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POLYNOMIAL-SIZE VECTORS ARE ENOUGH FOR THE UNIMODULAR

TRIANGULATION OF SIMPLICIAL CONES

MICHAEL VON THADEN

ABSTRACT. In a recent paper, Bruns and von Thaden established a bound for the length

of vectors involved in a unimodular triangulation of simplicial cones. The bound is expo-

nential in the square of the logarithm of the multiplicity, and improves previous bounds

significantly. In this paper we will prove that a bound, which is polynomial in the multi-

plicity µ , exists. In detail, the bound is of the type µ f(d) with f(d) ∈ O(d).

1. INTRODUCTION

Unimodular triangulations of polytopes, cones and polyhedral complexes are a useful

and important tool in many subfields of mathematics like algebraic geometry, commu-

tative algebra, (enumerative) combinatorics or integer programming. In toric geometry,

unimodular triangulations of cones correspond to desingularizations of a toric varieties.

Here, the standard method for desingularization normally leads to triangulations which

involve rather long vectors.

In [3] Bruns and von Thaden established a bound for the length of vectors involved in

a unimodular triangulation of simplicial cones. Length is hereby measured by the basic

simplex ∆C of C that is spanned by the origin and the extreme integral generators of C.

We are interested in an upper bound for the dilatation factor c for which all subdividing

vectors are contained in c∆C. Bruns and von Thaden gave an upper bound for c, which

was exponential in the square of the logarithm of the multiplicity of the cone C, hereby

improving a result from Bruns and Gubeladze [1, Theorem 4.1] which itself was a slight

improvement of the standard argument applied for the desingularization of toric varieties.

Bruns and von Thaden mentioned in [3] that the next goal would be a bound that is

polynomial in the multiplicity. In this paper we will prove that such a bound, which is

polynomial in the multiplicity µ , indeed exists: the bound is of type µ f(d) with f(d) ∈
O(d).

Of course, a corresponding result for the unimodular triangulation of lattice polytopes

would be very desirable but this seems currently out of reach. The best result so far is the

celebrated Knudsen-Mumford-Waterman theorem [5]. It states that a c′ exists such that

the multiples cP of a lattice polytope P have unimodular triangulations for all c ≥ c′. But

Knudsen, Mumford and Waterman did not provide an explicit bound. Recently, Haase,

Paffenholz, Piechnik and Santos closed this gap in [4] and provided an explicit bound,

which is doubly exponential in the volume of the lattice polytope P. Interestingly, if

one is only interested in unimodular covers of lattice polytopes instead of unimodular
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triangulations one can do much better. In [2] Bruns and Gubeladze showed that multiples

cP of lattice polytopes P can be covered by unimodular simplices for all c ≥ g(d) with

g ∈ O(d6). So, this threshold does only depend on d and not on the multiplicity of P.

[4] gives a comprehensive overview of the topic of unimodular triangulations as does

[2, Chapter 3]. Furthermore, we refer the reader to [2] for any unexplained terminology.

2. AUXILIARY RESULTS

One of the main ideas of the proof in [3] was that a cone whose multiplicity is a power

of 2, or, generally speaking, whose multiplicity is a product of small primes could be

triangulated using just short vectors. Therefore, in the first step one might wish to trian-

gulate a cone into subcones whose multiplicities are exclusively products of small primes

while keeping the subdividing vectors as short as possible.

If one wants to apply stellar subdivision to come up with a triangulation of C by cones

of the desired type, what kind of vectors should be used in the stellar subdivisions? Recall

that if the primitive vectors v1, . . . ,vd ∈ Z
d generate a simplicial cone C of dimension d,

and if U denotes the sublattice of Zd spanned by these vectors, then µ(C) is the index of

U in Z
d , and each residue class has a representative in

par(v1, . . . ,vd) = {q1v1 + · · ·+qdvd : 0 ≤ qi < 1}.

