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ONE-SIDED GRP SOLVER AND NUMERICAL BOUNDARY CONDITIONS FOR

COMPRESSIBLE FLUID FLOWS

JIEQUAN LI AND QINGLONG ZHANG

Abstract. In the computation of compressible fluid flows, numerical boundary conditions are al-

ways necessary for all physical variables at computational boundaries while just partial physical

variables are often prescribed as physical boundary conditions. Certain extrapolation technique or

ghost cells are often employed traditionally for this issue but spurious wave reflections often arise

to cause numerical instability. In this paper, we associate this issue with the one-sided generalized

Riemann problem (GRP) solver motivated by the accelerated piston problem in gas dynamics so

that the extrapolation technique can be actually avoided. In fact, the compatibility arguments nat-

urally requires to formulate the one-sided generalized Riemann problem and incorporate it into the

numerical procedure of boundary conditions. As far as the interaction of nonlinear waves with phys-

ical boundaries, such a one-sided GRP solver shows significant effects, as numerical experiments

demonstrate, on avoiding spurious wave reflections at the computational boundaries.

Key words: Compressible fluid flows, numerical boundary conditions, one-sided generalized

Riemann problem (GRP) solver.

1. Introduction

The issue on boundary conditions for hyperbolic problems and particularly for compressible

fluid flows is a classic topic and so is the corresponding numerical treatment. There are a number

of contributions via various approaches in literature, which roughly consist of three types of con-

cerns: physical considerations[27], mathematical justifications (well-posedness arguments) [16]

and numerical treatment. Physical considerations prescribe boundary data for a part of physical

variables based on specific problems such as the solid-wall boundary condition; mathematical well-

posedness justifies the validity of modelings subject to the prescribed boundary conditions; while

numerical boundary conditions are prescribed for all physical variables so that discrete (approxi-

mate) equations can be implemented practically. These concerns, though with different objectives,

have the common goal on correctly describing the underlying problems, for which the compat-

ibility among the governing equations, prescribed boundary conditions and the initial data is a

fundamental issue. As far as the numerical treatment is concerned, extrapolation technique is of-

ten employed, particularly for high order accurate numerical methods. For example, in [17, 18]

a lagrangian interpolation is performed to achieve a second order accurate approximation to the

boundary data in space. However, it just gives the first order accurate approximation in time.

Other works can be found, e.g. in [7, 15], in the finite volume framework, and even in complex

geometries [19]. In [27], characteristic method is used but restricted to first order accuracy for

smooth flows. Although the resulting schemes may be well-implementable, the corresponding

validation is not clear both from rigorous mathematical analysis and numerical performance. Im-

proper extrapolation may lead to numerical instability such as spurious oscillations [27]. From

the viewpoint of numerical analysis, it is questionable whether the numerical boundary conditions

are compatible with the discretized governing equations even though the underlying PDE models
1
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are well-posed. Hence it is worth addressing issue even though there are lots of studies available

[7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 28, 29, 30].

We associate this issue with the so-called one-sided generalized Riemann problem (GRP). As

motivation, we take a look at the initial-boundary value problem for the Burgers equation [2, 1],

ut + (u2/2)x = 0, x ∈ (0, L), t > 0,

u(x, 0) = u0(x), x ∈ (0, L),
(1.1)

and focus on the left boundary x = 0. We assume that u0(x) ≡ 1 for example and inspect various

situations upon the boundary requirement on x = 0. There are three typical cases:

(i) u(0, t) = a, 0 ≤ a ≤ 1. For this case, the solution contains a rarefaction wave

u(x, t) =



















a, 0 ≤ x/t < a,

x/t, a ≤ x/t ≤ 1,

1, x/t > 1.

(1.2)

(ii) u(0, t) = b, b > 1. For this case, we have a shock solution,

u(x, t) =

{

b, 0 ≤ x/t < (b + 1)/2,

1, x/t > (b + 1)/2,
(1.3)

(iii) u(0, t) = c, c < 0. There exists no physically admissible solution for such a case and so the

boundary condition is not well prescribed.

This example shows the subtlety of nonlinear problems as investigated in [2], unlike linear

hyperbolic problems. In fact, for linear problems, physical boundary conditions depend on char-

acteristic propagations. While for nonlinear compressible fluid flows, many physical boundary

conditions are prescribed upon surroundings and cannot be even given a priori, such as the inter-

action of shock with solid boundaries [6] and the solid body floating in the air [13]. Numerically,

situations become more complicated. First, numerical boundary conditions should be given for all

variables in order to be suitable for the computation so that proper extrapolations have to be used.

For the strong interaction of waves with physical boundaries, the nonlinearity actually prevents the

validity of extrapolations that may result in factitious phenomena. Second, high order approxima-

tions of boundary conditions are often made independently of the discretization of the governing

equations, which may lead to incompatibility and loss of accuracy.

The GRP formulated here is different from the traditional GRP [3, 4] and more suitably called

one-sided GRP. It is an initial-boundary value problem rather than a purely initial value problem.

Correspondingly, a numerical method to solve this problem is called a one-sided GRP solver. Such

a study has two-fold goals: (i) It is used to the compatibility of prescribed boundary condition with

the governing equations; (ii) It proposes a family of high order numerical boundary conditions ef-

fectively compatible with the discretized governing equations. In fact, accelerated piston problems

[8, 13] are the one-sided GRP formulated here and they have been refined to put into the simulation

of fluid flows with moving boundaries [14, 13]. In [12], the similar idea was employed if the flow

is smooth and consistent with the inverse Lax-Wendroffmethod [29]. Note that since the two-stage

fourth order framework [23, 24, 12] can be used to develop high order methods, there is no need

to compute derivatives of order more than second. Hence this paper just focuses on second order

GRP solvers, which provides a reliable tool no matter whether the solution is smooth or not.

We organize this paper as follows. In Section 2, we formulate the one-sided GRP problem.

In Section 3 we discuss numerical boundary conditions for compressible Euler equations via the

passage of one-sided GRP. We implement the resulting scheme in Section 4 and particularly display

numerical results in Subsection 4.2 to demonstrate the performance.
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2. High Order Numerical boundary conditions and one-sided GRP solver for hyperbolic

balance laws

In this section we formulate one-sided Riemann problems for hyperbolic balance laws in a gen-

eral framework and discuss related numerical solvers for the construction of numerical boundary

conditions. This is different from the classical initial-boundary value problem for compressible

fluid flows in [25] since initial and boundary values are generally not compatible in a continuous

way. Such a setting is proposed for practical request. For example, the flow is discontinuous at the

reflection point of a shock on a solid boundary. Correspondingly, the associated initial-boundary

value problem is formulated below as the one-sided generalized Riemann problem (OS-GRP).

