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Abstract
Implicit integration factor (IIF) method, a class of efficient semi-implicit temporal scheme, was
introduced recently for stiff reaction-diffusion equations. To reduce cost of IIF, compact implicit
integration factor (cIIF) method was later developed for efficient storage and calculation of
exponential matrices associated with the diffusion operators in two and three spatial dimensions for
Cartesian coordinates with regular meshes. Unlike IIF, cIIF cannot be directly extended to other
curvilinear coordinates, such as polar and spherical coordinate, due to the compact representation
for the diffusion terms in cIIF. In this paper, we present a method to generalize cIIF for other
curvilinear coordinates through examples of polar and spherical coordinates. The new cIIF method
in polar and spherical coordinates has similar computational efficiency and stability properties as the
cIIF in Cartesian coordinate. In addition, we present a method for integrating cIIF with adaptive mesh
refinement (AMR) to take advantage of the excellent stability condition for cIIF. Because the second
order cIIF is unconditionally stable, it allows large time steps for AMR, unlike a typical explicit
temporal scheme whose time step is severely restricted by the smallest mesh size in the entire spatial
domain. Finally, we apply those methods to simulating a cell signaling system described by a system
of stiff reaction-diffusion equations in both two and three spatial dimensions using AMR, curvilinear
and Cartesian coordinates. Excellent performance of the new methods is observed.
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1 Introduction
Integration factor (IF) or exponentially differencing time (ETD) methods are widely used for
solving temporal nonlinear partial differential equations (PDEs). In this approach, a linear part,
which is often taken as the terms of high order derivatives of a nonlinear PDE, is exactly
evaluated, leading to excellent temporal stability property (see [1] for review). One example
is an application to advection-diffusion equations using exact treatment of their linear part, and
the resulted explicit temporal scheme has stability properties similar to those of typical implicit
schemes [2]. In general, IF methods and ETD methods are particularly efficient for systems
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with high order derivatives that requires small time step for a typical explicit temporal scheme
[3,4,5,6,7].

For reaction-diffusion equations with stiff reactions, a class of semi-implicit integration factor
(IIF) method was recently developed to deal with stiffness of the systems [8]. In IIF, the
diffusion term is treated exactly such that the stability constraint due to spatial discretization
for diffusion is removed while the reaction term is treated implicitly to handle the stiffness of
reaction terms. This leads to great stability property for IIF while the extra cost associated with
the implicit treatment of reactions is minimal because of decoupling between calculations of
diffusion and reactions in IIF. In particular, its second order scheme is linearly unconditionally
stable and the high order scheme has large stability regions.

While the IF and ETD (explicit or implicit) schemes improve the stability conditions, the
schemes require storage of exponentials of matrices resulted from discretization of the linear
differential operators in the PDEs. Although the discretization matrices are sparse, their
exponentials are not. For two and three spatial dimensions, the storage sometimes may be
prohibitive computationally. To overcome this difficulty, recently compact representation of
the discretization matrices was introduced in the context of implicit integration factor method
[9]. This compact implicit integration factor (cIIF) has the same stability properties as the
original IIF [8] but with significant improvement on storages and CPU savings.

In cIIF, the discretized solutions is represented in a form of matrix rather than a vector in IIF
while the discretized diffusion operator are represented in matrices whose size is much smaller
than the standard sparse matrices for diffusion operators [9]. Such compact representation of
diffusion operators, as demonstrated in terms of a Cartesian coordinate for Laplacian operators
in [9], is essential for derivation of compact IIF that has tremendous advantage in computational
efficiency and storage over standard IIF in high spatial dimensions. However, it is not clear
how cIIF can be directly applied to systems in other curvilinear coordinates, such as polar,
spherical or cylinder coordinates that are often convenient for representing systems in non-
rectangular geometries.

In this study, we generalize cIIF methods for Cartesian coordinate to other curvilinear
coordinate systems using examples of polar and spherical coordinates. In this approach, the
matrices derived from a compact representation of diffusion operator in non-Cartesian
coordinate need to be diagonalized once and to be pre-calculated before the solution is updated
at each time step. The new cIIF for polar and spherical coordinates is found to have similar
stability properties as the cIIF for the Cartesian coordinate along with a similar computational
cost.

