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Asymptotic-Preserving schemes for kinetic–fluid modeling of

disperse two-phase flows

Thierry Goudon∗† Shi Jin‡ Jian-Guo Liu§ Bokai Yan‡

May 11, 2011

Abstract

We consider a system coupling the incompressible Navier–Stokes equations to the Vlasov–
Fokker–Planck equation. Such a problem arises in the description of particulate flows. We design
a numerical scheme to simulate the behavior of the system. This scheme is asymptotic-preserving,
thus efficient in both the kinetic and hydrodynamic regimes. It has a numerical stability condition
controlled by the non-stiff convection operator, with an implicit treatment of the stiff drag term
and the Fokker-Planck operator. Yet, consistent to a standard asymptotic-preserving Fokker-Planck
solver or an incompressible Navier-Stokes solver, only the conjugate–gradient method and fast Pois-
sion and Helmholtz solvers are needed. Numerical experiments are presented to demonstrate the
accuracy and asymptotic behavior of the schemes, with several interesting applications.

Key words. Fluid–particles flows. Hydrodynamic regimes. Asymptotic Preserving Schemes.
Kinetic-fluid model. Two-phase flow.
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1 Introduction

This paper is concerned with the simulation of a system of PDEs describing the evolution of disperse
two-phase flows. While these flows can be modeled by a continuum description for all phases [30]
we adopt here a kinetic–fluid modeling [40]. Such models are applicable to suspensions of solids
as well as droplets. We use a kinetic description for the particulate phase and a hydrodynamic
one for the underlying continuous fluid phase. Typical applications cover the dynamics of sprays
[1, 2, 18, 39], particulate flows in fluidized beds [5], the calibration of fire prevention devices [44],
environmental studies on pollutant transport [46, 48, 17, 42, 41, 45], combustion theory [40, 36, 49]
and engine design [22, 35].

There exists a large variety of kinetic–fluid models, depending on the considered physical regime.
Here and below, we adopt the following assumptions:

• The fluid phase is incompressible and viscous. For the sake of simplicity, we suppose that the
fluid density is constant and homogeneous (see Remark 2.1 below).

• Both the fluid and particle phases are isothermal.

• We consider a single species of particles, with a given and fixed mass density and size.
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• We assume there is no mass exchange between the phases, or in other words, the volume
fraction occupied by the particles does not influence significantly the fluid density. According
to [40], it corresponds to the so–called Thin Sprays modeling.

• Particles are subject to Brownian motion: according to [21, 20] it leads to diffusion with
respect to the velocity variable in the equation for the particle distribution function.

• Each phase exerts an influence on the other phase through drag forces. Models for the
drag forces are developed through experimental investigation and can have quite intricate
expressions. Here we shall use the simplest Stokes formula where the drag force is proportional
to the relative velocity (v − u). An interesting derivation through homogenization arguments
is discussed in [19].

Then, the flows are described by the fluid velocity field u(t, x) ∈ R
N , depending on time t ≥ 0 and

space x ∈ R
N , and the particle distribution function f(t, x, v), which additionally depends on the

(particle) velocity variable v ∈ R
N . The evolution of the density f is governed by

∂tf + v · ∇xf =
1

ε
Luf + ∇xΦ · ∇vf, (1) FP

where we have set
Luf = ∇v ·

(

(v − u)f + ∇vf). (2) FP_op

A derivation of such an operator for particles in inhomogeneous flows is discussed in [24]. The
evolution of the fluid obeys the Incompressible Navier-Stokes system







∂tu + ∇x · (u ⊗ u) + ∇xp − ∆xu =
1

ε
κ

∫

(v − u)f dv,

∇x · u = 0,
(3) NS

with κ > 0 a coupling constant that depends on the physical properties of the two phases.
The two phases are subject to external forces, embodied into the potential Φ. Of course, in the

momentum equation (3), the external force term is incorporated within the pressure. Note however
that the strength and the orientation of the external force might be different for the two phases. A
relevant example is given by gravity driven flows where ∇xΦ is proportional to g, the gravitational
acceleration. For the particles, the coefficient is ηP = (1−ρF /ρP ) which accounts for the buoyancy
force, with ρF and ρP (typical) densities of the fluid and the particles, respectively. The system
(1)–(3) is written here in dimensionless form. The scaling parameter ε is associated to the Stokes
settling time

2ρP a2

9µ

with µ the dynamic viscosity of the fluid, a the typical radius of the particles. We refer e.g. to
[9, 11] for further details on the scaling issues.

The goal of the present paper is the design of a performing numerical scheme, able to han-
dle different regimes, from ε = O(1) (the kinetic regime) to ε ≪ 1 (the hydrodynamic regime).
As will be detailed below, in the hydrodynamic regime, the particle distribution function relaxes

to the Maxwellian n(t,x)
(2π)N/2 e−|v−u(t,x)|2/2 and the limiting system for particle density n and parti-

cle macroscopic velocity u, which coincides to the fluid velocity, looks like the non homogeneous
incompressible Navier–Stokes system, see (10)–(11).