Consider hyperbolic balance laws

ut + f(u)x = h(x, u), x ∈ (0, L), t > 0,

u(x, 0) = u0(x), x ∈ (0, L),
(2.1)

where h(x, u) is a source term representing external forces or geometrical effects, f(u) is the flux

function. This system includes the compressible Euler equations we specified in the next section

and many other models [10]. It is assumed to be hyperbolic in the sense that the Jacobian A(u) of

f(u) has m real eigenvalues λk with a complete set of associated eigenvectors rk,

A(u)rk = λkrk, λ1 ≤ · · · ≤ λm. (2.2)

Each λk is genuinely nonlinear or linearly degenerate in the sense of Lax [20].

We focus on the left boundary x = 0. The right boundary x = L is treated similarly. We

emphasize that the free boundary problem can be studied too [13]. On the boundary x = 0, the

data is imposed as

Bu = g(t) ∈ Σ ⊂ Rm−k(u), (2.3)

where the operator B : Ω ⊂ Rm → Σ ⊂ Rm−k(u) projects the solution onto the boundary x = 0,

0 ≤ k(u) ≤ m is the number of negative eigenvalues. If (2.1) is a linear problem, i.e., f(u) = Au, A

is a constant matrix, then the operator B can be expressed in the matrix form

Bu = g(t), rank(B) = m − k, (2.4)

if A has m − k positive eigenvalues, where B is a ℓ × m matrix. For nonlinear problems the

eigenvalues depend on the solution u and thus the integer k(u) may vary depending on the solution

u too. Hence the precise meaning of the operator is determined together with the solution of (2.1),

as shown for the Burgers equation.

Denote γ : Rm → Rm the trace operator on the boundary x = 0,

u(x, t)|x=0 = γu(x, t). (2.5)

Then we propose the following assumption.

Assumption. The problem (2.1) –(2.3) is well-posed at least locally so that

B(γu) = g(t) (2.6)

in some “appropriate” sense.

This assumption is very “rough” and understood in certain intuitive way. A primary judgement

of the well-posedness boils down to the solvability of the following one-sided Riemann problem,

while the dynamics is dependent on the one-sided generalized Riemann problem (GRP). Numer-

ically each component of u should be given a value on the boundary so that the corresponding

numerical code can be implemented. Even with extrapolation, the approximation should be con-

sistent with the solution of this one-sided GRP up to some desired accuracy order.
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In this section, we denote by ub(t) = u(0, t) the boundary value for the solution u, and (∂u/∂t)b(t) =

∂u/∂t(0, t) the derivative of u along the boundary x = 0.

2.1. Linear equations with constant coefficients. Let’s first get motivation from linear equa-

tions. Consider with the assumption as above

ut + Aux = h(u, t), x > 0, t > 0. (2.7)

The characteristic decomposition tells that

∂vi

∂t
+ λi

∂vi

∂x
= Lih(u, x), i = 1, · · · ,m, (2.8)

where vi = Liu, Li is a left-eigenvector associated with the eigenvalue λi. The solution formula is

vi(x, t) = vi(x − λit, 0)

+

∫ t

0

Lih(u(x − λi(t − s), s), x − λi(t − s))ds =: Ki(x, t), i = 0, · · · , k.
(2.9)

To obtain the solution values on the boundary x = 0, we have from (2.8)

vi(0, t) = vi(−λit, 0) +

∫ t

0

Lih(u(−λi(t − s), s),−λi(t − s))ds =: Ki(0, t), i = 0, · · · , k. (2.10)

Hence the boundary value of u can be obtained by solving the following system

vi = Liu = Ki(t), i = 1, · · · , k,

Bu(0, t) = g(t).
(2.11)

Indeed, the well-posedness of (2.7) depends on the solvability of (2.11). That is,

rank{L1, · · · ,Lk,B1, · · · ,Bℓ} = m, (2.12)

where Bi, i = 1, · · · , ℓ, are the row vectors of the matrix B. Such a solution formula in turn

helps to develop high order schemes. We can refer to [12, 29] and next sections for the practical

implementation in gas dynamics, corresponding to the acoustic case of one-sided GRP problem.

The above discussion is of course made in the theoretical viewpoint. Numerically, we implement

at each time level t = tn, as follows.

(i) First order approximation. The initial data is assumed to be constant uR. Then we derive

all components of ub by solving the following system

Bub(tn) = g(tn)

vi(0, tn) = (vi)R, i = 1, · · · , k.
(2.13)

Obviously, this is exactly the same as the usual extension from the neighboring interior

point using the characteristic method.

(ii) Second order approximation. As high order approximations are concerned, we not only

need to know the value in the first order approximation, but we have to approximate the

value (∂u/∂t)b(tn) = (∂u/∂t)(0, tn) as well. We denote by u′
R

:= u′
0
(0 + 0) and subsequently

v′
R
= v′

0
(0 + 0). Then we have

B(∂u/∂t)b(tn) = g′(tn)

(∂vi/∂t)b(tn) = −λi(vi)
′
R + Lih(u0(0), 0), i = 1, · · · , k.

(2.14)

Solving this system yields the value (∂u/∂t)b(tn). This second order approximation shows

clearly that the source term h is input into the numerical boundary condition, unlike some



One-sided GRP and Numerical Boundary Conditions 5

direct extrapolation technique. Moreover, this characteristic method allows to deal with

discontinuities at the origin.

Indeed, these two approximations correspond to the one-sided Riemann problem and one-sided

generalized Riemann problem, respectively.

2.2. One-sided Riemann problem. The one-sided Riemann problem is motivated from the piston

problem [8] and formulated in [13]. Here we formulate this problem for hyperbolic conservation

laws
ut + f(u)x = 0, x ∈ (0,∞), t > 0,

u(x, 0) = uR, x ∈ (0,∞).
(2.15)

The boundary data is prescribed as

B(u) = v∗ ∈ Rm−k, (2.16)

for some k ≥ 0, where the operator B prescribes certain physically meaningful values to partial

state components. Corresponding to (2.1)-(2.3), uR = u0(0 + 0) and v∗ = g(0).

In order to solve this problem, we can mimick the method for the standard Riemann problem in

the state space [9, 20, 31]. At least for Euler equations, we will show how to solve it in the next

section. The solvability of this one-sided Riemann problem depends on the compatibility of the

prescribed boundary conditions with the initial data. Generally speaking, as shown for the Burgers

equation, this problem may not have to be well-posed. Hence this one-sided Riemann problem

plays a role in checking whether the boundary conditions are correctly prescribed.