One natural application of cIIF methods in high spatial dimensions and in different coordinates
is for temporal PDEs incorporated with spatially adaptive techniques. As we know, when
solving nonlinear PDEs with sharp gradients in localized spatial domain, a local mesh
refinement technique is superior to the uniform grid approach because one can cluster the
spatial grid points in regions where needed. As a result, a smaller number of total spatial grid
points are used for adaptive methods compared to the uniform grid, leading to computational
and storage savings in spatial discretization.

However, the temporal updating for typical explicit schemes on spatial adaptive approach still
requires the time step be restricted by the smallest spatial mesh size. For example, for reaction-
diffusion equations, the time step must be proportional to square of the smallest spatial mesh
size. As a result, the time step for the entire spatial domain is dictated by the finest mesh [10]
and the saving gained from spatial adaptive mesh refinement is compensated by the extra costs
associated with the temporal schemes. One possible solution for this is to use multirate time
integration schemes in which the time step can vary across the spatial domain [11,12,13,14].
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Another alternative is to use IF or ETD methods that have better stability conditions. In
particular, unconditionally stable schemes which allow large time steps independent of the
spatial grid size, such as the second order cIIF (cIIF2), may be ideal for solving temporal
solutions of nonlinear PDEs that requires adaptivity in spatial discretization.

In this paper, we apply cIIF2 to reaction-diffusion equations using a block-structured adaptive
mesh refinement (AMR) algorithm [15] for both two and three spatial dimensions. The AMR,
which is based on Cartesian meshes and overlapping grids, was previously used for simulations
in fluids [16,17,18,19,20,21,22,23], materials [24,25], and heart tissues [26,27,28]. In this
approach, a hierarchy of refinement grids is constructed dynamically based on a suitable error
estimate of the solution, and then the composite overlapping and structured grids are used to
approximate the space domain [16,29,30,31]. Similar to other typical temporal schemes for
AMR, in our approach the solution at all grids, coarse and fine, are updated from the current
step independently. Then the solutions at the coarse grids that are in common with the fine
grids are replaced by the solution at the corresponding fine grids to form the overall updated
solutions. Numerical examples show that cIIF2 with AMR allowing for uniform large time
steps is superior to the explicit temporal schemes which require much smaller time steps due
to stability constraints. To ease the programming complexity in implementation, we also use
many capabilities of the Overture object-oriented class library [32,33].

Finally, we integrate the cIIF2 in polar coordinates for two spatial dimensions with AMR and
integrate cIIF2 in Cartesian coordinates with AMR in three spatial dimension for a biological
application in cell signaling. The integrated scheme is found to be robust and efficient.

This paper is organized as follows. The generalization of cIIF for systems in polar coordinate
and the corresponding numerical examples are presented in Section 2; the cIIF in spherical
coordinate is given in Section 3; the cIIF in combination with AMR is introduced in Section
4; and a biological application using cIIF and AMR in polar and Cartesian coordinates is
presented in Section 5.

2 Compact implicit integration factor (cIIF) method in polar coordinate
2.1 Derivation

In this section, we derive cIIF method for a two-dimensional reaction-diffusion equation in an
annular domain using a polar coordinate. The system with no-flux boundary conditions for
both directions takes a form

(1)

After discretizing the spatial domain by a rectangular mesh: (ri, θj) = (a + (i − 1)hr, c + (j − 1)
hθ) where hr = (b − a)/(N − 1), hθ = (d − c)/(M − 1), ri = (i − 1)hr and 1 ≤ i ≤ N and 1 ≤ j ≤
M, we use the second order central difference discretization for the diffusion terms:

(2)

To express (2) in a compact form, we define the matrix U for the discretized solutions:
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and

After defining , , ,  and A = A1 + A2, we re-write
the semi-discretized form (2) as

(3)

Assume B is diagonalizable: B = PD ̃P−1, where D ̃ is a diagonal matrix with the eigenvalues
of B as the diagonal elements. Let V = UP, then (3) can be written as

(4)

Notice that both matrices C and D ̃ are diagonal, with the ith and jth diagonal elements in C and
D ̃ being ci and dj, respectively. Define C ̃ = (cĩj) = (cidj) where i = 1,2, ⋯ N, j = 1, 2, ⋯ M, and
an operation ‘(e*)’ by taking exponentials of a matrix element by element,
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Define another operator ‘⊙’ for element by element multiplication between two matrices:

where H = (hij), L = (lij).