Existence of weak solutions of system (1)–(3) has been investigated in [29] by fixed point meth-
ods and the theory has been revisited in [7] by using compactness techniques. Definitely, a difficulty
relies on the construction of approximate solutions that preserve the conservation/dissipation prop-
erties of the model. We also refer to [37] for the analysis of compressible models. Smooth solutions
close to equilibrium are studied in [28], see also [13] for a similar analysis of macroscopic models.
The analysis of the asymptotics ε → 0 in (1)–(3) is due to [26] by means of relative entropy methods,
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see also [38]. It is also worth mentioning related works like the local existence of smooth solutions
for the case without velocity–diffusion [3], several studies of coupling with the Euler system (i.e.
viscosity is sensible only at the scale of the particles) [11, 12, 10] and systems with energy exchanges
[6, 8, 27].

This work is organized as follows. In Section 2 we detail a few basic facts about the system
(1)–(3) and the regime ε → 0. In Section 3 we detail the construction of the numerical scheme. Our
method takes place among the so–called “Asymptotic Preserving Schemes”, a terminology coined
in [31]. It means that the scheme is suitable for the kinetic equation in such a way that letting ε
go to 0 while holding the mesh size and time step fixed, the scheme becomes a suitable scheme for
the limiting equations. In particular, the stability constraints do not degenerate in the asymptotic
regime. We refer to [32] for a recent review on the AP schemes and their applications. Roughly
speaking the idea consists in evaluating implicitly the stiff terms of the equation. Here, it will require
to invert the Fokker–Planck operator (2). To this end, we will follow the discretization introduced
in [33]. Furthermore, our formulation of the scheme follows the framework of the projection method
(see Chorin [14]–[16], Temam [47]), in the sense that only fast Helmholtz or Poisson solvers are
needed, even with the implicit, nonlocal coupling terms between particles and the fluid. This is
most natural when the incompressible fluid equations are solved by the projection method. The
Fokker-Planck solver here, on the other hand, has a computational cost and complexity comparable
to the previously developed AP scheme without the coupling to the fluid equation [33]. Both first
and second order schemes are presented in this framework. Section 4 is devoted to the results of
numerical simulations for checking accuracy, asymptotic behavior as well as some applications.

2 Hydrodynamic Limit
Basic

Let us briefly recall some basic facts about the system (1)–(3) and the regime ε → 0. The key
remark, observed in [25, 26], relies on the following energy–entropy dissipation property

d

dt

(

κ

∫

RN×RN

f
(

1 + Φ + v2/2 + ln(f)
)

dv dx +

∫

RN

|u|2/2 dx
)

+

∫

RN

|∇xu|2 dx +
1

ε

∫

RN×RN

∣

∣(v − u)
√

f + 2∇v

√

f
∣

∣

2
dv dx ≤ 0.

(4) disspation

A similar relation holds when the problem is set on a bounded smooth domain Ω with reasonable
boundary conditions. For instance we can assume no–slip of the fluid

u
∣

∣

∣

∂Ω
= 0 (5) BCfluid

and specular reflection of the particles

γ−f(t, x, v) = γ+f
(

t, x, v − 2v · ν̂(x)ν̂(x)
)

, (6) BCpart

where ν̂(x) stands for the unit outer normal at point x ∈ ∂Ω and γ± denote the trace operators on
the set

{

(t, x, v) ∈ (0,∞) × ∂Ω × R
N , ±v · ν̂(x) > 0

}

.

We refer to further comments in [11]. It is worth rewriting the Fokker–Planck operator as

Luf = ∇v ·
(

Mu∇v

( f

Mu

))

, Mu(v) =
1

(2π)N/2
exp

(

− |v − u(t, x)|2
2

)

.

As ε goes to 0, since the Fokker–Planck operator is penalized, we expect that f makes Luf (and
the dissipation term in (4)) vanish which means that f becomes proportional to the Maxwellian
centered to the fluid velocity

f(t, x, v) ≃ n(t, x)Mu(t,x).
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Hence the question is to identify the equation satisfied as ε → 0 by the particles density n and the
velocity u.

To this end, let us write the equations satisfied by the moments

n(t, x) =

∫

RN

f(t, x, v) dv, J(t, x) =

∫

RN

vf(t, x, v) dv.

Then one has
∂tn + ∇x · J = 0, (7) momenteqn_mass

∂tJ + ∇xP + n∇xΦ = −1

ε
(J − nu) (8) momenteqn_moment

where

P(t, x) =

∫

RN

v ⊗ vf(t, x, v) dv.

Combined to (3) one obtains

∂t

(

u + κJ
)

+ ∇x ·
(

u ⊗ u + κP

)

+ ∇xp + κn∇xΦ = ∆xu. (9) combi

Accordingly, when J and P are asymptotically defined by the moments of the Maxwellian nMu,
one is led to

J ≃ nu, P ≃ nu ⊗ u + nI.