Another role of the one-sided Riemann problem is to supplement all state variables for the

practical calculation because the boundary conditions just prescribe partial components of them.

For instance, consider the linear case, as indicated in (2.4), with m − k characteristics leaving the

boundary x = 0 so that the rank of the boundary operator B is m−k. Then we use the characteristic

decomposition to obtain other k equations, as shown above.

Assume that we are able to solve this problem and obtain the solution u(x, t) with the trace on

the boundary x = 0 such that,

u(x, t)|x=0 = u∗,

B(u∗) = v∗.
(2.17)

Then it is necessary to check whether there are exactly m − k characteristics leaving from the

boundary x = 0, similar to the linear case.

0 < λk+1(u∗) ≤ · · · ≤ λm(u∗). (2.18)

That is, the dimension of manifold dim{B(u) = v∗} = m − k. Just like the case for the Burgers

equation, this is not necessary true. Hence the solvability of one-sided Riemann problem is a

necessary to judge the well-posedness of initial-boundary value problem for (2.4).

2.3. One-sided GRP. As (2.1) includes a source term or/and the initial condition is not uniform

(typically consists of piecewise polynomials), one has to consider a one-sided generalized Rie-

mann problem (GRP). From the numerical point of view, one needs to have high order accurate

prescription of all components of u on the boundary x = 0 as well as the construction of spatial

variation near the boundary when high order methods are sought.

For completeness, the one-sided generalized Riemann problem (GRP) is reformulated here as

the initial and boundary value problem,

ut + f(u)x = h(x, u), x ∈ (0,∞), t > 0,

u(x, 0) = u0(x), x ∈ (0,∞),

B(γu)(0, t) = v∗(t) ∈ Rm−k(u), t > 0,

(2.19)
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where u0(x) is smooth, and v∗(t) is measurable. This is associated with the one-sided Riemann

problem above. Similar to the interrelation between the standard generalized Riemann problem

and the associated Riemann problem, we have the following proposition [4].

Proposition 2.1. Assume that (2.19) is well-posed and let u(x, t) be its solution. Denote that

uA(x/t; uR, v
∗) be the solution of the associated one-sided Riemann problem (2.15)–(2.16). Then

for every direction α = x/t > 0,

lim
t→o+

u(αt, t) = uA(α; uR, v
∗). (2.20)

This implies the wave configuration of (2.19) is the same as that of (2.15)-(2.16) asymptotically.

Note that we assume that the associated one-sided Riemann problem is uniquely solvable. Since

the current paper is mainly concerned with a numerical algorithm for high order numerical bound-

ary conditions, we leave aside for the moment the investigation of the rigorous mathematical the-

ory.

2.4. One-sided Riemann solver and one-sided GRP solver. So-called solvers refer to the pro-

cesses numerically solving the corresponding problems. Standard numerical Riemann solvers can

be found in [31] and the generalized Riemann problem (GRP) solver in [3, 4]. The one-sided

solvers proposed here are associated with the Riemann solver [31] and the GRP solver [3, 4].

These solvers aims (i) to provide all physical variables on the boundary x = 0; (ii) to apply the

inverse GRP to inspect the interaction of boundary and initial data.

Note that the boundary value u(0, t) that we obtain is not necessary to be continuous with the

initial data u(x, 0) at the origin (x, t) = (0, 0). If so, the solution is discontinuous. Such observation

is heuristic when dealing with the interaction between shocks and solid boundaries. Besides, such

a process provides several indications:

(i) The compatibility of the resulting boundary data u(0, t) and the initial data u(x, 0) deter-

mines the regularity of flows (solutions) around the origin locally. The one-sided Riemann

solution is a key clue to the well-posedness. The one-sided Riemann solver aims to find

ub(0) numerically.

(ii) The one-sided GRP solution depends on the associated Riemann solution, and the cor-

responding GRP solver aims to find the value (∂u/∂t)b(0) and helps to build high order

numerical schemes.

2.5. One-sided GRP solver in two dimensions. We extend the one-sided GRP solver to two

dimensions in this part. Suppose we have a boundary L : Γ(x, y) = 0 which is independent of

time. For the boundary conditions that depend on the time such as a piston problem, we refer

to [13] for the associated GRP solver. Our strategy includes the following steps: we first solve

a normal one-sided Riemann problem at any fixed point on the boundary L along the normal

direction, namely,

∂u

∂t
+
∂ f (u)

∂x
+
∂g(u)

∂y
= 0, Γ(x, y) > 0, t > 0,

u(x, y, 0) = uR(x, y), Γ(x, y) > 0,

B(γu)(x, y, t) = v∗(x, y, t), Γ(x, y) = 0, t > 0,

(2.21)

where the boundary value is prescribed to be v∗(x, y, t). Denote by n(x, y, t) the unit normal vector

of L . For the presentation simplicity, the boundary is set along the y-axis, thanks to the Galilean
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invariance for fluid dynamical systems. Then (2.21) can be transformed to solving the following

normal generalized Riemann problem along the y-axis,

∂ugal

∂t
+
∂ f (ugal)

∂x
+
∂g(ugal)

∂y
= 0, x > 0, t > 0,

ugal(x, y, 0) = u
gal

R
(x, y), x > 0,

B(γugal)(x, y, t) = v∗,gal(x, y, t), x = 0, t > 0,

(2.22)

where ugal, u
gal

R
and v∗,gal are the Galilean transform of u, uR and v∗, respectively. After resolving

ugal, we transform back to obtain u. The same as the 1-D case, we solve the normal conservation

law at (0, y∗)

∂uN

∂t
+
∂ f (uN)

∂x
= 0,

uN(x, t = 0) = u
gal

R
(0, y∗), x > 0,

B(γuN)(0, t) = v∗,gal(0, y∗, 0), t > 0,

(2.23)

to obtain the normal Riemann solution uN . Then we solve the following IBVP,

∂ugal

∂t
+
∂ f (ugal)

∂x
= −

(

∂g(u)

∂y

)N

,

ugal(x, y, 0) = u
gal

R
(x, y), x > 0, y ∈ R,

B(γugal)(0, y, t) = v∗,gal(0, y, t), y ∈ R, t > 0,

(2.24)

to obtain
(

∂ugal

∂t

)

b

= lim
t→0

∂ugal

∂t
(0, y∗, t) (2.25)

at (0, y∗), where the term
(

∂g(u)

∂y

)N
=

∂g

∂u
(uN)

(

∂u
∂y

)N
is a fixed value with the instantaneous value u∗

obtained from (2.23) and

(

∂u

∂y

)N

interpolated from u
gal

R
, reflecting the tangential effect along the

boundary [24]. Then the 2-D one-sided GRP solver follows exactly the same as the 2-D GRP

solver, one can find more details in [24].