Then, direct calculations on (4) leads to

(5)

Integration of (5) over one time step from tn to tn+1 ≡ tn + Δt, where Δt is the time step, results
in

(6)

Since V = UP, then the equation for U can be recovered from (6):

(7)

To construct a scheme of r–th order truncation error, we define

(8)

and approximate (τ) using a (r − 1)–th order Lagrange polynomial, (τ), at a set of
interpolation points tn+1, tn, …, tn+2−r:

(9)

The second, third and fourth order approximations to (τ) are listed as the following.

1. Given  (0) = (Un)P, (Δt) = e−AΔt  (Un+1)P ⊙ (e*)−C̃Δt, the second order
approximation to (τ) is
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2. Given (−Δt) = eAΔt (Un−1)P ⊙ (e*)C ̃Δt,  (0) =  (Un)P, (Δt) = e−AΔt (Un+1)
P ⊙ (e*)−C̃Δt, the third order approximation to  (τ) is

3. Given (−2Δt) = e2AΔt (Un−2)P⊙(e*)2C ̃Δt, (−Δt) = eAΔt (Un−1)P⊙(e*)C ̃Δt, (0)
= (Un), (Δt) = e−AΔt (Un+1)P ⊙ (e*)−C̃Δt, the fourth order approximation to 
(τ) is

In terms of (τ), (5) takes the form,

(10)

So the new r–th order implicit schemes are

(11)

where αn+1, αn, αn−1,⋯, αn−r+2 are coefficients calculated from integrals of the polynomial in
(τ),

(12)

In Table 1, the value of coefficients, αj, for the schemes with order up to four are listed.

In particular, the second order approximation of  is
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(13)

leading to the second order IIF scheme

(14)

where B̃ = P ⊙ (e*)C ̃Δt P−1.

Like the one-dimensional form [8], the nonlinear reaction term at tn+1 in (14) is decoupled from
the diffusion term. As a result, only a local nonlinear system needs to be solved at each spatial
grid point. The two matrices eAΔt and (e*)C ̃Δt have a size of N × N and N × M, respectively,
similar to the compact integration factor method in a Cartesian coordinate system [9].

Remark 1: If system (1) has Dirichlet boundary condition(s) in the r or (and) θ direction(s),
for instance, in θ direction:

the solution matrix U becomes

and the corresponding matrix B becomes

All other three matrices A1, A2, C remain the same. The semi-discretized form (3) then
becomes

(15)
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where

By following a similar analysis, the second order scheme similar to (14) becomes

(16)

Remark 2: Since the corresponding matrix B in (15) for the Dirichlet boundary in the θ
direction is real symmetric positive definite (SPD), the matrices P and D ̃ can be calculated
analytically. Let η = π/(M − 1), the eigenvalues of B are

and the corresponding eigenvectors are

Then P̃ = [w1, w2, ⋯, wM−2]. One can then apply Gram-Schmidt process to obtain an orthogonal
matrix P, i.e. P−1 = PT.

For the case when matrix B is in a form as depicted in (3) for the no-flux boundary conditions
in θ direction, the analytical form of P and D ̃ can be calculated similarly. Denote η = π/(M −
1), the eigenvalues of B are

and the first M − 2 corresponding eigenvectors are

The other two eigenvectors corresponding to  and μM = 0 are
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So P̃ = [w1, w2,⋯, wM] and a Gram-Schmidt process leads to an orthogonal matrix P, i.e. P −l =
PT.

For other cases in which the eigenvectors and eigenvalues of the corresponding matrix B cannot
be calculated analytically, one can pre-calculate those matrices, for example, using the function
“eig” in Matlab. Because those matrices never change during the temporal updating if a fixed
time-step is used, one needs to compute them once and store them. Many numerical methods
are available for diagonalization of matrices [34,35]. The “eig” function in Matlab is based on
LAPACK [36]. In principle, as long as the errors for calculating the eigenvectors and
eigenvalues are significantly smaller than the spatial and temporal discretization errors, the
calculations of such eigenvector and eigenvalue should not affect the order of accuracy of the
methods. This is observed in our simulations shown below. The CPU time for diagonalization
of a matrix with dimensions 320 × 320, which is a typical size we use, is 0.25 seconds when
using “eig”. Since this portion of CPU time, as shown in the following sections, is significantly
smaller than the overall CPU time for the entire temporal evolution of the simulation, we do
not include this portion of the CPU time in the tables shown below.