Inserting this ansatz into (9) one arrives at

∂t

((

1 + κn
)

u
)

+ ∇x ·
((

1 + κn
)

u ⊗ u
)

+ ∇x

(

p + κn
)

+ κn∇xΦ = ∆xu, (10) limit

where the velocity is still required to be divergence free while for the density of particles

∂tn + ∇x · (nu) = 0. (11) limit2

The system (10)–(11) is (up to the gravity term) nothing but the incompressible Navier-Stokes
system for the composite and inhomogeneous density (1+κn). Of course a rigorous justification of
the convergence statement presents technical difficulties, due to the nonlinear passages to the limit
it requires, in particular with the product nu ⊗ u. We refer to [26] for a proof based on relative
entropy arguments and to [37, 38, 11] where related questions are discussed.

nonhom Remark 2.1 Note that the problem does not simplify if we start with the Stokes equation for the
fluid instead of (3), because the convection term in the limit equation comes anyway from the
kinetic pressure P. We point out also that it makes sense to consider from the beginning that the
fluid density ρ(t, x) is non homogeneous. In such a case (3) is replaced by

∂tρ + ∇x · (ρu) = 0,

∂t(ρu) + ∇x · (ρu ⊗ u) + ∇xp + ηF ρ∇xΦ̃ = ∆xu +
1

ε
κ

∫

RN

(v − u)f dv,

coupled to the divergence free constraint ∇x · u = 0. Here ∇xΦ̃ = 1
ηP

∇xΦ = g. Note the coefficient
ηF , potentially different from ηP , characterizes the effect of the external forces on the fluid. The
limiting problem will be of the same type for the composite density ρ + κn; namely one obtains as
ε → 0

∂tρ + ∇x · (ρu) = 0 = ∂tn + ∇x · (nu) = 0,

∂t

((

1 + κn
)

u
)

+ ∇x ·
((

1 + κn
)

u ⊗ u
)

+ ∇x

(

p + κn
)

+ (ηF ρ + ηP n)∇xΦ̃ + ∆xu,

∇x · u = 0.
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3 An AP Scheme for the Flowing Regime
sec:scheme

As announced in the Introduction, we wish to construct a numerical scheme for (1)–(3), with the
specific request to capture the asymptotic regime ε → 0 efficiently. In particular, as ε goes to
0, the scheme should become a robust solver for the limit system (10)–(11). Furthermore, the
asymptotic regime should not introduce prohibitive numerical constraints, by having the stability
condition independent of ε. A scheme that fulfills these requirements is said Asymptotic Preserving
[31, 23, 32]. Roughly speaking, the idea is to evaluate implicitly the stiff terms in the equations,
namely the drag force in (3) and the Fokker–Planck operator in (1). The key point of the method
that provides the AP property to the scheme relies on a convenient time splitting which allows
to compute implicitly the stiff terms efficiently. Recall that an AP scheme for the Fokker-Planck
equation, developed in [33], relies just on a conjugate gradient method for the implicit Fokker-
Planck operator, while a typical incompressible Navier-Stokes solver, such as the projection method,
requires a fast Poisson or Helmholtz solver. For the problem under study, even if more implicit
coupling terms are involved than the problems studied previously, our AP schemes do not require
more than the conjugate gradient method and a fast Poisson or Helmholtz solver.

3.1 Projection method

The projection method for the incompressible Navier-Stokes system (3) contains two steps. First,
the equation without pressure term is solved with a suitable boundary condition on u∗,

u∗ − uk

∆t
+ ∇x · (uk ⊗ uk) − ∆xu∗ = Sk,k+1.

Then u∗ is projected to the divergence free space,

uk+1 − u∗

∆t
+ ∇xpk+1 = 0

with ∇x · uk+1 = 0. This step is solved by first computing pk+1:

∆xpk+1 =
1

∆t
∇x · u∗

with a suitable boundary condition (for example, the Neumann boundary condition ∂p
∂ν̂ = 0 ). Then

uk+1 = u∗ − ∆t∇xpk+1.

This is a first order projection scheme in time ([14, 15, 16], [47]). Higher order schemes can be
derived ([34], [4]).

In this Section Sk,k+1 is considered as a given data. For our purposes however, it will depend
on the velocity field through the drag force terms, which will modify the structure of the linear
problems that govern the updating of the velocity.

3.2 Construction of the AP Schemes
proj

The AP scheme works in two steps. Firstly we update the macroscopic quantities n, J, u, p and
secondly we update the microscopic density of particles. The former leads to invert a coupled
linear system. The latter needs to invert the Fokker–Planck operator, which relies on a specific
discretization to obtain a structure appropriate for using performing algorithms.