2.6. High order numerical boundary conditions. Once the one-sided GRP solver is available,

the boundary data can be approximated with second order accuracy and the boundary volume can

be dealt with as the ordinary control volume. That is, if at moment t = tn, u(0, tn) and (∂u/∂t)(0, tn)

are known, then the boundary flux is approximated in a common way,

u(0, tn + ∆t/2) = uN +
∆t

2

(

∂ugal

∂t

)

b

,

1

∆t

∫ tn+1

tn

f(u(0, t))dt = f(u(0, tn + ∆t/2)) + O(∆t2).

(2.26)

Furthermore the integral of source term can be evaluated using the interface method too,

1

∆t∆x

∫ tn+1

tn

∫ ∆x

0

h(u(x, t))dxdt =
1

2
(h(u(0, tn + ∆t/2)) + h(u(∆x, tn + ∆t/2)))

+ O(∆t2 + ∆x2).

(2.27)

Analogously, we deal with the 2-D case.
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3. Application to Gas Dynamical Systems

In this section we discuss the one-sided Riemann problem (RP) and the one-sided generalized

Riemann problem (GRP) for gas dynamical systems. We first discuss one-dimensional case in the

form (2.1) with

u = (ρ, ρv, ρE)⊤, f(u) = (ρv, ρv2 + p, v(ρE + p))⊤, (3.1)

and h(u, x) is a problem-dependent source term. In particular, for nozzle flows h(u, x) takes the

form

h(u, x) = −
a′(x)

a(x)

(

ρv, ρv2, v(ρE + p)
)⊤
. (3.2)

where ρ, v, p are the density, velocity and pressure of the fluids, respectively. a(x) is the cross-

section area of the duct. E = v2

2
+e is the total energy, the internal energy e is given by the equation

of state (EOS) e = e(ρ, p). Note that (3.2) also includes the case of radially symmetric flows [22].

The reactive Euler flows [30] can be treated similarly.

System (3.1) has three eigenvalues

λ− = v − c, λ0 = v, λ+ = v + c, (3.3)

where c is the local sound speed. All other properties of this system can be found in any textbook

about gas dynamics, e.g. [8, 9, 3, 31].

The one-sided Riemann solver for Euler equations. As we pointed out in the last section,

the one-sided Riemann problem plays a role in the justification of local well-posedness besides its

numerical value. This problem is formulated as

ut + f(u)x = 0, x > 0, t > 0,

u(x, 0) = uR, x > 0,

Bu(0, t) = wb.

(3.4)

The method solving this problem (3.4) follows the one for the classical Riemann problem. We

fix the wave curve WR associated with λ+ = v + c from the state uR in the phase space, (ρ, v, p)–

space, and then investigate the solvability for the prescribed data wb. It is easily checked that the

solvability of such a problem is up to the following two conditions:

(i) There is an intersection point u∗ of WR and Bu = wb;

(ii) The dimension dim{Bu = wb} = #{λi(u
∗) > 0, i = −, 0,+}.

b

p

v

WR

uR

(   )a

v=vb

(           )v  ,p  b

b

WR

v

p

v+c=Mb
u

v  ,p    

R

(           )b b

(   )

Figure 1. The one-sided Riemann problem for two typical boundary conditions: (a) Prescribed velocity vb.

(b) Given upstream Mach number Mb.

The following are two typical examples, see Fig. 3.1.
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(i) Prescribed velocity vb. Then we find a point on WR so that pb is fixed. Certainly as

vb > 0, λ0 = vb > 0 and λ+ = vb + cb > 0 so that one additional condition is needed. For

instance, we can supplement the gas density ρb as the gas property on the boundary x = 0.

However, as vb < 0, we need to check the Mach number Mb = |vb|/cb. If Mb > 1, the

boundary condition is not suitably prescribed.

(ii) Given upstream Mach number Mb. The given value Mb = vb/cb actually implies

v + c = Mb. (3.5)

We look for its intersection point with WR to find (vb, pb) and then ρb using the equation of

state (EOS).

In summary, we can investigate the one-sided Riemann problem to identify that whether the

upstream flow is supersonic or not as well as make clear the correct prescription of boundary

conditions.

One-sided GRP solver. The one-sided GRP solver serves to solve (2.19) numerically. Assume

that u0(x) is (or approximated by) a smooth function with regular limiting values

uR = lim
x→0+0

u0(x), u′R = lim
x→0+0

u′0(x). (3.6)

Based on the corresponding one-sided Riemann problem, we can obtain the limiting value (∂u/∂t)b(0)

on the boundary x = 0. Essentially there are two versions in analogy with the standard GRP solver:

An acoustic version and a nonlinear version.

(i) Acoustic GRP. As ‖ub − uR‖ ≪ 1, we can use the acoustic approximation, i.e., the linear

method in Subsection 2.1.

(ii) Nonlinear GRP. As strong waves emit from the corner (0, 0) (i.e., ‖ub − uR‖ ≫ 1), we

have to develop a genuinely nonlinear GRP solver, similar to the standard GRP solver for

general hyperbolic balance laws [4]

Specified to the Euler equations, the one-sided GRP solver is implemented as follows.

(i) Judge from the associated one-sided Riemann solution whether there emit strong waves in

order to determine to use the acoustic or nonlinear GRP solver.

(ii) The acoustic GRP solver is the same as the linear case above.

(iii) The nonlinear GRP solver consists of two cases: a supersonic upstream flow and a subsonic

upstream flow.

(a) A supersonic upstream flow. All conditions are given at boundary x = 0.

(b) A subsonic upstream flow. We apply the same procedure of the standard GRP solver

[5] and naturally derive the one-sided relation

aR

(

∂v

∂t

)

b

+ bR

(

∂p

∂t

)

b

= dR, (3.7)

where the coefficients aR, bR and cR are fully determined by the values uR(0), u∗
R

and

the slope value u
′

R(0), the detailed expressions can be found in [4].

We are in position to compute the partial derivative values (∂v/∂t)b and (∂p/∂t)b from

(3.7). If the boundary condition is given as vb(t) = g(t) and subsequently (∂v/∂t)b =

g′(t), then (∂p/∂t)b follows by the linear relation (3.7). As for the density derivative

(∂ρ/∂t)b, we have
(

∂ρ

∂t

)

b

=
1

(c∗
R
)2

(

∂p

∂t

)

b

(3.8)

on the boundary from the EOS. Here c∗
R

is the local sound speed.
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If the upstream boundary condition is given in terms of Mach number Mb(t) = g(t),

then one has
(

∂v

∂t

)

b

+ cp

(

∂p

∂t

)

b

+ cρ

(

∂ρ

∂t

)

b

= g′(t), (3.9)

where cp =
∂c
∂p

and cρ =
∂c
∂ρ

. This, together with (3.7) and the relation (3.8), provides

the boundary condition.

