for all q ∈ ∆ (Ω) is grounded, closed and convex with dom νt (ω, ·) ⊆ ∆ (Gt (ω)).

Step 4. Let t < T and ω ∈ Ω. The function ηt (ω, ·) : ∆ (Gt (ω)) → [0,∞] defined by ηt (ω, q) ≡P
G∈Gt+1
q(G)>0

q(G)ct+1(G, qG) for all q ∈ ∆ (Gt (ω)), is closed and convex.

Proof. For later use (in the proof of Theorem 2) we just assume that ct+1 satisfies (i) and (ii)
of the definition of dynamic ambiguity index (not that {ct} is an ambiguity index itself). We
show that ηt (ω, ·) is the closure of its convex restriction κt (ω, ·) to ri∆ (Gt (ω)) . Let G ≡
{G ∈ Gt+1 : G ⊆ Gt (ω)}. For all q, p ∈ ri∆ (Gt (ω)), α ∈ (0, 1), and G ∈ G, let µG ≡ αq (G) +

(1− α) p (G) and αG ≡ αq (G) /µG ∈ (0, 1). This delivers (αq + (1− α) p)G = αGqG+(1− αG) pG

and then κt,ω (αq + (1− α) p) =
P

G∈G µGct+1,G ((αq + (1− α) p)G) =
P

G∈G µGct+1,G (αGqG

+(1− αG) pG) ≤
P

G∈G µG (αGct+1,G (qG) + (1− αG) ct+1,G (pG)) =
P

G∈G αq (G) ct+1,G (qG) +

(1− α) p (G) ct+1,G (pG) = ακt,ω (q) + (1− α)κt,ω (p), hence κt,ω is convex. For all G ∈ G, there
is pG ∈ ri∆ (G) ∩ dom ct+1 (G, ·). Therefore, choosing {q (G) : G ∈ G} such that

P
G∈G q (G) = 1

and q (G) > 0 for all G ∈ G, the probability r ≡
P

G∈G q (G) p
G ∈ domκt,ω and κt,ω is proper.25

Take p ∈ ri (domκt,ω) and q ∈ ∆ (Gt (ω)). If G ∈ Gt+1 and q (G) > 0 then G ⊆ Gt (ω). In
this case, the function f (α) ≡ αG has strictly positive first derivative w.r.t. α in (0, 1) and
limα↑1 f (α) = 1; since p ∈ ri (domκt,ω) , then pG ∈ dom ct+1(G, ·), and [26, Cor. 7.5.1] implies
limα↑1 ct+1,G ((αq + (1− α) p)G) = limα↑1 ct+1,G (αGqG + (1− αG) pG) = limα↑1 ct+1,G (f (α) qG

+(1− f (α)) pG) = ct+1,G (qG). Else if G ∈ G and q (G) = 0, then (αq + (1− α) p)G = pG for
all α ∈ (0, 1), and hence limα↑1 ct+1,G ((αq + (1− α) p)G) = limα↑1 ct+1,G (pG) = ct+1,G (pG),
with ct+1,G (pG) < ∞ since pG ∈ dom ct+1(G, ·). Then, by [26, Thm. 7.5], (coκt,ω) (q) =
limα↑1 κt,ω ((1− α) p+ αq) = limα↑1

P
G∈G (αq + (1− α) p) (G)ct+1,G ((αq + (1− α) p)G) =P

G∈Gt+1
q(G)>0

q (G) ct+1,G (qG) = ηt,ω (q) for all q ∈ ∆ (Gt (ω)). ¤

Step 5. Let t < T , ω ∈ Ω and DC be satisfied. If ϕ1, ϕ2 ∈ RΩ and Jt+1,ω0
¡
ϕ1
¢
= Jt+1,ω0

¡
ϕ2
¢
for

all ω0 ∈ Gt (ω), then Jt,ω
¡
βϕ1

¢
= Jt,ω

¡
βϕ2

¢
.

Proof. First assume ϕ1, ϕ2 ∈ u (X)
Ω. There exists ε > 0 such that ϕi − ε ∈ u (X)

Ω, choose

xε ∈ X such that u (xε) =
³P

T>τ≥t β
τ−t
´−1

βε. For all ω0 ∈ Ω, there exists xϕ
i(ω0) ∈ X such

that u
³
xϕ

i(ω0)
´
= β1−T+t

¡
ϕi (ω0)− ε

¢
. Consider the acts h1, h2 defined by

hi (τ, ω0) ≡
(

xε if τ < T

xϕ
i(ω0) if τ = T .

It is easy to check that there is k ∈ R such that Ut
¡
hi (ω0)

¢
= βϕi (ω0) and Ut+1

¡
hi (ω0)

¢
=

ϕi (ω0)+k for all ω0 ∈ Ω and i = 1, 2. Then Vt+1,ω0
¡
h1
¢
= Jt+1,ω0

¡
Ut+1

¡
h1
¢¢
= Jt+1,ω0

¡
ϕ1 + k

¢
=

Jt+1,ω0
¡
ϕ1
¢
+ k, and Vt+1,ω0

¡
h2
¢
= Jt+1,ω0

¡
ϕ2
¢
+ k for all ω0 ∈ Ω. For all ω0 ∈ Gt (ω),

Jt+1,ω0
¡
ϕ1
¢
= Jt+1,ω0

¡
ϕ2
¢
, then h1 ∼t+1,ω0 h2; moreover h1τ = h2τ for all τ ≤ t, then DC im-

plies h1 ∼t,ω h2 and Jt,ω
¡
βϕ1

¢
= Jt,ω

¡
Ut
¡
h1
¢¢
= Vt,ω

¡
h1
¢
= Vt,ω

¡
h2
¢
= Jt,ω

¡
βϕ2

¢
. As

wanted. Finally, if ϕ1, ϕ2 ∈ RΩ are such that Jt+1,ω0
¡
ϕ1
¢
= Jt+1,ω0

¡
ϕ2
¢
for all ω0 ∈ Gt (ω), there

exist ψ1, ψ2 ∈ u (X)Ω and b ∈ R such that ϕi = ψi + b, then Jt+1,ω0
¡
ψ1
¢
= Jt+1,ω0