To start with, we compute the macroscopic density of particles,

1

∆t
(nk+1 − nk) = −

∫

v · ∇xfk dv = −∇x · Jk. (12) scm:1_n
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Next we apply the projection method to the momentum equation (8) with the incompressible
Navier-Stokes equation (3). We solve

1

∆t
(J∗ − Jk) = −

∫

v ⊗ v∇xfk dv − nk∇xΦ − 1

ε

(

J∗ − nk+1u∗
)

, (13a) scm:1_J_notsolve

1

∆t
(u∗ − uk) − ∆xu∗ = −∇x · (uk ⊗ uk) +

1

ε
κ
(

J∗ − nk+1u∗
)

. (13b) scm:1_u_notsolve

This is equivalent to solve

(

1

∆t
+

1

ε + ∆t
κnk+1 − ∆x

)

u∗ =
uk

∆t
−∇x · (uk ⊗ uk)+

1

ε + ∆t
κ
(

Jk −∆t

∫

v⊗ v∇xfk dv
)

. (14) scm:1_ustar

The no–slip boundary condition for u∗ is used,

u∗
∣

∣

∣

∂Ω
= 0. (15) scm:1_bdry

(14) is a variable coefficient Helmholtz equation for u∗, which can be solved by the Preconditioned
Conjugate Gradient method without difficulties (for example, see [43]). Then u∗ is projected to
the divergence free space,

∆xpk+1 =
1

∆t
∇x · u∗,

∂pk+1

∂ν̂

∣

∣

∣

∂Ω
= 0, (16) scm:1_p

uk+1 = u∗ − ∆t∇xpk+1. (17) scm:1_unew

Equation (16) is solved by the FFT method. From (17), uk+1 = O(∆t) at boundary. The first
order accuracy is preserved. Finally fk+1 is solved based on the kinetic equation (1), with a fully
implicit Fokker-Panck operator

fk+1 − fk

∆t
+ v · ∇xfk −∇xΦ · ∇vfk =

1

ε
Luk+1fk+1, (18) scm:1_fnew

where
Luk+1fk+1 = ∇v · ((v − uk+1)fk+1 + ∇vfk+1).

Then Jk+1 is updated by taking the first moment of fk+1.
This is a predictor-corrector method for the kinetic equation (1). One first predicts the momen-

tum at tk+1 by solving for u∗. Then the divergence free velocity uk+1 is derived and the momentum
Jk+1 at tk+1 is corrected accordingly. The only constraint on time step is the CFL condition from
the transport part of kinetic equation (1), i.e. ∆t ≤ ∆

max |v| , with ∆ the space mesh size.

3.3 A second order scheme
sec:scheme_order2

Equations (12)–(18) give a first order scheme. We can generalize it to second order. The convergence
order can be improved by the following techniques.

• The time derivative terms are approximated by a second order BDF method, i.e.,

∂ta(tk+1) ≈ 3ak+1 − 4ak + ak−1

2∆t
;

• The transport terms are approximated by extrapolation from last two steps, i.e.,

b(tk+1) ≈ 2bk − bk−1;

• The stiff terms are implicitly formulated at tk+1;
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• u∗ is solved with the boundary condition u∗ · ν̂ = 0, u∗ · τ̂ = ∆t
∂pk

∂τ̂
, where τ̂ (x) is the unit

tangent vector at point x ∈ ∂Ω. This ensures that the projection step only introduces second
order error (see [34]).

We describe the detailed scheme now. First, the macroscopic density of particles is computed by,

1

2∆t
(3nk+1 − 4nk + nk−1) = −

∫

v · ∇x(2fk − fk−1) dv = −∇x · (2Jk − Jk−1). (19) scm:2_n

Next we solve the coupled momentum equations (8) with (3), without pressure term,

1

2∆t
(3J∗ − 4Jk + Jk−1) = −

∫

v ⊗ v∇x(2fk − fk−1) dv − (2nk − nk−1)∇xΦ − 1

ε

(

J∗ − nk+1u∗
)

,

1

2∆t
(3u∗ − 4uk + uk−1) − ∆xu∗ = −∇x · (2uk ⊗ uk − uk−1 ⊗ uk−1) +

1

ε
κ
(

J∗ − nk+1u∗
)

.

This is equivalent to solve

(

3

2∆t
+

3

3ε + 2∆t
κnk+1 − ∆x

)

u∗ =
4uk − uk−1

2∆t
−∇x · (2uk ⊗ uk − uk−1 ⊗ uk−1)

+
1

3ε + 2∆t
κ

{

4Jk − Jk−1 − 2∆t

(
∫

v ⊗ v∇x(2fk − fk−1) dv + (2nk − nk−1)∇xΦ

)}

.