If p divides µ(C), then there is an element of order p in Z
d/U , and consequently there

exists a vector

(1) x =
1

p

d

∑
i=1

zivi ∈ Z
d \{0}, zi ∈ Z, 0 ≤ zi < p.

If we do now apply stellar subdivision with respect to x to C, then the resulting cones

Ei have multiplicities µ(Ei) = zi/p ·µ(C)< µ(C). So, in essence, one substitutes a prime

factor p in the factorization of µ(C) by the number zi. This means that if one could choose

x in a way that the zi are composite numbers, one increases the number of prime factors

for the triangulating cones hereby ensuring that the prime factors are getting smaller.

But are there always vectors of type (1) such that all the zi are composite numbers? In

general, this is not always the case: let d +1 be a prime number and let the cone C ⊂ R
d

be generated by the vectors

v1 =
d

∑
j=2

(d +1− j)e j +(d +1)e1, vi = ei, i = 2, . . . ,d.

Let P be the set of all primes. Then µ(C) = d+1 ∈ P. Furthermore, each residue class of

Z
d modulo the sublattice U generated by the vectors vi has a representative, which is of

the form

x j =
1

d +1

d

∑
k=1

( jk remd +1)vk, j = 1, . . . ,d +1,

where a remb denotes the remainder of a modulo b. Then, for every j we have

{ jk remd + 1 : k = 1, . . . ,d} = {1, . . . ,d}. So, in this case there is no vector x of the

form (1) such that all zi are just composite numbers.
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But is there a condition which ensures that such a vector x of type (1) with all zi being

composite numbers exists? We will now prove quite easily that par(v1, . . . ,vd) indeed

always contains a vector of form (1) such that all the zi are composite numbers – as long

as the largest prime factor of µ(C) is bounded below by eτd , where τ = 1.25506. This fact

is a direct consequence of the following lemma which has already been proved in [3] with

the help of an upper bound for the prime number counting function π(n), as provided by

Rosser & Schoenfeld in [6].

Lemma 2.1. With the notation introduced, let M ⊂ {1, . . . ,d} such that

|M| ≤
log(p)

τ
, τ = 1.25506.

Then there exists an element x of order p modulo U such that none of the coefficients zi,

i ∈ M, is an odd prime < p.

If one takes M = {1, . . . ,d}, the lemma implies that there exists an element x ∈ par(v1,
. . . ,vd) \ {0} of type (1) such that none of the coefficients zi, i = 1, . . . ,d in (1) is an odd

prime as long as

p ≥ eτd , τ = 1.25506.

Therefore, we have

Theorem 2.2. Let C = R+v1 + · · ·+R+vd ⊂ R
d, d ≥ 2 be a simplicial d-cone such that

pmax := pmax(µ(C))≥ eτd ,

where pmax(n) := max{p ∈ P : p | n}. Then there exists a vector

x =
1

pmax

(

d

∑
i=1

zivi

)

∈ par(v1, . . . ,vd)\{0}.

such that zi /∈ P>2 for all i.

Hence, as long as µ(C) has a prime factor p ≥ eτd , there is also an element x =
1
p

(

∑d
i=1 zivi

)

∈ par(v1, . . . ,vd) \ {0} such that all zi are composite numbers or are equal

to 2. These short vectors can then be used for successive stellar subdivision until one

arrives at cones Di for which pmax(µ(Di)) < eτd and which do constitute a triangulation

of the original cone C.

The following definition will help us to shorten any further explanations or statements

for this kind of triangulation procedures.

Definition 2.3. An f -triangulation is defined as a triangulation of a cone C by cones Di

for which pmax(µ(Di))< f for all i.