¡
ψ2
¢
for all

ω0 ∈ Gt (ω). Therefore, Jt,ω
¡
βϕ1

¢
= Jt,ω

¡
βψ1 + βb

¢
= Jt,ω

¡
βψ1

¢
+ βb = Jt,ω

¡
βψ2

¢
+ βb =

Jt,ω
¡
βϕ2

¢
. ¤

25Notice that for all G ∈ G, r (G) = q (G) and rG = pG.
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Step 6. Let t < T . If {%t,ω} satisfy DC, then Jt (βJt+1 (ϕ)) = Jt (βϕ) for all ϕ ∈ RΩ.

Proof. Choose ω ∈ Ω, and remember that Jt+1 (ϕ) =
P

G∈Gt+1 Jt+1 (G,ϕ) 1G ∈ RΩ (Gt+1).
For all ω0 ∈ Gt (ω), dom ct+1,ω0 ⊆ ∆ (Gt+1 (ω

0)) , then Jt+1 (ω
0, ϕ) = Jt+1 (ω

0, Jt+1,ω0 (ϕ) 1Ω) =

Jt+1
¡
ω0, Jt+1 (Gt+1 (ω

0) , ϕ) 1Gt+1(ω0)
¢
= Jt+1 (ω

0, Jt+1 (ϕ)), then, by Step 5 above, Jt (ω, βϕ) =

Jt (ω, βJt+1 (ϕ)). The proof is concluded by the observation that this is true for all ω ∈ Ω. ¤

Step 7. {%t,ω} satisfy DC if and only if Jt (βJt+1 (ϕ)) = Jt (βϕ) for all t < T and ϕ ∈ RΩ.

Proof. By the previous step we just have to prove necessity. Let ω ∈ Ω and t < T . Assume
ϕ1, ϕ2 ∈ RΩ are such that Jt+1,ω0

¡
ϕ1
¢
≥ Jt+1,ω0

¡
ϕ2
¢
for all ω0 ∈ Gt (ω), then Jt,ω

¡
βϕ1

¢
=

Jt,ω
¡
βJt+1

¡
ϕ1
¢¢
= Jt,ω

¡
βJt+1

¡
ϕ1
¢
1Gt(ω)

¢
≥ Jt,ω

¡
βJt+1

¡
ϕ2
¢
1Gt(ω)

¢
= Jt,ω

¡
βJt+1

¡
ϕ2
¢¢
=

Jt,ω
¡
βϕ2

¢
, i.e. Jt,ω

¡
βϕ1

¢
≥ Jt,ω

¡
βϕ2

¢
. Let h1, h2 ∈ H be such that h1τ = h2τ for all τ ≤ t and

h1 %t+1,ω0 h
2, for all ω0 ∈ Ω, we want to show that h1 %t,ω h2. Since h1 %t+1,ω0 h

2, for all ω0 ∈ Ω,
then Jt+1,ω0

¡
Ut+1 ◦ h1

¢
= Vt+1,ω0

¡
h1
¢
≥ Vt+1,ω0

¡
h2
¢
= Jt+1,ω0

¡
Ut+1 ◦ h2

¢
for all ω0 ∈ Ω, whence

(set ϕi = Ut+1 ◦ hi, i = 1, 2) Jt,ω
¡
β
¡
Ut+1 ◦ h1

¢¢
≥ Jt,ω

¡
β
¡
Ut+1 ◦ h2

¢¢
. But h1t = h2t , then, by

(33), Vt
¡
ω, h1

¢
= Jt,ω

¡
β
¡
Ut+1 ◦ h1

¢¢
+u

¡
h1t (ω)

¢
≥ Jt,ω

¡
β
¡
Ut+1 ◦ h2

¢¢
+u

¡
h2t (ω)

¢
= Vt

¡
ω, h2

¢
,

i.e. Vt
¡
ω, h1

¢
≥ Vt

¡
ω, h2

¢
. ¤

Step 8. (a) ⇔ (d).

Proof. By Step 7, {%t,ω} satisfy DC iff
Jt,ω (βJt+1 (ϕ)) = Jt,ω (βϕ) for all t < T, ϕ ∈ RΩ, ω ∈ Ω iff
Jt,ω (βJt+1 (ψ + b)) = Jt,ω (β (ψ + b)) for all t < T , ψ ∈ u (X)

Ω, b ∈ R, ω ∈ Ω iff
Jt,ω (βJt+1 (ψ)) + βb = Jt,ω (βψ) + βb for all t < T , ψ ∈ u (X)

Ω, b ∈ R, ω ∈ Ω iff
Jt,ω (βJt+1 (ψ)) = Jt,ω (βψ) for all t < T , ψ ∈ u (X)

Ω, ω ∈ Ω iff
Jt,ω (βJt+1 (Ut+1 ◦ h)) = Jt,ω (β (Ut+1 ◦ h)) for all t < T , h ∈ H, ω ∈ Ω iff
Jt,ω (βVt+1 (h)) + u (ht (ω)) = Jt,ω (β (Ut+1 ◦ h)) + u (ht (ω)) for all t < T , h ∈ H, ω ∈ Ω iff
minr∈∆(Ω,Gt+1)

³R
βVt+1 (h) dr +minp∈∆(Gt(ω)):p|Gt+1=r

ct(ω, p)
´
+ u (ht (ω)) = Vt (ω, h) for all t <

T , h ∈ H, ω ∈ Ω, by Gt+1 measurability of Vt+1 (h), Step 1, and (33). ¤

Step 9. For all t < T , ω ∈ Ω, and ϕ ∈ RΩ

Jt,ω (βJt+1 (ϕ)) = min
q∈∆(Gt(ω))

hβϕ, qi+ β
X

G∈Gt+1
q(G)>0

q(G)ct+1(G, qG) + min
p∈∆(Gt(ω)):p|Gt+1=q|Gt+1

ct(ω, p)