(20) scm:2_ustar

The following boundary condition for u∗ is used on ∂Ω,

u∗ · ν̂ = 0, u∗ · τ̂ = ∆t
∂pk

∂τ̂
. (21) scm:2_bdry

Equation (20) can be solved by the Preconditioned Conjugate Gradient method without difficulties.
Then u∗ is projected to the divergence free space,

∆xpk+1 =
1

∆t
∇x · u∗,

∂pk+1

∂ν̂
= 0, (22) scm:2_p

uk+1 = u∗ − ∆t∇xpk+1, (23) scm:2_unew

where pk+1 is solved by the FFT method. Notice that uk+1 satisfies

uk+1 · ν̂ = u∗ · ν̂ − ∆t
∂pk+1

∂ν̂
= 0,

uk+1 · τ̂ = u∗ · τ̂ − ∆t
∂pk+1

∂ν̂
= ∆t

∂

∂ν̂
(pk − pk+1) = O(∆t2),

thus a second order accuracy on boundary is achieved.
Finally fk+1 is solved based on the kinetic equation (1),

3fk+1 − 4fk + fk−1

2∆t
+ (v · ∇x −∇xΦ · ∇v)(2fk − fk−1) =

1

ε
Luk+1fk+1, (24) scm:2_fnew

and Jk+1 is updated by taking the first moment of fk+1.
Equations (19)–(24) give a second order scheme in time. We will check this convergence order

numerically in Section 4.1.

Remark 3.1 Note that this second order scheme is a Multistep method. To compute the solutions
at tk+1, we need the solutions from both tk and tk−1. Therefore, with initial data at t0, it is
necessary to apply the first order method to obtain the solutions at t1. Then this second order
scheme can be started.
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3.4 The AP property
sec:scheme_AP

Now we show that the first order scheme (12)–(18) is asymptotic preserving and the limiting scheme
gives a first order approximation for the limiting system (10)–(11).

As ε → 0, (18) gives
Luk+1fk+1 = O(ε), for k ≥ 0.

This is equivalent to
fk = nkMuk + O(ε), for k ≥ 1.

Then one has
Jk = nkuk + O(ε),

∫

RN

v ⊗ vfk dv = nkuk ⊗ uk + nk
I + O(ε).

Therefore, (12) is just
1

∆t
(nk+1 − nk) = −∇x · (nkuk) + O(ε). (25) scm:limit2

Besides, equation (13a) gives
J∗ = nk+1u∗ + O(ε).

Multiply (13a) by κ and add to (13b). One obtains,

1

∆t

((

1 + κnk+1
)

u∗ −
(

1 + κnk
)

uk
)

− ∆xu∗ =

−∇x ·
((

1 + κnk
)

uk ⊗ uk
)

− κ∇xnk − κnk∇xΦ + O(ε).
(26) scm:limit1

Equation (25) and (26) give a first order discretization of the limiting system (10)–(11). The
divergence free condition on uk is guaranteed by (16) and (17).

Similarly, one can show the limiting of the second order scheme (19)–(24) gives a second order
approximation for the limiting system (10)–(11). We omit the details.

3.5 Full discretization

3.5.1 Space and velocity discretization

For the sake of concreteness, let us discuss space and velocity discretization issues by restricting
to the two–dimension case. The extension to higher dimension is straightforward. We denote by
∆x the (uniform) mesh size. We define a regularly spaced and symmetric velocity grid, with step
∆v. Denoting j = (j, j′) and m = (m, m′) in N

2, fk
j;m stands for the numerical approximation of

f(k∆t, j∆x,m∆v).
For the transport term v · ∇xf in (18) and (24), we apply the upwind type second order shock

capturing schemes (see [27]). Discrete differential operators are defined dimension-by-dimension.
The specular reflection law is used to define the ghost points. For instance, labeling the numer-

ical unknown with indices j, j′ ∈ {1, ..., J} and m ∈ {1, ..., 2M + 1}, where the M first (resp. last)
velocities are negative (resp. positive), leads to

fk
0,j′;m,m′ = fk

1,j′;2M+2−m;m′ , fk
J+1,j′;m,m′ = fk

J,j′;2M+2−m,m′

and similar expression when exchanging the role of j, j′ and m′, m′.
The convection term ∇x · (u ⊗ u) and the diffusion term ∆xu in incompressible Navier-Stokes

system (3), as well as the terms ∇x · u∗ and ∇xp in the projection steps (16)–(17) and (22)–(23),
are approximated by center differences.

Macroscopic quantities are defined by using the 2–dimensional version of the trapezoidal rule
in order to ensure that the even moments of the odd functions with respect to v vanish.

The derivative with respect to velocity which appears in the acceleration term is also solved by
the upwind type second order shock capturing schemes (see [27]).
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3.5.2 Inversion of the Fokker-Planck operator

We have already discussed the discretization of the transport term. Now we focus on how to solve
fk+1 from (18), where the stiff term is treated implicitly. We need to invert the Fokker–Planck
operator. To this end, we follow the approach introduced in [33]. We write

Luf =
√

Mu L̃uh

with

h =
f√
Mu

, L̃uh =
1√
Mu

∇v ·
(

Mu∇v

( h√
Mu

))

.