Remark 3: In comparison with the compact implicit integration factor (cIIF) methods in
Cartesian coordinates in two dimensions, here we list the corresponding discretization form in
space [9]:

(17)

and the corresponding second order cIIF method:

(18)

From the preceding derivation of cIIF methods in polar coordinates, we see diagonalization of
matrix B as in Eq. (3) in general is required and the extension from Cartesian to polar
coordinates needs extra care and calculations.

2.2 Numerical test
To test the accuracy and efficiency of the cIIF scheme (16) in polar coordinate, we study the
following system of the polar coordinate:

(19)

This system (19) has an exact solution u(r, θ) = e0.1t cos(r cos θ) cos(r sin θ).
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The maximal error of solution is measured by the maximal difference between the numerical

solution and the exact solution, denoted by . The simulation is
carried up to time t = 2, and the number of grid points for r and θ is set equal to each other for
convenience of comparison. The time step size is chosen to be Δt = 0.5hr for checking order
of accuracy. As seen in Table 2, the simulation using the scheme (16) is of order two and the
time step is not constrained like a typical explicit temporal scheme. The stability property and
computational cost of the scheme (16) is similar to the standard cIIF2 [9].

3 cIIF in spherical coordinate
3.1 Derivation

We now derive the cIIF in spherical coordinate. Without loss of generality, we consider a
system with no flux Neumann boundary conditions in each direction:

(20)

where (x, y) ∈ Ω = {a < r < b, c < θ < d, e < φ < f}. Similar to the two dimensional system (1)
in polar coordinate, we denote hr, hθ, hφ as the spatial step size, and Nr, Nθ, Nφ as the number
of grid points in r, θ, φ direction, respectively. After applying the second order central
difference discretization on the diffusion, we obtain a system of nonlinear ODEs as the
following,

(21)

Next we define , , Ar = FNr × Nr, , , where
G, E, F are defined in the previous section and

and

Liu and Nie Page 10

J Comput Phys. Author manuscript; available in PMC 2011 August 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Denoting U = (ui,j,k) and defining A = A1 + A2 and C = C1 + C2. we write (20) in the following
compact representation,

(22)

where

(23)

Assuming both matrices B, C can be diagonalized, we have , , where
D1 and D2 are diagonal matrices. Let V = P1  P2  U, then (22) becomes

(24)

Denote ai, d1i, ci, d2i as the ith diagonal element of matrices Ar, D1, Cφ, D2, respectively, and
define (D ̃1)i,j,k = (aid1jck), (D ̃2)i,j = (aid2j). After defining a new operation similar to the system
in polar coordinate:

and
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we obtain the second order scheme for (24) using a similar approach to the scheme (16) for
polar coordinate,

(25)

The higher order schemes can be derived similarly. The approach for deriving the cIIF scheme
in polar or spherical coordinate can be easily extended to systems in cylindrical coordinate.

3.2 Numerical test
We test the numerical scheme (25) using the following simple system in spherical coordinates,

(26)

with the similar Dirichlet boundary conditions as that of system (19). The exact solution of
(26) has a similar form as that of (19). The solution is calculated up to t = 2 and we choose
hr = hθ = hφ and Δt = 0.5hr for convenience of comparison. Similar to the two dimensional
case in polar coordinate, the scheme (25) exhibits the second order accuracy and it is very
efficient for moderate size of N, as seen in Table 3.

4 Compact implicit integration factor methods with adaptive mesh refinement
4.1 Adaptive mesh refinement (AMR)

Here we use a block-structured Cartesian mesh refinement technique developed for hyperbolic
conservation laws [10,15]. In this approach, finite difference Cartesian meshes are refined by
adding overlapped finer meshes in desired spatial locations where the solutions exhibit sharp
gradients (see Figure 1 for an illustration). The refinement grids are aligned with the underlying
base grid and are arranged in a hierarchy with the base grids belonging to level l = 0, the next
finer grids being added to level l = 1 and so on. Grids on level l are refined by a refinement
ratio nr from the grids on level l − 1. The grids are properly nested so that a grid on level l is
completely contained in the set of grids on the coarser level l − 1. This requirement is relaxed
at physical boundaries to allow refinement grids to align with the boundary.