(34)
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Proof. Denote by G = {G1, ...,Gg} the set {G ∈ Gt+1 : G ⊆ Gt (ω)}. By Steps 1 and 2,

Jt,ω (βJt+1 (ϕ)) = Jt

ω,
X

G∈Gt+1

βJt+1 (G,ϕ) 1G


= min

r∈∆(Ω,Gt+1)

 X
G∈Gt+1

r (G)βJt+1 (G,ϕ) + min
p∈∆(Gt(ω)):p|Gt+1=r

ct(ω, p)


= min

r∈∆G

Ã
gX
i=1

r (Gi)βJt+1 (Gi, ϕ) + γt (ω, r)

!

= min
r∈∆G

Ã
gX
i=1

r(Gi)β min
pi∈∆(Gi)

"X
ω̄∈Ω

pi(ω̄)ϕ(ω̄) + ct+1(Gi, p
i)

#
+ γt (ω, r)

!

= min
r∈∆G

Ã
gX
i=1

min
pi∈∆(Gi)

r(Gi)β

"X
ω̄∈Ω

pi(ω̄)ϕ(ω̄) + ct+1(Gi, p
i)

#
+ γt (ω, r)

!

= min
r∈∆G

Ã
gX
i=1

min
pi∈∆(Gi)

"X
ω̄∈Ω

βr(Gi)p
i(ω̄)ϕ(ω̄) + βr(Gi)ct+1(Gi, p

i)

#
+ γt (ω, r)

!

= min
r∈∆G

Ã
min

p1∈∆(G1),...,pg∈∆(Gg)

gX
i=1

"X
ω̄∈Ω

βr(Gi)p
i(ω̄)ϕ(ω̄) + βr(Gi)ct+1(Gi, p

i)

#
+ γt (ω, r)

!

= min
r∈∆G

Ã
min

p1∈∆(G1),...,pg∈∆(Gg)

Ã
gX
i=1

"X
ω̄∈Ω

βr(Gi)p
i(ω̄)ϕ(ω̄) + βr(Gi)ct+1(Gi, p

i)

#
+ γt (ω, r)

!!

= min
r∈∆G

Ã
min

p1∈∆(G1),...,pg∈∆(Gg)

Ã
gX
i=1

X
ω̄∈Ω

βr(Gi)p
i(ω̄)ϕ(ω̄) +

gX
i=1

βr(Gi)ct+1(Gi, p
i) + γt (ω, r)

!!

= min
r∈∆G

Ã
min

p1∈∆(G1),...,pg∈∆(Gg)

ÃX
ω̄∈Ω

Ã
gX
i=1

r(Gi)p
i(ω̄)

!
βϕ(ω̄) +

gX
i=1

βr(Gi)ct+1(Gi, p
i) + γt (ω, r)

!!

= min
r∈∆G,p1∈∆(G1),...,pg∈∆(Gg)

ÃX
ω̄∈Ω

Ã
gX
i=1

r(Gi)p
i(ω̄)

!
βϕ(ω̄) +

gX
i=1

βr(Gi)ct+1(Gi, p
i) + min

p∈∆(Gt(ω)):p|Gt+1=r
ct(ω, p)

!

= min
q∈∆(Gt(ω))

X
ω̄∈Ω

q(ω̄)βϕ(ω̄) +
X

i=1,...,g
q(Gi)>0

βq(Gi)ct+1(Gi, qGi
) + min

p∈∆(Gt(ω)):p|Gt+1=q|Gt+1
ct(ω, p)

 .

Last equality holds since ∆ (Gt (ω)) =
© Pg

i=1 r(Gi)p
i : r ∈ ∆G, pi ∈ ∆ (Gi) ∀i = 1, ..., g

ª
, and

q ∈ ∆ (Gt (ω)) can be written as q =
P

i=1,...,g r(Gi)p
i with r ∈ ∆G and pi ∈ ∆ (Gi) if and only

if r = q|Gt+1 and pi = qGi for all i = 1, ..., g with q (Gi) = r (Gi) > 0 (clearly pi can be chosen
arbitrarily in ∆ (Gi) if q (Gi) = r (Gi) = 0). ¤

Steps 7 and 9 imply that {%t,ω} satisfy DC iff for all t < T , ω ∈ Ω, and ϕ ∈ RΩ

Jt,ω (βϕ) = min
q∈∆(Gt(ω))

hβϕ, qi+ β
X

G∈Gt+1
q(G)>0

q(G)ct+1(G, qG) + min
p∈∆(Gt(ω)):p|Gt+1=q|Gt+1

ct(ω, p)

 ;
Eq. (32) and Lemma 1 guarantee that this is equivalent to ct (ω, ·) = co (ηt (ω, ·) + νt (ω, ·)) where
ηt (ω, ·) and νt (ω, ·) are defined in Steps 4 and 3. These steps also guarantee closure and convexity
of ηt (ω, ·) and νt (ω, ·). That is (a) ⇔ (b).

(a) ⇔ (c) can be proved in a similar way. ¥

Remark 1 In particular, for a dynamic ambiguity index {ct} conditions (30) and (31) are equiv-
alent.
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A.3 Proof of Theorem 1

(a)⇒ (b) By Proposition 3 and Lemma 5 there exist a scalar β > 0, an unbounded affine function
u : X → R, and a dynamic ambiguity index {ct}, such that: for each (t, ω) ∈ T × Ω, %t,ω is
represented by Vt (ω, h) = infp∈∆++(Ω)

³R P
τ≥t β

τ−tu (hτ ) dpGt(ω) + ct
¡
ω, pGt(ω)

¢´
for all h ∈ H.