3. THE ALGORITHM

With the help of Theorem 2.2 we are now ready to formulate an algorithm which pro-

vides us with an eτd-triangulation of a cone C by cones Di. As we will see, the vectors

involved in this triangulation are short and the multiplicities of the cones Di in the result-

ing triangulation are smaller than the multiplicity µ(C) of the original cone C.
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Bounded prime factors triangulation – BPFT

Input: The initial cone C = R+v1 + · · ·+R+vd ⊂ R
d

Output: An eτd-triangulation T̂ (C) of C

1: T̂ (C) := {C}
2: Â(C) := {C}
3: ξC(−i) := vi for i = 1, . . . ,d
4: ξC(i) := 0 for i ∈ N0

5: while T̂ (C) contains a cone D = R+ξD(i1)+ · · ·+R+ξD(id) (where i1 > i2 > .. . >
id ≥−d) such that pmax(µ(D))≥ eτd do

6: p := pmax(µ(D))

7: FIND x = 1/p

(

∑d
j=1 z jξD(i j)

)

∈ par(ξD(i1), . . . ,ξD(id)) \ {0} such that z j /∈ P>2

for all j (exists due to Theorem 2.2)

8: for all E ∈ T̂ (C) with x ∈ E do

9: Apply stellar subdivision to E by x (let E j ( j = 1, . . . ,m) be the resulting cones)

10: T̂ (C) := (T̂ (C)\{E})∪{E j : j = 1, . . . ,m}

11: Â(C) := Â(C)∪{E j : j = 1, . . . ,m}
12: end for

13: ν := max{i : ξE(i) 6= 0}
14: for all j = 1, . . . ,m do

15: for all k ≤ ν do

16: ξE j
(k) := ξE(k)

17: end for

18: ξE j
(ν +1) := x

19: end for

20: end while

21: Return T̂ (C)

For a simplicial d-cone C the BPFT algorithm computes an eτd-triangulation of C. It

applies successive stellar subdivisions to the initial cone C and it stops when all multi-

plicities only have prime factors smaller than eτd . Finally, it stops after finitely many

iterations, because, if E results from D by stellar subdivision in the course of the BPFT

algorithm, then we have µ(E) < µ(D).
As in [3] the set Â(C) contains the original cone C and all cones being created in

the course of the algorithm and the set T̂ (C) is a strict subset of Â(C) unless µ(C) is not

divisible by a prime greater than or equal to eτd . Â(C) has been introduced out of technical

reasons; it will help us to analyze certain properties of the resulting triangulation. The

vectors ξD(i) for a cone D include all extremal generators of all cones E containing the

cone D. In particular, they also include the extremal generators of the cone D itself.

In section 4 we will show that the generators of the resulting cones Ei ∈ T̂ (C) are short.

Building on these results we will finally, in section 5, introduce new bounds for the length

of vectors involved in unimodular triangulations of simplicial cones.
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4. BOUNDS FOR eτd-TRIANGULATION

Theorem 4.1. Let D ∈ T̂ (C). Then, for all s ≥ 0

ξD(s) ∈

(

d ·2s

)

∆C.

Proof. The proof of this theorem is similar to the proof of Theorem 4.1 in [1] and the

proof of Theorem 2.1 in [3]. We consider the following sequence:

hk = 1, k ≤−1, hk = hk−1 + · · ·+hk−d , k ≥ 0.

Because

hk −hk−1 = hk−1 −hk−d−1

for k ≥ 1 and h0 ≥ hl for l ≤−1, it follows by induction that this sequence is increasing.

Since for k ≥ 1

hk = hk−1 +(hk−2 + · · ·+hk−d−1)−hk−d−1 = 2hk−1 −hk−d−1 < 2hk−1,

and because h0 = d, we arrive at

hk ≤ d ·2k

for k ≥ 0. This inequality will be needed in the following.

Now, we will prove via induction on s that

ξD(s) ∈ hs∆C

So, let s = 0. If ξD(0) = 0, there is nothing to prove.

So, suppose that ξD(0) 6= 0. By the construction of ξD(0) it follows that this vector was

used for the stellar subdivision of the initial cone C. Hence, ξD(0) is of the form

ξD(0) =
d

∑
i=1

zivi ∈ Z
d \{0}.

where zi < 1 for all i. Therefore, x ∈ d∆C, which finishes the case s = 0.