Note that L̃u is symmetric for the standard L2 inner product
∫

RN

L̃uh g dv =

∫

RN

h L̃ug dv.

Accordingly, we set

hj;m =
fk+1
j;m

√

Mk+1
j;m

, L fk+1
j;m =

√

Mk+1
j;m L̃ hj;m.

The discrete operator L̃ is symmetric which allows to make use of the Conjugate Gradient algo-
rithm. In dimension two, the discrete operator L̃ is defined as follows

L̃ hj,j′;m,m′ =
1

∆v2

(

hj,j′;m,m′+1 + hj,j′;m+1,m − M
k+1

j,j′;m,m′hj,j′;m,m′ + hj,j′;m,m′−1 + hj,j′;m−1,m′

)

,

M
k+1

j,j′ ;m,m′ =

√

Mk+1
j,j′;m+1,m′ +

√

Mk+1
j,j′;m,m′+1 +

√

Mk+1
j,j′;m−1,m′ +

√

Mk+1
j,j′;m,m′−1

√

Mk+1
j,j′;m,m′

(27) disc_op

which indeed leads to a symmetric matrix. Observe that L̃
(
√

Mk+1
)

j;m
= 0. Therefore, the

updating of the particles distribution function

(

1 − ∆t

ε
L
)

fk+1
j;m = Sk

j;m

obeys the following rules:

• Solve the linear system
(

1 − ∆t

ε
L̃
)

hj;m =
Sk

j;m
√

Mk+1
j;m

.

• Set fk+1
j;m = hj;m

√

Mk+1
j;m .

4 Numerical simulations
NumRes

From now on we will use the following notations: x = (x, y) is the position variable, v = (v1, v2)
is the velocity variable, u = (u1, u2) is the fluid velocity and up = (up1, up2) is the macroscopic
particle velocity.

We apply the second order method described in Section 3.3. Unless otherwise specified, we
always use the following settings.

The computation is performed on (x,v) ∈ [0, 1]2 × [−vmax, vmax]
2, with vmax = 6. The specular

boundary condition is applied on particle distribution f , while no-flip boundary condition is used
for fluid velocity u.
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We take Nx = 30 grid points in each x direction and Nv = 32 grid points in each v direction.
We apply the van Leer type slope limiter on the discretization of the advection parts, and take
∆t = ∆x

5vmax
, which guarantees the stability.

We always take

f(0,x,v) = n(0,x)Mup(0,x)

as the initial data for particles distribution. Here up = J
n is the macroscopic velocity of particles.

Note that this is not necessary the equilibrium in the sense that Luf 6= 0 in (2) since we do not
require up = u.

We take κ = 2 throughout the simulations. However the schemes can be applied to the case
when κ is very large, without any difficulty.

4.1 Convergence Order
sec:num_order

First we numerically check that the scheme described in Section 3.3 is indeed second order in ∆x
(therefore in ∆t). We start with the initial data

n(0,x) = 0.5 + exp
(

−20(x− 0.5)2 − 20(y − 0.5)2
)

,

up(0,x) =

(

− sin(2π(y − 0.5))
sin(2π(x − 0.5))

)

exp
(

−20(x − 0.5)2 − 20(y − 0.5)2
)

,

u(0,x) = 0.

(28) init_order

We compute the solutions on a grid of Nx × Nx × Nv × Nv, with Nx = 16, 32, 64, 128 respectively.
As mentioned before, Nv = 32. After time tmax = 0.033 we check the following error,

e∆x(f) = max
t∈(0,tmax)

||f∆x(t) − f2∆x(t)||p
||f2∆x(0)||p

,

e∆x(u) = max
t∈(0,tmax)

||u∆x(t) − u2∆x(t)||p
||u2∆x(tmax)||p

.

(29) num:err

This can be considered as an estimation of the relative error in Lp norm, where f∆x and u∆x are
the numerical solutions computed from a grid of size ∆x = 1

Nx
. The numerical scheme is said to

be k-th order if e∆x ≤ C∆xk, for ∆x small enough.
Figure 1 gives the convergence order in L1 norm, showing that the scheme is almost second

order in space (hence in time) uniformly in ε, as expected. The convergence order is 1.7 for
particle distribution function f and 1.6 for the fluid velocity u.

4.2 AP Property

Now we check the AP property we proposed in Section 3.4. We take the volcano like initial data

n(0,x) = (0.5 + 100((x − 0.5)2 + (y − 0.5)2)) exp
(

−40(x − 0.5)2 − 40(y − 0.5)2
)

,

up(0,x) =

(

− sin(2π(y − 0.5))
sin(2π(x − 0.5))

)

exp
(

−20(x − 0.5)2 − 20(y − 0.5)2
)

,

u(0,x) = 0.