Lemma 6 guarantees that (11) holds.
(b) ⇒ (a) Assume that there exist a scalar β > 0, an unbounded affine function u : X → R,

and a dynamic ambiguity index {ct}, such that: for each (t, ω) ∈ T × Ω, %t,ω is represented by
Vt (ω, h) = infp∈∆++(Ω)

³R P
τ≥t β

τ−tu (hτ ) dpGt(ω) + ct
¡
ω, pGt(ω)

¢´
for all h ∈ H. By Proposition

1, {%t,ω} satisfy CP, VP, RP, and FS., and so, by (11) and Lemma 6, {%t,ω} satisfy DC.
Uniqueness of the representation follows again from Proposition 1. ¥

A.4 Proof of Proposition 2

(i) is trivial. Step 2 of the proof of Lemma 6 shows that γt (ω, ·) is grounded, closed and convex,
with dom γt (ω, ·) ⊆ ∆ (Gt (ω) ,Gt+1), for all t < T and all ω ∈ Ω. It only remains to show
that and dom γt (ω, ·) ∩ ∆++ (Gt (ω) ,Gt+1) 6= ∅. Take p◦ ∈ ri∆ (Gt (ω)) ∩ dom ct (ω, ·), then
r◦ = p◦|Gt+1 ∈ ∆

++ (Gt (ω) ,Gt+1) and γt (ω, r
◦) = minp∈∆(Gt(ω)):p|Gt+1=r

◦ ct(ω, p) ≤ ct(ω, p
◦) <∞.

¥

A.5 Proof of Theorem 2

(a) ⇒ (b) is an immediate consequence of the definition of recursive ambiguity index and Propo-

sition 2.
(b)⇒ (a) The proof that {ct} is a dynamic ambiguity index is by backward induction. Clearly,

cT satisfies (i) and (ii) of the definition of dynamic ambiguity index. Next we assume that ct+1
(0 ≤ t < T ) satisfies (i) and (ii) of the definition of dynamic ambiguity index, and show that ct
satisfies them.
By assumption, ct+1 : Ω×∆ (Ω)→ [0,∞] is such that:

(i) ct+1 (·, p) : Ω→ [0,∞] is measurable w.r.t. Gt+1 for all p ∈ ∆ (Ω),
(ii) ct+1 (ω, ·) : ∆ (Ω) → [0,∞] is grounded, closed and convex, with dom ct (ω, ·) ⊆ ∆ (Gt+1 (ω))

and dom ct+1 (ω, ·) ∩∆++ (Gt+1 (ω)) 6= ∅, for all ω ∈ Ω.
Clearly, for all ω ∈ Ω, the function ct (ω, ·) appearing in (b) is well defined (since ct+1 satisfies

(i)) and ct (ω, ·) = ct (ω
0, ·) if Gt (ω) = Gt (ω

0).
Step 4 of the proof of Lemma 6 shows that for all ω ∈ Ω the function ηt (ω, ·) : ∆ (Gt (ω)) →

[0,∞] defined by ηt (ω, q) ≡
P

G∈Gt+1
q(G)>0

q(G)ct+1(G, qG) for all q ∈ ∆ (Gt (ω)) is closed and convex.

Since q 7→ q|Gt+1 is affine (and continuous) from ∆ (Ω) to ∆ (Ω,Gt,+1) and γt (ω, ·) : ∆ (Ω,Gt+1)→
[0,∞] is grounded, closed and convex, with effective domain in∆ (Gt (ω) ,Gt+1), then q 7→ γt

¡
ω, q|Gt+1

¢
is closed and convex on ∆ (Ω) and its effective domain is contained in ∆ (Gt (ω)). We conclude
that, for all ω ∈ Ω, the function ct (ω, ·) appearing in (b) is closed and convex, from ∆ (Ω) to [0,∞],
with dom ct (ω, ·) ⊆ ∆ (Gt (ω)).
Next we show that ct (ω, ·) is grounded. Choose arbitrarily ω ∈ Ω, there exists r ∈ ∆ (Ω,Gt+1)

such that r (Gt (ω)) = 1 and γt (ω, r) = 0; moreover, for all G ∈ Gt+1 there exists pG ∈ ∆ (G) such
that ct+1(G, pG) = 0, set q ≡

P
G∈Gt+1 r (G) p

G to obtain ct (ω, q) =
P

G∈Gt+1
q(G)>0

q(G)ct+1(G, qG) +

γt
¡
ω, q|Gt+1

¢
=
P

G∈Gt+1
r(G)>0

r(G)ct+1(G, p
G) + γt (ω, r) = 0.

It remains to show that ri∆ (Gt (ω)) ∩ dom ct (ω, ·) 6= ∅ for all ω ∈ Ω. Choose arbitrarily ω ∈
Ω, there exists r ∈ ∆++ (Gt (ω) ,Gt+1) such that γt (ω, r) <∞; moreover, for all G ∈ Gt+1 there ex-
ists pG ∈ ri∆ (G) such that ct+1(G, pG) <∞, set q ≡

P
G∈Gt+1 r (G) p

G to obtain q ∈ ri∆ (Gt (ω))
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and ct (ω, q) =
P

G∈Gt+1
q(G)>0

q(G)ct+1(G, qG) + γt
¡
ω, q|Gt+1

¢
=
P

G∈Gt+1
r(G)>0

r(G)ct+1(G, p
G) + γt (ω, r) <

∞. This concludes the proof that {ct} is a dynamic ambiguity index.