For the induction step assume the statement is true for s−1 ≥ 0. Again there is nothing

to prove if ξD(s) = 0. Otherwise ξD(s) 6= 0 is a vector used for stellar subdivision. With

the same notation as above, it follows by construction of ξD(s), that

ξD(s) =
d

∑
i=1

ziξD( ji) ∈ Z
d \{0}

such that s > j1 > j2 > .. . > jd and again zi < 1. So, it follows by induction that

ξD(s) ∈ (h j1 + · · ·+h jd )∆C.

Because the hi are increasing, this means that

ξD(s) ∈ (hs−1 + · · ·+hs−d)∆C = hs∆C,

which finishes the proof. �
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The next definition will be helpful in showing that the length of every chain of cones

E0 = D ⊂ E1 ⊂ E2 . . .⊂ EL =C,

where Ei is generated from Ei+1 by stellar subdivision and D belongs to the resulting

eτd-triangulation of C, is relatively short.

Definition 4.2. Let n be a natural number, n = ∏∞
i=1 p

αi

i be its prime decomposition. Then

we define φ(n)= ld(n)−η(n), where η(n)=∑∞
i=1 αi. Hence, φ(n)=∑∞

i=1 αi (ld(pi)−1).

The function φ has some obvious nice properties.

Lemma 4.3.

(1) φ(ab) = φ(a)+φ(b) for a,b ∈ N,

(2) φ(a/b) = φ(a)−φ(b) for a,b ∈ N, b | a,

(3) φ(a)≥ 0 for a ∈ N.

Lemma 4.4. Let D,E ∈ Â(C) such that E results from D by stellar subdivision in the

course of the BPFT algorithm. Then

φ(µ(E))≤ φ(µ(D))−1.

Proof. Due to lines 7 and 9 of the algorithm,

µ(E) = µ(D)
f

pmax
,

where pmax = max{p ∈ P : p|µ(D)} and f ∈ N>0 is either

(1) a composite number smaller than pmax, i.e. f = uv with natural numbers u,v > 1

or

(2) f = 2 < pmax.

For the first case we have by Lemma 4.3 and because pmax | µ(D)

φ(µ(E)) = φ(µ(D))−φ(pmax)+φ( f ) =

φ(µ(D))+φ(u)+φ(v)− ld(pmax)−1 ≤ φ(µ(D))−1.

For the second case it follows that

φ(µ(E)) = φ(µ(D))−φ(pmax)+φ(2) =

φ(µ(D))−φ(pmax)≤ φ(µ(D))−1,

because pmax ≥ eτd ≥ 3.5 for all d ≥ 1, which implies that pmax ≥ 5, because pmax is a

prime. Therefore, φ(pmax)≥ φ(5) = ld(5)−1 > 1. This proves the lemma. �

Lemma 4.5. Let D ∈ Â(C) be an arbitrary cone resulting from the BPFT algorithm.

Furthermore, we define

χ(D) = max{i : ξD(i) 6= 0}.

Then

χ(D)≤ φ(µ(C))−1.
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Proof. Let D ∈ Â(C). By the algorithm, there is chain of cones

E0 = D ⊂ E1 ⊂ E2 . . .⊂ EL =C

such that Ei is generated from Ei+1 by stellar subdivision. Lemma 4.4 implies that

φ(µ(D)) ≤ φ(µ(C))−L. On the other hand, by construction, χ(D) = χ(C)+L, where

χ(C) =−1. Therefore

χ(D) = L−1 ≤ φ(µ(C))−φ(µ(D))−1.

This proves the lemma, because φ(a)≥ 0 for all a ∈ N. �

Corollary 4.6. Every simplicial d-cone C =R+v1+ · · ·+R+vd ⊂R
d, d ≥ 2, which is not

already unimodular (i.e., µ(C)> 1) has an eτd-triangulation C = D1 ∪ . . .∪Dt such that

Hilb(Di)⊂

(

d

4
·µ(C)

)

∆C

for all i.