2-D one-sided GRP solver for Euler. The 2-D compressible Euler equations can be written as

∂u

∂t
+
∂f(u)

∂x
+
∂g(u)

∂y
= 0,

u =





























ρ

ρvx

ρvy

ρE





























, f(u) =





























ρvx

ρ(vx)2 + p

ρvxvy

vx(ρE + p)





























, g(u) =





























ρvy

ρvxvy

ρ(vy)2 + p

vy(ρE + p)





























,

(3.10)

where ρ, vx, vy, p and E represent the density, x−velocity, y−velocity, pressure and total energy,

respectively. The 2-D one-sided GRP solver is the practical combination of the above 1-D one-

sided GRP solver and the 2-D GRP solver [4, 12]. A key point is that the transversal effect is

included in the solver development [21].

4. Implementation of the one-sided GRP scheme

4.1. Brief summary of the one-sided GRP scheme. So far, the one-sided GRP solver is devel-

oped to suit the GRP scheme near the boundary. The boundary control volume is then treated the

same as the interior control volumes in the finite volume framework. We discretize the domain by

equally computation mesh size ∆x = x j+ 1
2
− x j− 1

2
and set I j = (x j− 1

2
, x j+ 1

2
). The cell I0 = (x− 1

2
, x 1

2
)

represents the left boundary cell centered at x0 and the cell IM = (xM− 1
2
, xM+ 1

2
) represents the right

boundary cell centered at xM , as shown in Fig. 4.1.

L

 
            .  .  .

t

x
x x x x x x

x= x=

0

0

M−1 M M+11−1

Figure 2. The computational domain (0, L). Set x0 = ∆x/2 and xM = 1 − ∆x/2, The one-sided GRP is

solved at the boundaries x = 0 and x = L, respectively.

Since a standard finite volume method, such as the GRP method in [5], can be applied over

computational cells I j( j = 1, ..., M − 1) in the interior domain, we only focus on the boundary cell

I0. The one-sided GRP scheme at the boundary cell I0 assumes the piecewise linear data

u(x, tn) = un
0 + σ

n
0(x − x0), x ∈ (x− 1

2
, x 1

2
). (4.1)

The vector σn
0

is the constant slope of u(x, tn) over cell I0 at time tn = n∆t, n ∈ N with ∆t the time

step size. To obtain the second order accuracy, the mid-point value is used

u
n+ 1

2

− 1
2

= u(x− 1
2
, (n + 1/2)∆t) (4.2)

in the resolution of numerical flux and the source term discretization. We apply the 1-D one-sided

GRP solver in the following steps.
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Step 1. Given the piecewise linear initial data (4.1), approximate the mid-point value u
n+ 1

2

− 1
2

as

follows,

u
n+ 1

2

− 1
2

= un

− 1
2

+
∆t

2

(

∂u

∂t

)n

− 1
2

. (4.3)

The computation of (∂u/∂t)n
−1/2

is the main ingredient of the one-sided GRP scheme. The value

un

− 1
2

is the local solution at (x− 1
2
, tn) to the following one-sided Riemann problem:



































∂u

∂t
+
∂f(u)

∂x
= 0,

Bu = wb, x = x− 1
2
,

uR := un
0
− (x0 − x− 1

2
)σn

0
, x > x− 1

2
,

(4.4)

which can be solved by an exact or approximate one-sided Riemann solver [31]. Here we apply the

one-sided GRP procedure (3.7)-(3.9) to obtain the instantaneous value (∂u/∂t)n
−1/2

on the boundary

x = x− 1
2
, and then approximate u

n+ 1
2

−1/2
using (4.3).

Step 2. Evaluate the next time values un+1
0

by using the following formula

un+1
0 = un

0 −
∆t

∆x

(

f(u
n+ 1

2
1
2

) − f(u
n+ 1

2

− 1
2

)

)

+
∆t

2

(

h(x 1
2
, u

n+ 1
2

1
2

) + h(x− 1
2
, u

n+ 1
2

− 1
2

)

)

, (4.5)

where the source term h(x, u) is discretized with the mid-point rule in time and the trapezoidal rule

in space.

Step 3. In order to suppress local oscillations as discontinuities are present near the boundary, we

update the slope σn+1
0

by using the following monotonicity algorithm limiter

σn+1
0 = minmod





















un+1,−
1
2

− un+1

− 1
2

∆x
,

un+1
1
− un+1

0

∆x





















. (4.6)

More details about the minmod function can be found in [5, 31].

In two-dimensional computations, we take rectangular meshes ∪I j,k, j = 0, ..., M, k = 0, ...,N,

as an example for simplicity, here I j,k=(x j−1/2, x j+1/2) × (yk−1/2, yk+1/2) centered at the grid point

(x j, yk). The finite volume formula is applied over all cells I j,k,

un+1
j,k = un

j,k −
∆t

∆x

(

f (u
n+ 1

2

j+ 1
2
,k

) − f (u
n+ 1

2

j− 1
2
,k

)

)

−
∆t

∆y

(

g(u
n+ 1

2

j,k+ 1
2

) − g(u
n+ 1

2

j,k− 1
2

)

)

. (4.7)

The initial data at time t = tn is expressed as bilinear functions

u(x, y, tn) = un
j,k + (σx)

n
j,k(x − x j) + (σy)

n
j,k(y − yk), j = 0, 1, ..., M, k = 0, 1, ...,N. (4.8)

The values u
n+ 1

2

j+ 1
2
,k

and u
n+ 1

2

j,k+ 1
2

can be analytically derived by the resolution of a local quasi 1-D GRP

solver at each interface. The one-sided GRP solver is applied on the boundary. Then we can take

the same procedure as that for 1-D case to implement the finite volume scheme.

4.2. Numerical Examples. We will present several numerical examples to validate the perfor-

mance as the one-sided GRP solver is used. The examples include the interaction of shocks with

solid boundaries, the radially symmetric flows, the nozzle flows, the Mach reflection of shock and

the forward facing step problem.
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M

.

.

.

Boundary

Mesh grids

         .      .      .

y

y

y

y

x x x xx=

y

x

N

N−1

0

1

0 0 1 M−1

Figure 3. The boundary is initially along the y− axis. Set x0 = ∆x/2 and the one-sided GRP is solved on

the boundary x = 0.
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Figure 4. The contours of the solution v(x, t) of the Burgers equation obtained by the one-sided GRP solver

(left) and the traditional boundary condition treatment (right), respecticely. 100 cells are used and 30 contours

are drawn.