In addition to re-gridding, the other two major steps in a AMR algorithm are the error estimation
(or indicator) to determine where to refine the meshes and to interpolate solutions at the added
grids. The error indicator is based on estimated magnitudes of the first and second derivatives
in the numerical solution using finite difference approximation [10], and the region of
refinement is determined by tagging cells where the error estimate exceeds a prescribed
tolerance. In general, solution values on the new grid are interpolated from the solutions on
the coarse grid. A basic AMR interpolation operation involve interpolation of solution values
at new grid from the finest level grid available on the old grid hierarchy, interpolation at ghost
points in the buffer zone of refinement grids, and interpolation of coarse grid points that are
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hidden by refinement grids [15]. In addition, each boundary face of each component grid block
treated as either a physical boundary (where boundary condition is prescribed), a periodic
boundary or an interpolation boundary. Typically, one or more lines of ghost points are created
for each component grid block to aid in the application of boundary conditions. We use periodic
boundary conditions in the buffer zones for the overlapping grid blocks.

The implementation of grid generation is handled by object-oriented programming using
Ogen [15]. A programming flow chart for solving a time-dependent PDE using AMR at every
re-gridding steps, defined as nre–grid, along with a temporal scheme, named as timeStep(), can
be written as the following [10] :

(27)

4.2 cIIF incorporated with AMR
We use reaction-diffusion equations in two spatial dimensions with a Cartesian coordinate and
cIIF2 of second order accuracy as an example to illustrate integration of AMR and compact
integration factor method [9]. As seen in (27), after the solution values at the the newly added
grids are interpolated from the solutions at the coarse grids at the current time step, the solutions
at the next time step are updated from the solution at the current time step at each grid level
independently. The solutions at the intersection grids between the coarse and fine grids are
always using the solutions at the fine grids after updating. The operation “timeStep()” in (27)
representing the step for temporal updating in AMR is where the cIIF2 is incorporated.

Because cIIF2 requires repeated use of exponentials of diffusion matrices, we calculate those
matrices once for each grid block with every grid level that are needed for the entire simulation,
and store them. Specifically, at the ith composite grid level and its kth grid block, we evaluate
and store the exponential of the diffusion matrix eG(Δxik, Nik)Δt where Nik and Δxik is the number
of grid points and the grid size in x-direction of each grid block, respectively. We use a similar
approach to handle eG(Δyik, Mik)Δt in the y direction, with Mik representing the number of points
in y direction and Δyik standing for the grid size in y direction.

So at each time step, the storage cost for cIIF2 is of order Σk Σi Mik Nik, which is of the same
order of the number of grid points in the entire domain. The operation count is of order

 because the dominant cost of cIIF2 method is the vector-matrix
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multiplication associated with exponential of matrices. The overall computational complexity
is in the same order of cIIF for uniform meshes [9]. In contrast to a typical explicit temporal
scheme integrated with AMR for which the time step must be constrained by the finest spatial
grid size, the time step for cIIF2 with AMR is not restricted by the size of spatial grid at all in
terms of stability because cIIF2 is linearly unconditionally stable.

The same approach in combining AMR with cIIF2 can be directly applied to systems in polar
coordinate as well as three-dimensional systems in spherical, cylindrical or Cartesian
coordinate.

4.3 Numerical tests
A linear reaction-diffusion equations with an exact solution is tested:

(28)

where Ω = {−10 < x < 10, 0 < y < π, 0 < z < π}. The analytically approximated solution of (28)
takes a form

(29)

This solution satisfies equation (28) and boundary conditions in y and z directions exactly, and

it approximates the boundary condition in x direction with  at x = −10, 10, which is
much smaller than the error in simulations. We also study a corresponding two dimensional
case of (28) by omitting the z variable.

In all simulations, the diffusion coefficient is a = 0.1 and the solutions are studied at final time
t = 1. The differences between the numerical solution and the analytical solution are measured
by both maximum error at all grid points, denoted by L∞ error, and an average error, denoted

by L2, for the case of a polar coordinate system, . For other
curvilinear coordinate systems, such as spherical coordinates, the L2 error is defined similarly.
The solution has a sharp gradient around x = 0 where the mesh is refined using AMR based on
the error indicator given in [10]. The ratio of each refinement level is chosen to be two for all
testing cases.