Moreover, notice that minp∈∆(Gt(ω)):p|Gt+1=q|Gt+1

ÃP
G∈Gt+1
p(G)>0

p(G)ct+1(G, pG)

!
= 0 for all ω ∈

Ω, t < T , and q ∈ ∆ (Gt (ω)) (it is enough to take, for all G ∈ Gt+1, pG ∈ ∆ (G) such that
ct+1(G, p

G) = 0 and set p ≡
P

G∈Gt+1 q (G) p
G). Therefore,

β
X

G∈Gt+1
q(G)>0

q(G)ct+1(G, qG) + min
p∈∆(Gt(ω)):p|Gt+1=q|Gt+1

ct(ω, p)

= β
X

G∈Gt+1
q(G)>0

q(G)ct+1(G, qG) + min
p∈∆(Gt(ω)):p|Gt+1=q|Gt+1

β
X

G∈Gt+1
p(G)>0

p(G)ct+1(G, pG) + γt
¡
ω, p|Gt+1

¢

= β
X

G∈Gt+1
q(G)>0

q(G)ct+1(G, qG) + γt
¡
ω, q|Gt+1

¢
+ β min

p∈∆(Gt(ω)):p|Gt+1=q|Gt+1

 X
G∈Gt+1
p(G)>0

p(G)ct+1(G, pG)


= β

X
G∈Gt+1
q(G)>0

q(G)ct+1(G, qG) + γt
¡
ω, q|Gt+1

¢
= ct(ω, q) ∀ω ∈ Ω, t < T, q ∈ ∆ (Gt (ω)) .

Hence {ct} satisfies condition (11) and it is a recursive ambiguity index.
Finally, the above equalities deliver γt

¡
ω, q|Gt+1

¢
= minp∈∆(Gt(ω)):p|Gt+1=q|Gt+1

ct(ω, p) for all
ω ∈ Ω, t < T , and q ∈ ∆ (Gt (ω)), which implies (13) for r ∈ ∆ (Gt (ω) ,Gt+1). If r /∈
∆ (Gt (ω) ,Gt+1), then γt (ω, r) = ∞ = minp∈∆(Gt(ω)):p|Gt+1=r

ct(ω, p) (the first equality descend-

ing from the definition of one-period-ahead ambiguity index, the second from the convention we
adopted for minima over the empty set). We can conclude that (13) holds for all r ∈ ∆ (Ω,Gt+1)
and that {γt} is unique. ¥

A.6 Proof of Corollary 1

It is easy to see that the effect of MP(ii) on the representation provided by Proposition 1 is
guaranteeing that, for every t ∈ T and ω ∈ Ω, ct (ω, p) = δCt(ω) (p), for a closed and convex subset
Ct (ω) ⊆ ∆ (Ω).
The relation dom ct,ω ⊆ ∆ (Gt (ω)) implies Ct (ω) ⊆ ∆ (Gt (ω)). Denote by G = {G1, ..., Gg}

the set of all elements of Gt+1 contained in Gt (ω), and write indifferently Ci or Ct+1 (Gi). Let
ω ∈ Ω and t < T . Condition (11) is equivalent to

Ct (ω) =

(
q ∈ ∆ (Gt (ω))

¯̄̄̄
¯βPG∈Gt+1

q(G)>0

q(G)δCt+1(G)(qG) + minp∈∆(Gt(ω)):p|Gt+1=q|Gt+1
δCt(ω)(p) = 0

)

=

½
q ∈ ∆ (Gt (ω))

¯̄̄̄
β
P

i=1,...,g
q(Gi)>0

q(Gi)δCi(qGi) + minp∈∆(Gt(ω)):p|Gt+1=q|Gt+1
δCt(ω)(p) = 0

¾

=

Pi=1,...,g r(Gi)p
i

¯̄̄̄
¯̄ r ∈ ∆G, pi ∈ ∆ (Gi) ∀i = 1, ..., g,
β
P

i=1,...,g
r(Gi)>0

r(Gi)δCi(p
i) + minp∈∆(Gt(ω)):p|Gt+1=r

δCt(ω)(p) = 0


=

Pi=1,...,g r(Gi)p
i

¯̄̄̄
¯̄̄ r ∈ ∆G, pi ∈ ∆ (Gi) ∀i = 1, ..., g,
δCi(p

i) = 0 for all i s.t. r (Gi) > 0,

δCt(ω)(p) = 0 for some p ∈ ∆ (Gt (ω)) : p|Gt+1 = r


=

Pi=1,...,g r(Gi)p
i

¯̄̄̄
¯̄̄ r ∈ ∆G, pi ∈ ∆ (Gi) ∀i = 1, ..., g,
pi ∈ Ci for all i = 1, ..., g,

r ∈ Ct (ω)|Gt+1


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=

(P
i=1,...,g r(Gi)p

i

¯̄̄̄
¯ pi ∈ Ct+1 (Gi) for all i = 1, ..., g,
r ∈ Ct (ω)|Gt+1

)

=
nP

G∈Gt+1 p
Gr (G)

¯̄̄
pG ∈ Ct+1 (G) ∀G ∈ Gt+1 and r ∈ Ct (ω)|Gt+1

o
. ¥

A.7 Proof of Theorem 3

W.l.o.g., set θ = 1 and denote by q◦ the reference probability of the statement. The properties of
the relative entropy (see, e.g., [20]) guarantee that {ct} (as defined by (17)) is a dynamic ambiguity
index. By Theorem 1, we only have to show that {ct} satisfies (11) or the equivalent (31), see
Remark 1.