Example 1. The scalar equation. We first use the Burgers equation to test the performance of

the one-sided GRP solver. Consider the following initial-boundary value problem for the Burgers

equation

vt +

(

v2

2

)

x

= 0, x ∈ (0, 2), t > 0,

v(x, 0) =

{

−x, 0 < x < 1,

−1, 1 < x < 2,

v(0, t) =

{

0, 0 < t < 1,

2, t > 1.

(4.9)
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The solution v(x, t) has an explicit formula

v(x, t) =



































x

t − 1
, 0 < x < 1 − t, 0 < t < 1,

2, 0 < x < t/2, t > 1,

−1, x > 1 − t, 0 < t < 1,

−1, x > t/2, t > 1.

(4.10)

A compressible wave propagates to the left and forms a shock at (0, 1) on the boundary. As t ≥ 1,

a shock from (0, 1) propagates to the right. We compute the solution using the GRP scheme with

the reflective boundary condition and the one-sided GRP solver, respectively. The solution v(x, t)

is plotted from time t = 0 to time t = 2 in Fig. 4.3, from which it is observed that the one-sided

GRP solver gives very sharp resolution of the singularity point (0, 1), compared with the reflective

boundary condition treatment.

Example 2. A single shock interaction with a solid boundary We test the example that a single

shock wave interacts with a solid wall to verify the numerical performance of the one-sided GRP

solver. The computational domain is [0,10] where the boundary is at x = 0. A left-propagating

shock wave is initially positioned at x = 2. We take γ = 1.4 and the initial data is set to be

(ρ, v, p)(0, x) =















(1.4, 0.0, 1.0), 0 ≤ x ≤ 2.0,

(8.0,−8.25, 116.5), 2.0 < x ≤ 10.0.
(4.11)
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Figure 5. A shock wave interacts with a solid wall. We compare the density profile obtained with the one-

sided GRP solver (squares) with that obtained with the traditional reflective boundary condition (dots) with 400

cells (200 are shown).

A reflected shock wave is observed when the output time is set to t = 2.0. We compare the results

by two different boundary condition treatments: the traditional reflective boundary condition and

the one-sided GRP solver. From Fig. 4.4, one can observe that the result obtained by the one-sided

GRP solver is more stable and has less oscillations near the boundary. We further plot 30 equally-

distributed density contours from time t = 0 to time t = 2 at every time interval 0.01 in Fig. 4.5,

one can see again that the one-sided GRP solver gives very sharp resolution at the interaction point

of the shock with the boundary.

Example 3. The Woodward-Colella problem. This is a classical interacting blast wave problem

with the gas initially at rest and γ = 1.4. The density is everywhere unit, the pressure is p = 1000
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Figure 6. The contours of the solution of Example 2 obtained by the one-sided GRP solver (left) and the

traditional boundary condition treatment (right). Thirty contours are drawn.

for 0 ≤ x < 0.1 and p = 100 for 0.9 < x ≤ 1.0, while it is only p = 0.01 for 0.1 < x < 0.9.

The solid-wall boundary conditions are prescribed at both ends. We compare the results of the

reflective boundary condition treatment with that of the one-sided GRP solver. The CFL number

is 0.6. The output time is set to t = 0.038. The numerical results for both boundary condition

treatments are shown in Fig. 4.6 with 400 cells and 800 cells, respectively. It can be seen that the

one-sided GRP solver is effective and robust for the blast wave problem.
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Figure 7. The Woodward-Colella problem computed with the one-sided GRP solver (squares) and the tra-

ditional reflective boundary condition treatment (dots) with 400 cells (left) and 800 cells (right). The numerical

scheme used in the interior domain is the GRP scheme. The solid lines are the reference solution computed

with 4000 cells.

Example 4. The nozzle flow. The nozzle flow problem is a classical quasi one-dimensional

problem. Consider a flow in a converging-diverging nozzle occupying the domain x ∈ [0, 1]. The
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cross-sectional area function A(x) of the duct is given by

A(x) =























Ainexp
(

−log(Ain)sin2(2πx)
)

, 0 ≤ x ≤ 0.25,

Aexexp

(

−log(Aex)sin2(
2π(1 − x)

3
)

)

, 0.25 < x ≤ 1
(4.12)

with Ain = 4.864317646 and Aex = 4.234567901. The governing equations are the Euler equations

with geometric source term (3.1),(3.2). Set x = 0 as the entrance of the duct and x = 1 as the exit.

We are concerned with the present boundary treatment to attain the steady state solution.

Two types of steady states are discussed: A continuous steady state and a discontinuous steady

state containing a standing shock wave. The initial data for both cases can take as

u(0, x) =















(ρ0, 0, p0), x < 0.25,

(ρ0, 0, ρ0(pex/p0)γ), x > 0.25,
(4.13)

where γ = 1.4 and ρ0, p0 are parameters to be determined, pex is a constant value determined by

the steady solution at x = 1. In the previous study [3, 4], the inflow density, velocity and pressure

are assigned to the inflow boundary condition, the outflow pressure is assigned as the outflow

boundary condition. Here we apply the one-sided GRP solver to test its ability of attaining steady

solutions.

For the first case, we set ρ0 = p0 = 1 and pex = 0.0272237 in (4.13). This produces an isentropic

continuous steady solutions which is defined by

ρ(x) = ρ0

(

1 +
γ − 1

2
M2(x)

)− 1
γ−1

,

p(x) = p0

(

1 +
γ − 1

2
M2(x)

)−
γ

γ−1

,

v(x) = M(x)
√

γp(x)/ρ(x),

(4.14)

in which the Mach number M(x) = v(x)/c(x) is determined by A(x) through the algebraic relation

A2(x) =
1

M2(x)

(

2

γ + 2

(

1 +
γ − 1

2
M2(x)

))
γ+1
γ−1

. (4.15)

In this case, the flow is transonic across the throat at the position x = 0.25. Thus the inflow

boundary condition at the entrance x = 0 should be prescribed by

pin := p0

(

1 +
γ − 1

2
M2(0)

)−
γ
γ−1

,

ρin := ρ0

(

1 +
γ − 1

2
M2(0)

)− 1
γ−1

.

(4.16)

While at the exit x = 1, the flow is supersonic and no boundary condition is needed. The compu-

tational result is given in Fig. 4.7 where 22 cells are used. The CFL number is 0.6 and the output

time is t = 5. The solution obtained by implementing the one-sided GRP solver converges to the

exact steady one and is comparable with the result obtained in [4].