Proof. Due to 4.1 and 4.5 it follows that

Hilb(Di)⊂
(

d ·2φ(µ(C))−1
)

∆C.

Because due to 4.2 and µ(C) > 1 we have φ(µ(C)) ≤ ld(µ(C))− 1. It follows that

2φ(µ(C))−1 ≤ µ(C)/4, which finally proves the corollary. �

5. BOUNDS FOR UNIMODULAR TRIANGULATION

Building on the previous bound we will now introduce new bounds for the length of

vectors involved in unimodular triangulations of simplicial cones. This will be done with

the help of the following corollary from [3].

Theorem 5.1. Let ε = 5+3/2 · ld(3/2) and ρ = 1/2 · ld(3/2). So, ε ≈ 5.88 and ρ ≈ 0.29.

Then every simplicial d-cone C = R+v1 + · · ·+R+vd ⊂ R
d , d ≥ 2, which is not already

unimodular (i.e., µ(C) > 1) has a unimodular triangulation C = D1 ∪ . . .∪Dt such that

for all i

Hilb(Di)⊂

(

d2

64
·µ(C)ρ·ld(µ(C))+ε

)

∆C.

Furthermore, we will need the following lemma, which will help us with connecting

the previous corollary and Corollary 4.6 to achieve our main result of a new upper bound

for the length of vectors involved in the unimodular triangulation of simplicial cones.

Lemma 5.2. Let us assume that every simplicial d-cone E with µ(E) = p admits a uni-

modular triangulation E = F1 ∪ . . .∪Ft such that

Hilb(Fi)⊂ kp,d∆E .

for all i for a certain kp,d ∈ R. Let C = R+v1 + · · ·+R+vd ⊂ R
d , d ≥ 2, be a simplicial

d-cone and let p ∈ P such that p|µ(C). Then C admits a triangulation C = D1 ∪ . . .∪Dt

with Di = R+wi
1 + · · ·+R+wi

d such that

(1) wi
j ∈ kp,d∆C and
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(2) µ(Di) = µ(C)/p

for all i and j.

Proof. Because p|µ(C), we know that there exists a vector

x =
1

p

d

∑
i=1

zivi ∈ Z
d \{0}, zi ∈ Z, 0 ≤ zi < p.

W.l.o.g. we can assume that z1 = 1. Now, let E = R+v′1+ · · ·+R+v′d ⊂ R
d, d ≥ 2, be the

simplicial d-cone generated by the vectors

v′1 =
d

∑
j=2

(p− z j)e j + pe1, v′i = ei, i = 2, . . . ,d.

Then µ(E) = p. Furthermore,

x′ =
1

p

d

∑
i=1

ziv
′
i =

d

∑
i=1

ei ∈ Z
d \{0}.

Let Fi =R+wi
1

′
+ · · ·+R+wi

d

′
⊂R

d be cones which constitute a unimodular triangulation

of E = F1 ∪ . . .∪Ft such that Hilb(Fi) ⊂ kp,d∆E for all i. Because µ(E) = p is the index

of the sublattice U , which is spanned by the vectors v′1, . . . ,v
′
d , in Z

d , it follows that Zd

modulo U is generated by each non-null element. One representative of such an element

is obviously x′. So, since wi
j

′
∈ E ∩Z

d , it follows that for all i and j there exists a li
j ∈ N

such that

wi
j

′
=

1

p

(

d

∑
k=1

ai
jkv′k

)

,

where ai
jk ∈ N and

(ai
jk − li

jzk) rem p = 0.

for all k. This implies that also

wi
j =

1

p

(

d

∑
k=1

ai
jkvk

)

∈ Z
d

for all i and j.

Furthermore, because we have Hilb(Fi)⊂ kp,d∆E and because the Fi are unimodular, it

follows that wi
j

′
∈ kp,d∆E for all i and j. Therefore, we also have

wi
j ∈ kp,d∆C.