First, we compare cIIF2 with a uniform grid at four different spatial resolutions with the cIIF2
with AMR using four levels of local refinement (see Tables 4, 5). For both two and three
dimensional cases, the coarsest grid size and the finest grid size are chosen to be the same for
either the uniform grid or AMR. As expected, the errors using AMR are comparable with the
errors using uniform grid when the uniform mesh size is the same as the local refinement mesh
size, because the sharp gradient in the solution is localized around x = 0. However, the CPU
cost for the AMR is much cheaper than the uniform grid with the finest grids. For the two
dimensional case, AMR is cheaper than the uniform grid in the second finest mesh size while
for the three dimensional case, AMR is only slightly more expensive than the uniform grid in
the second finest mesh size.

Next, we compare cIIF2 and Runge-Kutta both in second order using AMR by varying the
level of refinement. We study three, four, and five levels of local mesh refinement in a two-
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dimensional system using both cIIF and Runge-Kutta method. As seen in Tables 6, 7, 8, Runge-
Kutta method converges only when the time-step size is sufficiently small to satisfy stability
constraint due to the smallest spatial grid size. In Runge-Kutta method, more levels of
refinement, leading to smaller size in the finest grid, requires smaller time step size for
convergence. However, cIIF2 converges at all levels of refinement for large time steps with
good accuracy. For the time-step size in which both cIIF2 and Runge-Kutta converge, both
methods achieve similar accuracy and use similar amount of CPU time. Similar results are also
obtained when cIIF2 and Runge-Kutta method using AMR are tested on the three-dimensional
system (see Table 9).

5 An example in cell biology
In this section, we integrate cIIF2 in polar (2D) and spherical (3D) coordinates with AMR for
two-dimensional and three-dimensional models describing intracellular dynamics of chemical
reactions of several diffusive species within a cell [37].

When a hormone or growth factor binds to a cell-surface receptor, a cascade of proteins inside
the cell relays the signal to specific intracellular targets. A class of proteins referred as scaffolds
are thought to play important roles during this process [38,39,40]. Scaffold usually dynamically
binds to two or more consecutively-acting components of a signaling cascade. Experimental
work suggests that scaffolds may promote signal transmission by tethering consecutively acting
kinases near each other [41,42]. However, it has also been experimentally observed that some
scaffold inhibit signaling when overexpressed [43,44,45]. Supporting these observations,
computations of non-spatial models have demonstrated that scaffold proteins may either
enhance or suppress signaling, depending on the concentration of scaffold. In [37], a model of
generic, spatially localized scaffold protein was developed for one spatial dimension and the
simulations suggested that a scaffold protein could boost signaling locally (in and near the
region where it was localized) while simultaneously suppressing signaling at a distance.

Here we present simulations for the corresponding two and three dimensional models [37].
The system contains a scaffold protein (S), which can bind to two other proteins (A and B). In
the absence of scaffold protein, A and B can bind directly to each other. In the presence of the
scaffold protein S, A first binds to S, forming AS; B binds to AS, forming ASB. In addition, A
and B bind to each other on the scaffold and an AB complex can be released from the scaffold;
and a symmetrical path, where B binds to the scaffold before A, is also available. Denote [] as
the concentration of the proteins, the mass reaction equations with diffusion take the form,

(30)

In the system (30), D is the diffusion constant for A, B and AB; kon, koff are the on and off rates
for the off-scaffold reactions, jon, joff, jcon are the rate constants for the on-scaffold reactions.

First, we consider a two-dimensional model assuming that the cell is a two-dimensional disk:
Ω = {0 ≤ x2 + y2 ≤ 100 μm}, with no-flux boundary conditions for A, B, AB. In this simulation,
the initial concentrations for A and B are 1μM and uniformly distributed throughout the cell.
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And the scaffolds initially are localized in part of the cell: {9 ≤ r ≤ 10; 2 π/5 ≤ θ ≤ 3 π/5} where
r, θ are polar coordinates. The total S is set initially at 50μM and uniformly distributed in this
region. The values for all other parameters can be found in the caption of Figure 2, which shows
contour plots of the biological desirable product protein AB at three different times. The
simulations suggest that a localized scaffold could boost signaling (product formation) near
the region where the scaffold is localized while simultaneously suppressing signaling at a
distance in a two dimensional cell, which is consistent with the one dimensional findings
[37].