Next we show that, for all t < T , ω ∈ Ω, and q ∈ ri∆ (Gt (ω)),

ct,ω (q) = β
X

G∈Gt+1
G⊆Gt(ω)

q(G)ct+1,G(qG) + inf
p∈ri∆(Gt(ω)):p|Gt+1=q|Gt+1

ct,ω(p). (35)

For all p ∈ ri∆ (Gt (ω)), ct,ω (p) = 1
βt

P
ω0∈Gt(ω)

pGt(ω) (ω
0) log

pGt(ω)(ω
0)

q◦
Gt(ω)

(ω0) =
1
βt

P
ω0∈Gt(ω)

pω0 log
pω0

q◦
Gt(ω),ω

0

where pω0 ≡ p (ω0) and q◦Gt(ω),ω0 ≡ q◦Gt(ω)
(ω0). For all G ∈ Gt+1 such that G ⊆ Gt (ω) and all

p ∈ ri∆ (G), ct+1,G (p) = 1
βt+1

P
ω0∈G pG,ω0 log

pG,ω0
q◦
G,ω0

= 1
βt+1

P
ω0∈G pω0 log

pω0
q◦
Gt(ω) G,ω0

. To sim-

plify the notation, set S = Gt (ω), q̄ = q◦S , G = {G ∈ Gt+1 : G ⊆ Gt (ω)} (notice that G is a

partition of S). Choose arbitrarily q ∈ ri∆ (Gt (ω)), βt+1ct+1,G (qG) =
P

s∈G
qs
q(G) log

qs
q(G)

q̄(G)
q̄s

=
1

q(G)

P
s∈G qs log

qs
q̄s
+ 1

q(G)

P
s∈G qs log

q̄(G)
q(G) =

1
q(G)

P
s∈G qs log

qs
q̄s
− log q(G)

q̄(G) . Then, for all q ∈
ri∆ (Gt (ω)), β

P
G∈Gt+1
G⊆Gt(ω)

q(G)ct+1,G(qG) = β
P

G∈G q(G)
1

βt+1

³
1

q(G)

P
s∈G qs log

qs
q̄s
− log q(G)

q̄(G)

´
=

1
βt

³P
G∈G

P
s∈G qs log

qs
q̄s
−
P

G∈G q(G) log
q(G)
q̄(G)

´
= 1

βt

P
s∈S qs log

qs
q̄s
− 1

βt

P
G∈G q(G) log

q(G)
q̄(G) , i.e.

β
X

G∈Gt+1
G⊆Gt(ω)

q(G)ct+1,G(qG) = ct,ω (q)−
1

βt

X
G∈G

q(G) log
q (G)

q̄ (G)
. (36)

Moreover, for all q ∈ ri∆ (Gt (ω)), infp∈ri∆(Gt(ω)):p|Gt+1=q|Gt+1
ct,ω(p) = infp∈ri∆(S):p|G=q|G ct,ω(p)

is the value of the problem 

inf
1

βt
P

s∈S ps log
ps
q̄s

sub

ps > 0 ∀s ∈ SP
s∈S ps = 1P
s∈G ps = q (G) ∀G ∈ G.

(37)

We solve the easier problem 
inf
P

s∈S ps log
ps
q̄s

subP
s∈G ps = q (G) ∀G ∈ G

(38)

and observe that the solution p◦ is unique, it is a strictly positive vector (this is also required
for the existence of log p◦s

q̄s
),
P

s∈S p
◦
s =

P
G∈G

P
s∈G p◦s =

P
G∈G q (G) = 1, and obviously the

constant βt has no effect. Thus p◦ is the solution of problem (37). The Lagrangian of problem
(38) is L (p, λ) =

P
s∈S ps log

ps
q̄s
−
P

G∈G λG
¡P

s∈G ps − q (G)
¢
, denoting by G (s) the element of

G containing s, the first order conditions are log
ps
q̄s
+ 1− λG(s) = 0 ∀s ∈ SP

s∈G ps = q (G) ∀G ∈ G
(39)
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simple manipulation yields (
ps = q̄s exp

¡
λG(s) − 1

¢
∀s ∈ SP

s∈G ps = q (G) ∀G ∈ G
(40)

then the observation that G (s) = G (w) for all s ∈ G (w) implies(
ps = q̄s exp

¡
λG(s) − 1

¢
∀s ∈ SP

s∈G(w) q̄s exp
¡
λG(w) − 1

¢
= q (G (w)) ∀w ∈ S

(41)

and 
exp

¡
λG(w) − 1

¢
=

q (G (w))

q̄ (G (w))
∀w ∈ S

ps = q̄s
q (G (s))

q̄ (G (s))
∀s ∈ S.

(42)

The solution is 
λ◦G = 1 + log

q (G)

q̄ (G)
∀G ∈ G

p◦s = q̄s
q (G (s))

q̄ (G (s))
∀s ∈ S

(43)

which plugged into the value function 1
βt

P
s∈S ps log

ps
q̄s
delivers infp∈ri∆(Gt(ω)):p|Gt+1=q|Gt+1

ct,ω(p) =

1
βt

P
s∈S p

◦
s log

p◦s
q̄s
= 1

βt

P
s∈S q̄s

q(G(s))
q̄(G(s)) log

q(G(s))
q̄(G(s)) =

1
βt

P
G∈G

P
s∈G q̄s

q(G)
q̄(G) log

q(G)
q̄(G) , finally

inf
p∈ri∆(Gt(ω)):p|Gt+1=q|Gt+1

ct,ω(p) =
1

βt

X
G∈G

q (G) log
q (G)

q̄ (G)
(44)

which together with Eq. (36) delivers Eq. (35).
Setting, for all t < T , ω ∈ Ω, and q ∈ ∆ (Ω),

(t,ω (q) =

 β
P

G∈Gt+1
G⊆Gt(ω)

q(G)ct+1,G(qG) + infp∈ri∆(Gt(ω)):p|Gt+1=q|Gt+1
ct,ω(p) if q ∈ ri∆ (Gt (ω))

∞ otherwise

the function (t,ω coincides with the closed and convex function ct,ω on ri (∆ (Gt (ω))). Take
q ∈ ri

¡
dom (t,Gt(ω)

¢
= ri (∆ (Gt (ω))) , by [26, Thm. 7.5], for all p ∈ ∆ (Gt (ω)),

co (t,ω (p) = lim
λ↑1

(t,ω ((1− λ) q + λp) = lim
λ↑1

ct,ω ((1− λ) q + λp) = ct,ω (p) . (45)

Since Eq. (45) is a fortiori true if p /∈ ∆ (Gt (ω)), condition (31) holds, as wanted.
To complete the proof we need to prove (18). Let ct,ω (p) ≡ β−tR

³
pGt(ω)kq◦Gt(ω)

´
for all

(t, ω, p) ∈ T ×Ω×∆ (Ω). Fix ω ∈ Ω and t < T . Step 4 of the proof of Lemma 6 shows that there
is a suitable p ∈ ri (∆ (Gt (ω))) such that for all q ∈ ∆ (Gt (ω))X

G∈Gt+1
q(G)>0

q (G) ct+1,G (qG) = lim
α↑1

X
G∈Gt+1
G⊆Gt(ω)

(αq + (1− α) p) (G) ct+1,G ((αq + (1− α) p)G) .