For the other case, where the steady solution contains a standing shock wave, we set ρ0 = p0 = 1

and pex = 0.4 in (4.13) to get the initial data. In this case, the flow jumps from supersonic to

subsonic after passing the standing shock wave. As the outflow is subsonic in this case, both inflow

boundary condition and outflow boundary condition should be imposed. The inflow boundary
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Figure 8. The computation of nozzle flow equations with continuous steady solutions by using the one-

sided GRP solver. The pressure and Mach number at t = 5 are shown with 22 cells. The solid line represents

the exact solution given by (4.14).
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Figure 9. The computation of nozzle flow equations with a standing shock wave by using the one-sided

GRP solver. The pressure and Mach number at t = 5 are shown with 22 cells. The solid line represents the

exact solution given by (4.14).

condition is ρ0 = p0 = 1 at the entrance x = 0 and the outflow boundary condition is pex = 0.4 at

the exit x = 1. The computational result with 22 cells is given in Fig. 4.8. The CFL number is 0.6

and the output time is t = 5. The solution obtained by taking the one-sided GRP solver matches

well with the exact solution.

Example 5. The spherical symmetric shock interaction problem. We test the one-sided GRP

solver for the simulation of the spherical symmetric flows where a spherical shock wave interacts
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Figure 10. A spherical shock wave interacts with the symmetric center. We compute the density profile by

the one-sided GRP solver (squares) and the traditional boundary condition treatment (dots). 200 cells are used.

with the symmetric center. The initial data is taken to be

(ρ, v, p)(0, x) =















(1.0, 0.0, 1.0/1.4), 0 ≤ x ≤ 2.0,

(1.69997,−0.578906, 1.528199), 2.0 < x ≤ 10.0,
(4.17)

such that a left-going spherical shock moves toward the center. The output time is t = 5.0 with the

CFL=0.5. One can see from Fig. 4.9 that near the symmetric center, the one-sided GRP solver has

much better numerical performance compared with the reflective boundary condition. For more

details about the GRP solver of radially symmetric flows, we refer to [22] and references cited

therein.

Example 6. Noh problem. The Noh problem [26] is a typical radially symmetric compressible

flows problem. The governing equations include source term, which can be used to test the perfor-

mance of the one-sided GRP solver. We consider the spherically converging flow of zero-pressure

gas with γ = 5/3. The initial data has the uniform form

[ρ, v, p] = [1,−1, 0], 0 < r ≤ 100, (4.18)

here r is the radius. The exact solution consists of an expanding shock wave which begins from

the center r = 0. Here the initial pressure is set to be 10−6 instead of zero. The boundary condition

at the rightmost cell is given by

[ρ, v, p]n+1(r) = [(1 + tn+1/r)2,−1, 10−6], r ∈ [rK−1/2, rK+1/2], (4.19)

which is the exact solution at t = tn+1. On the left boundary one has v(0, t) = 0. The one-sided GRP

solver is implemented on both boundaries. The result is shown in Fig. 4.10. The discrepancies

near the center is caused by the “startup” of the captured shock wave, as pointed out in [22]. The

result obtained here has less oscillations near the boundary compared with that in [22].

Example 7. The spherical explosion problem. This is another problem of radially symmetric

compressible flows. The initial gas is at rest with ρ = 21.7333, p = 15.514 for 0 ≤ r ≤ 5 and

ρ = 2.0, p = 1.0 for 5 ≤ r ≤ 50. The spherical explosion is quite complex and a complete analysis

can be found in [22]. The numerical results are shown in Fig. 4.11, where we implement the GRP

with two boundary condition treatments : the one-sided GRP solver and the method developed in

[22]. From Fig. 4.11 one see that the one-sided GRP solver has a good agreement with the method

that proposed in [22].
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Figure 11. The numerical results for Noh problem with 400 cells by using the one-sided GRP solver

(squares) and the traditional reflective boundary treatment (dots), respectively, the solid line is given as the

exact solution.
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Figure 12. The comparison of the results of the spherical explosion problem with two boundary condition

treatments: one-sided GRP solver (squares) and the effective boundary condition treatment (dots) proposed in

[22].

Example 8. The double Mach reflection problem. We turn to two-dimensional example. The

computational domain is [0, 4] × [0, 1], and [0, 3] × [0, 1] is shown. A solid-wall is at the bottom

of the domain starting from x = 1
6
. Initially a Mach 10 shock wave is moving to the right which is

at the position x = 1
6
, y = 0 and makes π

3
angle with the x-axis. More details about the problem can

be seen in [32].

We compute the problem by using the traditional boundary condition treatment and the one-

sided GRP solver, respectively, to deal with the reflective boundary condition along the bottom

wall {(x, y) : 1
6
< x < 4, y = 0}. The results are displayed in Fig. 4.12 with 30 contours of

the density at time t = 0.2 where 720 × 180 cells are used here. The CFL number is 0.6. From



One-sided GRP and Numerical Boundary Conditions 19

0.5 1 1.5 2 2.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.5 1 1.5 2 2.5

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 13. The numerical results of the double Mach reflection problem. The upper is the GRP scheme

with the one-sided GRP solver. The lower is the GRP scheme with the traditional reflective boundary condition

treatment.

the figure we see that the one-sided GRP solver works well for the two-dimensional solid-wall

boundary condition.

Example 9. The forward facing step problem. This is another classical test problem for the

two-dimensional equations. The wind tunnel is 1 length unit wide and 3 length units long. The

step is 0.2 length units high and is located 0.6 length units from the left-hand end of the tunnel.

Initially a unit right moving Mach 3 shock wave with (ρ0, v
x
0
, v

y

0
, p0) = (1.4, 3, 0, 1) in the tunnel.

The reflective boundary conditions are applied along all the walls.

Again, we compute the problem by using the traditional boundary condition treatment and the

one-sided GRP solver, respectively. The CFL number is 0.6. The results are displayed in Fig.

4.13 with 900×300 cells at time t = 4. A three-shock Mach reflection configuration is formed.

According to [32], the correct Mach stem is located at x = 0.6. We can see that the results obtained

by the one-sided GRP solver has the shock at the correct position, compared with that obtained by

the reflective boundary condition treatment.

Appendix A. The useful one-sided GRP coefficients.

The coefficients of the one-sided GRP solver are collected in Table 1. In this table, the 1-shock

(3-shock, resp.) refers to the shock associated with the v−c characteristic family (v+c, resp.). The

same for the 1-rarefaction wave and 3-rarefaction wave. We deal with both the left boundary case

and the right boundary case. For the left boundary case, the one-sided Riemann problem (2.15) has
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Figure 14. The numerical results of the forward facing step problem. The upper is the GRP scheme with

the one-sided GRP solver. The lower is the GRP scheme with the traditional reflective boundary condition

treatment.