Let now W i′ ∈ R
d×d be the matrix formed by the row vectors wi

j

′
, let

Ai := (ai
jk) j=1,...,d,k=1,...,d and V ′ ∈ R

d×d be the matrix formed by the row vectors v′k.

Then we have that

det

(

1

p
·AiV ′

)

= det
(

W i′
)

= µ(Fi) = 1
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for all i, which implies that

det

(

1

p
·Ai

)

=
1

det(V ′)
=

1

µ(E)
=

1

p
.

Therefore, the triangulation of C = D1 ∪ . . .∪Dt given by Di = R+wi
1 + · · ·+R+wi

d ⊂

R
d has the desired properties, because, first, we have that for V ∈ R

d×d formed by the

row vectors vk

µ(Di) = det

(

1

p
·AiV

)

= det

(

1

p
·Ai

)

·µ(C) =
µ(C)

p

And second, we have already shown that wi
j ∈ kp,d∆C for all i and j, if Hilb(Fi)⊂ kp,d∆E .

�

Corollary 5.3. Let γ = ρτ ld(e) and κ = ε −5. So, γ ≈ 0.53 and κ ≈ 0.88. Then every

simplicial d-cone C = R+v1 + · · ·+R+vd ⊂ R
d , d ≥ 2, which is not already unimodular

(i.e., µ(C) > 1) has a unimodular triangulation C = D1 ∪ . . .∪Dt such that for all i

Hilb(Di)⊂

(

d

4
·µ(C)γd+2ld(d)+κ

)

∆C.

Proof. Due to 4.6 C has an eτd-triangulation C = D1 ∪ . . .∪Dt such that for all i

Hilb(Di)⊂

(

d

4
·µ(C)

)

∆C.

Furthermore,

(2) µ(Di)≤ µ(C)

for all i.

So, let µ(Di) = ∏
ni

j=1 p
α j,i

j be the prime decomposition of µ(Di), where p1 < .. . <

pni
< eτd . Then, due to successive application of Lemma 5.2 and Corollary 5.1 it follows

that each of the cones Di admits a unimodular triangulation Di = F i
1 ∪ . . .∪F i

si
such that

Hilb(F i
k)⊂

ni

∏
j=1

(

d2

64
p

ρ ld(p j)+ε
j

)α j,i

∆Di

for all i,k. Since the Di constitute an eτd-triangulation of C, the latter has a unimodular

triangulation

C =
t
⋃

i=1

si
⋃

k=1

F i
k

such that, for all i and k, we have

Hilb(F i
k)⊂

(

d

4
·µ(C) ·

ni

∏
j=1

(

d2

64
p

ρ ld(p j)+ε
j

)α j,i
)

∆C.

Because
ni

∑
j=1

α j,i ≤ ld(µ(Di))
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it follows that

ni

∏
j=1

(

d2

64

)α j,i

≤

(

d2

64

)ld(µ(Di))

= µ(Di)
2ld(d)−6 ≤ µ(C)2ld(d)−6.

Furthermore, we have

ni

∏
j=1

(

p
ρ ld(p j)+ε
j

)α j,i

≤

(

ni

∏
j=1

p
α j,i

j

)ρ ld(pni
)+ε

= µ(Di)
ρ ld(pni

)+ε ≤ µ(C)ρτ ld(e)d+ε ,

where the last inequality follows from p j < eτd for all j and equation (2).

Putting it all together, we get that

Hilb(F i
k)⊂

(

d

4
·µ(C)γd+2ld(d)+κ

)

∆C,

where γ = ρτ ld(e)≈ 0.53 and κ = ε −5 ≈ 0.88. �

Via simplification of the above notation we finally get

Corollary 5.4. Every simplicial d-cone C = R+v1 + · · ·+R+vd ⊂ R
d, d ≥ 2, which is

not already unimodular (i.e., µ(C)> 1) has a unimodular triangulation C = D1∪ . . .∪Dt

such that for all i

Hilb(Di)⊂ µ(C)f(d)∆C

with f(d) ∈ O(d).
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