Moreover, by definition of ct,ω,∞ > ct,ω (q) = limα↑1 ct,ω (αq + (1− α) p). Since {ct} is a recursive
ambiguity index we have γt,ω

¡
q|Gt+1

¢
= ct,ω (q)−

P
G∈Gt+1
q(G)>0

q (G) ct+1,G (qG), since both summands

are finite, γt,ω
¡
q|Gt+1

¢
= limα↑1

¡
ct,ω (qαp)−

P
G∈G (qαp) (G) ct+1,G ((qαp)G)

¢
where qαp = αq +

(1− α) p, but qαp ∈ ri (∆ (Gt (ω))) and Eq. (36) delivers

γt,ω
¡
q|Gt+1

¢
= lim

α↑1

1

βt

X
G∈Gt+1
G⊆Gt(ω)

(αq + (1− α) p) (G) log
(αq + (1− α) p) (G)

q◦Gt(ω)
(G)

=
1

βt

X
G∈G

q(G)>0

q (G) log
q (G)

q◦Gt(ω)
(G)

=
1

βt

X
G∈Gt+1

q (G) log
q (G)

q◦Gt(ω)
(G)
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for all q ∈ ∆ (Gt (ω)). By Proposition 2, γt,ω
¡
q|Gt+1

¢
= ∞ if q ∈ ∆ (Ω) \∆ (Gt (ω)). Therefore,

γt,ω (r) = β−tRGt+1

µ
rk
³
q◦Gt(ω)

´
|Gt+1

¶
for all r ∈ ∆ (Ω,Gt+1). By (12), this implies (18). ¥

A.8 Proofs of Theorems 4 and 5

We first prove Theorem 5. Choose ω ∈ Ω, t < T , and f ∈ F . First observe that if e and ē belong to
Et, e (t, ω) = ē (t, ω), and e (t+ 1, ω0) = ē (t+ 1, ω0) for all ω0 ∈ Gt (ω), then, by CP, Vt (ω, f + e) =

Vt (ω, f + ē). Therefore, ∂Vt (ω, f) = {(k,m) ∈ R×M (Gt (ω) ,Gt+1) : V 0
t (ω, f ; e) ≤ ket (ω) +

β
R
et+1dm for all e ∈ E (t, ω)} where E (t, ω) is the set of all {Gt}-adapted processes e such that

e (τ, ω0) = 0 if τ 6= t, t+ 1 or ω0 /∈ Gt (ω).
For all e ∈ E (t, ω): If t = T−1, then Vt+1 (ω0, f + e) = VT (ω

0, f + e) = u (fT (ω
0) + eT (ω

0)) for
all ω0 ∈ Ω; set ϕ (ω0) = 0 for all ω0 ∈ Ω, and get Vt+1 (ω0, f + e) = u (ft+1 (ω

0) + et+1 (ω
0))+ϕ (ω0).

Else Vt+1 (ω0, f + e) = u (ft+1 (ω
0) + et+1 (ω

0))+minp∈∆(Ω,Gt+2)
¡
β
R
Vt+2 (f + e) dp+ γt+1 (ω

0, p)
¢
=

u (ft+1 (ω
0) + et+1 (ω

0)) + minp∈∆(Ω,Gt+2)
¡
β
R
Vt+2 (f) dp+ γt+1 (ω

0, p)
¢
for all ω0 ∈ Ω, where the

last equality descends from CP and the fact that fτ + eτ = fτ for all τ ≥ t+2. Gt+1-measurability
of Vt+1 (·, f + e), ft+1, and et+1 implies Gt+1-measurability of the function ϕ defined by ϕ (ω0) =

minp∈∆(Ω,Gt+2)
¡
β
R
Vt+2 (f) dp+ γt+1 (ω

0, p)
¢
for all ω0 ∈ Ω. Also in this case,

Vt+1 (ω
0, f + e) = u (ft+1 (ω

0) + et+1 (ω
0)) + ϕ (ω0) ∀ω0 ∈ Ω. (46)

Denote by G = {G1, ..., Gg} the set of all elements of Gt+1 contained in Gt (ω), by ∆G
(resp. M (G)) the set ∆ (Gt (ω) ,Gt+1) (resp. M (Gt (ω) ,Gt+1)), by �f = (f0, f1, ..., fg) the vector
(ft (ω) , ft+1 (G1) , ..., ft+1 (Gg)) for all f ∈ F , by �m = (m1, ...,mg) the vector (m (G1) , ...,m (Gg))

for all m ∈M (G), and by �ϕ = (ϕ1, ..., ϕg) the vector (ϕ (G1) , ..., ϕ (Gg)).
Notice that e 7→ �e defines a linear isomorphism between E (t, ω) and Rg+1, and set for all

�e = (e0, ..., eg) ∈ Rg+1

F (e0, ..., eg) = Vt (ω, f + e) = u (ft (ω) + et (ω)) + min
r∈∆G

µ
β

Z
Vt+1 (f + e) dr + γt (ω, r)

¶
= u (f0 + e0) + min

r∈∆G

µ
β

Z
[u (ft+1 (ω

0) + et+1 (ω
0)) + ϕ (ω0)] dr (ω0) + γt (ω, r)

¶
= u (f0 + e0) + min

r∈∆G

Ã
gX
i=1

β (u (fi + ei) + ϕi) ri + γt (ω, r)

!
.