(30) init_AP

Therefore initially up 6= u and the equilibrium is not assumed. We apply the second order scheme
and perform the simulation until t = 0.5. In Figure 2, where ε = 1, we show the pictures of
particle density n, streamlines of particle velocity up and fluid velocity u at t0 (the initial time),
t1 (after one time step) and t450 (the end time). The streamlines of particles and fluid are totally
different. The particles expand to the whole square domain and are not significantly affected by
the circulating fluid. We show the same quantities in Figure 3 with ε = 10−5. In this case the drag
force between different phases is so strong that the particles also circulate in the square domain.

10



−1.9 −1.8 −1.7 −1.6 −1.5 −1.4 −1.3 −1.2
−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

log
10

(∆x)

lo
g 10

E
rr

 

 

slope = 1.7

ε = 1

ε = 10−2

ε = 10−4

ε = 10−6

(a) Convergence of particle distribution f .

−1.9 −1.8 −1.7 −1.6 −1.5 −1.4 −1.3 −1.2
−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

log
10

(∆x)

lo
g 10

E
rr

 

 

slope = 1.6

ε = 1

ε = 10−2

ε = 10−4

ε = 10−6

(b) Convergence of fluid velocity u.

Figure 1: The test of convergence order with initial data (28). This figure shows the l1 errors (29) in
particle distribution f (left) and fluid velocity u (right) with different ε.fig:conv_order

Besides, the expansion in particle density is decelerated by the fluid. The particles keep the volcano
shape well in this period of time.

At last, we check the time evolution of L1 distances ||f −nMu||1. Note that Mu is a Maxwellian
centered at the fluid velocity u. The result is shown in Figure 4. As expected, we have f −nMu =
O(ε) after one time step. This gives a direct evidence of the AP property we proposed.

4.3 Some Applications

Our schemes are easily extended to more complicated circumstances. In this section we apply our
schemes to several different problems. In section 4.3.1 the external force (the gravity) is considered.
In section 4.3.2 a different boundary condition is applied on particle distribution f , while in section
4.3.3 we apply a different boundary condition on fluid velocity u.

4.3.1 Simulation with a dam like initial data
sec:num_dam

Now we consider the dam like initial data,

n(0,x) = 10−10 + 10≤x≤0.5,
up(0,x) = 0,
u(0,x) = 0.

In this case the movement of particles and fluid are initiated by the gravity. We include the external
force term ∇xΦ · ∇vf in our simulation, where Φ = gy with gravity constant g = 10. The particles
are uniformly distributed in the left hand side. As the simulation starts, the particles fall down
and cause the circulation of fluid.

Figure 5(a) shows the time evolution of particle density when ε = 1. Figure 5(b) shows the
streamlines of velocity of particles and fluid at the end of simulation. In this case the drag force
between particles and fluid is not significant. The particles just fall down and concentrate in the
left part of bottom. Figure 5(b) shows clearly the behavior of particles is quite different from that
of the fluid.

Figure 6(a) shows the time evolution of particle density when ε is quite small, ε = 10−5. Figure
6(b) shows the streamlines of velocity of particles and fluid at the end of simulation. In this case
the drag force between particles and fluid is so strong that the particles and the fluid keep the same
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Figure 2: The test of AP property with initial data (30) for ε = 1. This figure shows the particle
density n (left column), streamlines of particle velocity up (middle column) and fluid velocity u (right
column) at t = 0 (upper row), t = ∆t (middle row) and t = 450∆t (lower row). The gravity is
neglected. fig:volcano0
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Figure 3: The test of AP property with initial data (30) for ε = 10−5. This figure shows the particle
density n (left column), streamlines of particle velocity up (middle column) and fluid velocity u (right
column) at t = 0 (upper row), t = ∆t (middle row) and t = 450∆t (lower row). The gravity is
neglected. fig:volcano5
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pace. As time evolves, the particles fall down and drive the fluid to circulate counter-clockwisely.
Then the particles follow this circulation and show an S-shape curve. Finally the particles settle
at the bottom uniformly due to the loss of energy.

4.3.2 Simulation of Injecting Problem
sec:num_inject

Now let us consider the situation when the particles are injected into the square domain. We take
the initial data as follows.

n(0,x) = 10−10, up(0,x) = u(0,x) = 0.

The injecting particle flow is described by the boundary condition on f ,

f(t,x,v) = 12≤v1≤3, if x ∈ Γ

where v1 is the first component of v. The entrance of flow Γ locates at the center of the left
boundary,

Γ = {(0, y)|0.45 ≤ y ≤ 0.55}.
We perform the simulation with different ε. In Figure 7 we show the particle density (left) and

streamlines of particle velocity (middle) and fluid velocity (right) at time t = 0.5. We ignore the
gravity effect.