Table 1. The coefficients in (3.7) for all possible cases.

1-rarefaction wave (aL, bL) = (arare
L
, brare

L
), dL = drare

L

1-shock wave (aL, bL) = (ashock
L

, bshock
L

), dL = dshock
L

3-rarefaction wave (aR, bR) = (arare
R
, brare

R
), dR = drare

R

3-shock wave (aR, bR) = (ashock
R , bshock

R ), dR = dshock
R

the solution which consists of a single 3-shock wave or a 3-rarefaction wave. Similarly, when there

exists a right boundary, the solution of (2.15) consists of a single 1-shock wave or a 1-rarefaction

wave.

We denote J = L or R in the rest part of the paper. The one-sided Riemann solution is denoted as

u∗
J

which can be obtained through solving (2.15). The Riemann invariants φ and ψ are introduced

by

ψ = v +
2c

γ − 1
, φ = v −

2c

γ − 1
. (A.1)
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For the second law of thermodynamics, we have

TdS =
dp

(γ − 1)ρ
−

c2

(γ − 1)ρ
dρ. (A.2)

These are useful to derive the coefficients below. More details can be found in [4].

A.1. (Nonsonic case) The coefficients for rarefaction waves are given by

(arare
L , brare

L ) =

(

1,−
1

ρ∗
L
c∗

L

)

, (arare
R , brare

R ) =

(

1,−
1

ρ∗
R
c∗

R

)

,

drare
J
=















1 + µ2

1 + 2µ2
θ

1

2µ2

J
+

µ2

1 + 2µ2
θ

1+µ2

µ2

J















TJS ′
J
+ sgn(J)cJ

(

η′(J) +
a′(0)

a(0)
vJ

)

θ
1

2µ2

J

+
a′(0)

a(0)
c∗J(ΦJ + sgn(J)v∗J),

(A.3)

where µ2 =
γ − 1

γ + 1
, θL =

c∗
L

cL

, θR =
c∗

R

cR

, and ΦJ are given by

ΦJ =







































(µ2 − 1)c∗J

µ2(4µ2 − 1)















1 − θ

1−4µ2

2µ2

J















− sgn(J)
η(J)

2µ2 − 1















1 − θ

1−2µ2

2µ2

J















, if γ ,
5

3
, γ , 3,

cJ − c∗J − sgn(J)η(J)log(θJ), if γ = 3,

−2[3c∗JlogθJ − sgn(J)η(J)(1 − θJ)], if γ =
5

3
.

(A.4)

Here

sgn(J) =

{

−1, if J = L,

1, if J = R,
η(J) =

{

ψL, if J = L,

φR, if J = R.
(A.5)

The coefficients for shock waves are given by

ashock
J = 1 + sgn(J)ρ∗J(σJ − v∗J)ΦJ

1 , bshock
J = −

1

ρ∗
J
(c∗

J
)2

(σJ − v∗J) − sgn(J)ΦJ
1,

dshock
J = LJ

ρρ
′
J + LJ

p p′J + LJ
v v′J −

a′(0)

a(0)
jR.

(A.6)

All the variables involved are

σJ =
ρ∗

J
v∗

J
− ρJvJ

ρ∗
J
− ρJ

,

LJ
ρ = sgn(J)(σJ − vJ)ΦJ

3, LJ
v = σJ − vJ − sgn(J)(ρJc2

JΦ
J
2 + ρJΦ

J
3),

LJ
p = −

1

ρJ

+ sgn(J)(σJ − vJ)ΦJ
2, jR = sgn(J)ρJvJ(c2

JΦ
J
2 + Φ

J
3) − (σJ − v∗J)v∗J .

(A.7)

Here HJ
i
= Hi(pJ

∗ ; pJ, ρJ), i = 1, 2, 3, Hi is given by

H1(p; p̄, ρ̄) =
1

2

√

1 − µ2

ρ̄(p + µ2 p̄)

p + (1 + 2µ2)p̄

p + µ2 p̄
,

H2(p; p̄, ρ̄) = −
1

2

√

1 − µ2

ρ̄(p + µ2 p̄)

(2 + µ2)p + µ2 p̄

p + µ2 p̄
, H3(p; p̄, ρ̄) = −

p − p̄

2ρ̄

√

1 − µ2

ρ̄(p + µ2 p̄
.

(A.8)
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Denote D/Dt = ∂/∂t + v∂/∂x. Then we have

∂v

∂t
=

Dv

Dt
+

v

ρc2

Dp

Dt
+

a′(0)

a(0)
v2,

∂p

∂t
=

Dp

Dt
+ ρv

Dv

Dt
.

(A.9)

Remember that we always have (∂v/∂t)∗ = g′(t) on the boundary, then the expected instantaneous

values (∂u/∂t)∗ can be obtained directly through solving (3.7) with (A.9)

A.2. (Sonic case) When the left boundary is located inside the 3-rarefaction wave, we have
(

∂v

∂t

)∗

= g′(t),

(

∂p

∂t

)∗

= ρ∗Rv∗R

[(

∂v

∂t

)∗

− θ
2γ
γ−1 TRS ′R −

a′(0)

a(0)
(v∗R)2

]

. (A.10)

Similarly, when the right boundary locates inside the 1-rarefaction wave, we just replace u∗R, TRS ′R
by u∗

L
, TLS ′

L
in (A.10).

A.3. (Acoustic case) Assume that on the right boundary, u∗
L
= uL, (u

∗
L
)′ , u′

L
, or on the left

boundary, u∗
R
= uR, (u

∗
R
)′ , u′

R
, we have the acoustic case. (∂v/∂t)∗ and (∂p/∂t)∗ can be given by

(

∂v

∂t

)∗

= g′(t),

(

∂p

∂t

)∗

= sgn(J)ρ∗Jc∗J − ρ
∗
J

(

v∗J − sgn(J)c∗J
)













p
′

J

ρ∗
J

− sgn(J)c∗Jv′J













−
a′(0)

a(0)
(ρ∗Jv∗J)3.

(A.11)

And the quantity (∂ρ/∂t)∗ is calculated from the EOS,
(

∂ρ

∂t

)∗

=
1

(c∗
J
)2

[(

∂p

∂t

)∗

+ v∗J

(

p′J − (c∗J)2ρ′J

)

]

, (A.12)

where J takes L or R, the definition of sgn(J) is referred to (A.5).
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