Moreover, (k,m) ∈ ∂Vt (ω, f) iff limλ↓0 λ
−1 [Vt (ω, f + λe)− Vt (ω, f)] ≤ ket (ω) + β

R
et+1dm for

all e ∈ E (t, ω) iff limλ↓0 λ
−1
h
F (λ�e)− F

³
�0
´i
≤ ke0 +

Pg
i=1 βmiei for all �e ∈ Rg+1 iff (k, β �m)

belongs to the superdifferential of Convex Analysis ∂F
³
�0
´
of F at �0.

For each j = 0, 1, ..., g, consider:

• the concave function φj : Rg+1 → R defined by φj (�e) ≡ βj (u (fj + ej) + ϕj) for all �e ∈ Rg+1,
with the convention ϕ0 ≡ 0, β0 ≡ 1, βj ≡ β if j = 1, ..., g;

• the row vector Aj corresponding to the projection on the j-th component;

• the function βju+ βjϕj : R→ R.
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Then φj (�e) = (βju+ βjϕj) ◦ (Aj + fj) (�e) and, by [16, Vol. I Thm. VI.4.2.1],

∂φj (�e) = AT
j ∂ (βju+ βjϕj) ((Aj + fj) (�e))

= AT
j βj∂u (fj + ej) =




0

...

βju
0 (fj + ej)

...

0



¯̄̄̄
¯̄̄̄
¯̄̄̄ u0 (fj + ej) ∈ ∂u (fj + ej)


.

Consider the function Φ : Rg+1 → R defined by Φ (�v) ≡ v0 +minr∈∆G (
Pg

i=1 viri + γt (ω, r)). It is
easy to check that Φ is concave, monotonic, and

∂Φ (�v) =



1

ρ1

...

ρg


¯̄̄̄
¯̄̄̄
¯ ρ ∈ arg minr∈∆G

Ã
gX
i=1

viri + γt (ω, r)

! .

For all �e ∈ Rg+1, F (�e) = Φ (φ0 (�e) , φ1 (�e) , ..., φg (�e)) and, setting ρ0 = 1, [16, Vol. I Thm. VI.4.3.1]
delivers:

∂F (0) =


gX
i=0

ρi


0

...

βiu
0 (fi)

...

0



¯̄̄̄
¯̄̄̄
¯̄̄̄ ρ ∈ argminr∈∆G (

Pg
i=1 (β (u (fi) + ϕi)) ri + γt (ω, r))

u0 (fi) ∈ ∂u (fi) ∀i = 0, ..., g


=




u0 (f0)

βu0 (f1) ρ1

...

βu0 (fg) ρg


¯̄̄̄
¯̄̄̄
¯

ρ ∈ argminr∈∆G (
Pg

i=1 (β (u (fi) + ϕi)) ri + γt (ω, r))

u0 (fi) ∈ ∂u (fi) ∀i = 0, ..., g

 ,

whence

∂Vt (ω, f) =

(u0 (ft (ω)) ,m)
¯̄̄̄
¯̄̄ m (G) = u0 (ft+1 (G)) ρ (G) ∀G ∈ Gt+1,

ρ ∈ argminr∈∆G
¡
β
R
(u (ft+1 (ω

0)) + ϕ (ω0)) dr (ω0) + γt (ω, r)
¢
,

u0 (ft (ω)) ∈ ∂u (ft (ω)) , u
0 (ft+1 (G)) ∈ ∂u (ft+1 (G)) ∀G ∈ Gt+1

 ,

which together with (46) (i.e. u (ft+1) + ϕ = Vt+1 (f)) delivers (21), and concludes the proof of
Theorem 5.

The proof of Theorem 4 starts with the observation that, for every ω ∈ Ω, t < T , and f ∈ F ,
V 0
t (ω, f ; ·) is linear iff F 0

³
�0; ·
´
is linear iff ∂F

³
�0
´
is a singleton iff ∂Vt (ω, f) is a singleton. If u is

differentiable and γt (ω) is essentially strictly convex, then [26, Thm. 26.3] guarantees that

I (v1, ..., vg) ≡ min
r∈∆G

Ã
gX
i=1

viri + γt (ω, r)

!
∀ (v1, ..., vg) ∈ Rg (47)

is differentiable, and hence Φ and F are differentiable. Conversely, if u is not differentiable,

just take �f ∈ Rg+1 with f0 a point of non-differentiability of u to find a nonsingleton ∂F
³
�0
´
.

Then differentiability of Vt (ω) implies differentiability of u. If γt (ω) is not essentially strictly
convex, then (again by [26, Thm. 26.3]) the functional I defined by (47) is not differentiable,
and there exists

¡
v◦1 , ..., v

◦
g

¢
∈ Rg such that there are two different ρ and ρ̄ ∈ ∂I

¡
v◦1 , ..., v

◦
g

¢
=

argminr∈∆G (
Pg

i=1 v
◦
i ri + γt (ω, r)). Since u (R) is unbounded, there are f ∈ F and b ∈ R such that
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β (u (fi) + ϕi) = v◦i+b for i = 1, ..., g. Then ρ, ρ̄ ∈ argminr∈∆G (
Pg

i=1 (β (u (fi) + ϕi)) ri + γt (ω, r)),
moreover u0 (z) 6= 0 for all z ∈ R (u is strictly monotonic, concave, and differentiable), and hence

u0 (f0)

βu0 (f1) ρ1

...

βu0 (fg) ρg

 and


u0 (f0)

βu0 (f1) ρ̄1

...

βu0 (fg) ρ̄g


are two distinct elements of ∂F

³
�0
´
, which is absurd. ¥
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