In Figure 7(a), where ε = 1, the particles spread to the right end of the domain. The streamlines
of fluid and particles are totally different, which suggests the interaction between them are not
obvious. Besides, the streamline of particle velocity at the right end seems to show that the particles
are flowing out of the domain. However we would like to point out that the particle velocity is very
close to 0 at this end. One may observe that the particles are actually accumulating at the right
end of the domain, from the left picture of Figure 7(a).

In Figure 7(b), where ε = 10−2, the spreading of particles to the right end is decelerated by the
strong drag force from the fluid. From the streamline of particle velocity (the middle figure), the
whole domain is divided into two parts. The left half of the domain contains incoming particles
and the streamline behaves similarly as in the case ε = 1 (see the middle picture in Figure 7 (a)).
The right half of the domain only contains the particles which are initially uniformly placed in the
whole domain (n = 10−10). The streamline behaves similarly to that of the fluid (see the right half
of the right picture in Figure 7 (b)). As time evolves, the left half would gradually expand to the
whole domain.
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Figure 5: Part (a) shows the time evolution of particle density corresponding to the dam like initial
data. Part (b) shows the streamlines of velocities of particles (left) and fluid (right) after time t = 0.5.
ε = 1. The gravity is considered.fig:dam0 15
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In Figure 7(c), where ε = 10−4, the particles are stopped immediately by the drag force when
they enter the square domain and accumulate near the entrance. The streamline of particles and
fluid are quite close to each other, except in the area close the entrance.

4.3.3 Simulation of Cavity Flow
sec:num_cavity

Finally we apply our scheme on cavity flow. The cavity flow happens in a wide range of area, for
example, the car sunroof and aircraft landing gear well.

We simulate the fluid flowing past an open cavity. Initially the cavity is full of rest fluid and
the particle sediments are resting near the bottom corner of the cavity. The outside fluid flows past
the opening of the cavity with a constant velocity, which drives the inside fluid circulating in the
cavity. For simplicity we assume that the particle cannot escape the cavity, although our scheme
can be easily generalized to the case when this escape happens.

We give the initial and boundary conditions corresponding to this description,

n(0,x) = 10−10 + 10≤x≤0.5,0≤y≤0.5,
up(0,x) = 0,
u(0,x) = 0.

with

u(t,x) =

(

2
0

)

, if y = 1.

We need to modify (15) and (21) accordingly to incorporate this boundary condition.
We take ε = 10−5 and neglect the gravity effect. The simulation is performed until t = 32.

Figure 8 shows the time evolution of particle density distribution. Figure 9 shows the streamlines
of the particles (left) and the fluid (right) at time t = 32. The particles move along the streamline
of fluid and circulate in the cavity. Besides, noting that the maximum value of particle density
is decreasing and the minimum value is increasing as time evolves, the particles are gradually
spreading to the whole cavity.

We also perform the simulation with a relatively large Reynolds number. The Reynolds number
is incorporated into the incompressible Navier-Stokes system in the usual way







∂tu + ∇x · (u ⊗ u) + ∇xp − 1

Re∆xu =
1

ε
κ

∫

(v − u)f dv,

∇x · u = 0.
(31) NS_Reyn

The parameters in our simulation allow us to perform computation with Reynolds number up
to Re = 400 without trouble in stability. Larger Reynolds number, which requires smaller mesh
size ∆x for the sake of accuracy, is beyond the scope of this work.

Figure 10 shows the time evolution of particle density distribution for the same cavity problems
with Re = 400. The left bottom corner keeps more particles while the right bottom corner has very
few. Figure 11 shows the streamlines of the particles (left) and the fluid (right) at time t = 32. A
second circulation is formed in the corner.

Acknowledgements

This work started with a visit of Th. G. at the Math. Department of UW-Madison. Thanks are
addressed to local brewers for unforgetable cheers. We are also gratefully indebted to Caterina
Calgaro for useful advices.

Jian-Guo Liu is supported by NSF grant DMS-10-11738. Shi Jin is supported by NSF grant
DMS-0608720 and NSF FRG grant DMS-0757285. Shi Jin is also supported by a Van Vleck Dis-
tinguished Research Prize and a Vilas Associate Award from the University of Wisconsin-Madison.

17



particle density

x

y

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
particle velocity

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
fluid velocity

x

y

(a) ε = 1.

particle density

x

y

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
particle velocity

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
fluid velocity

x

y

(b) ε = 10−2.

particle density

x

y

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
particle velocity

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
fluid velocity

x

y

(c) ε = 10−4.

Figure 7: The streamlines of velocities of particles (left) and fluid (right) after time t = 0.5 for the
injecting problem. ε = 1. The gravity is considered.fig:inj_AP
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Figure 10: The time evolution of density of particle distribution in cavity flow, with Reynolds number
Re = 400. Here ε = 10−5. The gravity is neglected. fig:cavity_Re400
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la pollution de l’atmosphère. PhD thesis, Ecole Centrale de Lyon, 2005.

Will [49] F. A. Williams. Combustion theory. Benjamin Cummings Publ., 1985. (2nd edition).

24