Next, we check accuracy of our implementation by a numerical resolution study. The
simulation with a global uniform fine grids: 640 × 640 along with a relatively small time step
Δt = 10−5, is considered as an “exact” solution. All errors are calculated based on difference
between the numerical solutions and the “exact” solutions. For the simulation using AMR, an
error indicator based on magnitudes of first and second derivatives [10] is applied for re-
gridding to determine where to refine the local meshes. The region of refinement is determined
by tagging cells in which the error indicator exceeds a specified tolerance [10,15], which is
chosen to be 10−3 for this case. In Table 10, the errors for concentration of product protein
AB are estimated at T = 10 seconds for different spatial resolutions with a fixed time step size.
A second order accuracy in space is observed without adjusting the time step, mainly due to
the nice stability condition of cIIF2. In the meantime, cIIF2 with AMR based on four levels of
refinement with the finest grid equivalent to N = 160 around the scaffold area (see Figure 2)
can achieve similar accuracy as the uniform case with the finest grid N = 160. However, the
CPU time for cIIF2 with AMR is only about 1/8 of cIIF2 with uniform grids.

Finally, we present a three-dimensional study for the system (30) within a cubic cell: Ω = {0
≤ x ≤ 10μm, 0 ≤ y ≤ 10μm, 0 ≤ z ≤ 10μm}. The initial concentrations of A and B are chosen at
1μM, uniformly distributed throughout the cubic cell, and the scaffolds S is localized in a ball
within the cell: 4μm2 ≤ x2 + y2 + z2 ≤ 9μm2, with a total amount of 50μM scaffold. The scaffold
are initially uniformly distributed throughout the prescribed ball inside the cell. All other
parameters are chosen to be the same as the two-dimensional case in Figure 2. To perform the
resolution study, we use a solution calculated based on a global uniform grid 160 × 160 × 160
and a time step 10−4 as an “exact” solution. The dynamical local mesh refinement is also applied
using the same procedure as for the two dimensional case. In Table 11 we see a similar second
order accuracy in space for cIIF2 with uniform grids. For the three-dimensional case, to acquire
similar accuracy, cIIF2 with AMR using four levels of refinement with the finest grid
equivalent to N = 80 only needs 1/12 of CPU time of the cIIF2 in the corresponding finest
uniform grids (N = 80). Clearly, cIIF2 with AMR is superior to cIIF2 in uniform grids.

6 Conclusions and discussions
Implicit integration factor (IIF), which treats diffusion term explicitly and reaction term
implicitly, is particularly efficient for stiff reaction diffusion systems [8]. IIF can be easily
implemented in different coordinate systems including polar and spherical coordinate systems.
In two and three spatial dimensions, compact implicit integration factor (cIIF) was found to be
more efficient than IIF due to its compact representation for the diffusion operators [9].
However, unlike IIF, it is difficult to apply cIIF directly to non-Cartesian coordinate systems,
such as polar or spherical coordinates. In this paper, we have presented a method that allows
cIIF to be incorporated into any curvilinear coordinates. In particular, we have developed a
class of cIIF in polar (2D) and spherical (3D) coordinates, in which the stability condition and
computational cost are similar to the original cIIF in a Cartesian system [9].

Because cIIF is semi-implicit and has large stability region (for example, the second order of
cIIF is linearly conditionally stable), this class of schemes is particularly suitable for solving
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reaction diffusion equations using adaptive mesh refinement (AMR), which cluster spatial
grids around locations with sharp spatial gradients of solutions. When explicit temporal
schemes are applied to AMR, a small number of local fine grids usually restrict the overall
time step size due to stability constraint. In this paper, we have integrated cIIF with AMR for
stiff reaction-diffusion systems by taking advantage of the excellent stability property of cIIF.
Numerical examples have shown application of second order cIIF, a linearly unconditionally
stable scheme, could allow large time steps for small local spatial grids in AMR. From the
point of view of stability, the time step size has been found to be independent of the spatial
grid size, as expected. In general, cIIF exhibits great advantages over explicit temporal schemes
when AMR is used for spatial discretization of reaction-diffusion equation.

Many physical and biological applications often involve complex geometries, which are more
suitable using non-Cartesian coordinates, and sharp gradients in solutions, which may require
local mesh refinement. To deal with those challenges, we have presented a method that
combines cIIF in polar and spherical coordinates with AMR for spatial discretization of
reaction-diffusion equations. This approach has been then used for studying how localized
scaffold protein might boost or inhibit signaling in a cell. The overall numerical method has
been observed to be robust and efficient in solving systems that consist of multiple diffusive
species with stiff reactions in both two and three dimensions. Although the methods presented
in this paper are mainly for cIIF2, the same approach can be directly applied to high order cIIF
and other ETD methods [2,6,7,3]. In addition, the presented approach based on the finite
difference framework for spatial discretization may also be extended for method using fast
Fourier transformation [46,47].
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Figure 1.
An example of overlapping block structured Cartesian mesh refinement. Two levels of
refinement are applied to the local region.
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Figure 2.
Contour plots for concentration of AB in the system (30) calculated using cIIF2 with AMR.
The parameters for the simulation are D = 1μm2s−1, kon = 0.1(μMs)−1, koff = 0.3s−1, jon = 1
(μMs)−1, joff = 0.005s−1, jcon = 0.1(μMs)−1.
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Table 1

Coefficients for cIIF schemes of order one, two, three and four.

Order αn+1 αn αn−1 αn−2

1 1 0 0 0

2 0 0

3 0

4
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Table 2

Error, order of accuracy, and CPU time for cIIF2 in polar coordinate of (19). The unit for CPU time is second.

N×N L∞ error order CPU

40 × 40 4.58 × 10−3 — 0.23

80 × 80 1.23 × 10−3 1.90 0.52

160 × 160 3.1 × 10−4 1.99 2.41

320 × 320 8.23 × 10−5 1.91 64.24
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Table 3

Error, order of accuracy, and CPU time for cIIF2 in spherical coordinate of (26). The unit for CPU time is second.

N × N × N L∞ error order CPU

20 × 20 × 20 9.26 × 10−3 — 0.56

40 × 40 × 40 2.43 × 10−3 1.93 12.3

80 × 80 × 80 6.27 × 10−4 1.95 80.5
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Table 4

cIIF2 with uniform grids and cIIF2 with AMR in two dimensions. In AMR, the coarsest grid is 20 × 20. Δt =
0.005 for all cases.

Method N × N L∞ error L2 error CPU (sec.)

cIIF2 (Uniform)

20 × 20 5.6 × 10−2 4.8 × 10−2 4.5

40 × 40 1.4 × 10−2 1.2 × 10−2 12.3

80 × 80 3.4 × 10−3 2.9 × 10−3 67.8

160 × 160 8.4 × 10−4 7.4 × 10−4 357.9

cIIF2 (AMR) 4-levels 8.4 × 10−4 7.4 × 10−4 40.3
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Table 5

cIIF2 with uniform grids and cIIF2 with AMR in three dimensions. In AMR, the coarsest grid is 10 × 10 × 10.
Δt = 0.01 for all cases.

Method N × N × N L∞ L2 CPU (sec.)

cIIF2 (Uniform)

10 × 10 × 10 3.6 × 10−1 2.9 × 10−1 5.2

20 × 20 × 20 9.2 × 10−2 7 × 10−2 45.2

40 × 40 × 40 2.4 × 10−2 1.4 × 10−2 350.1

80 × 80 × 80 5.6 × 10−3 3.3 × 10−3 2798.7

cIIF2 (AMR) 4-levels 5.6 × 10−3 3.3 × 10−3 378.2
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Table 10

Spatial resolution study for the system (30) in polar coordinate using cIIF2 in uniform grids and cIIF2 in AMR.
All solutions are evaluated at T = 10 and Δt = 10−2 is used for all cases.

Method N × N L∞ error L2 error CPU (sec.)

cIIF2

20 × 20 8.7 ×10−1 6.8 × 10−1 5.4

40 × 40 2.2 × 10−1 1.8 × 10−1 16.8

80 × 80 5.5 × 10−2 4.5× 10−2 72.1

160 × 160 1.4×10−2 1.1 × 10−2 324.1

cIIF2 (AMR) 4-levels 1.4×10−2 1.2 × 10−2 42.2
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Table 11

Spatial resolution study for the system (30) using cIIF2 in uniform grids and cIIF2 in AMR for a three dimensional
case. All solutions are evaluated at T = 1 second and Δt = 10–2 is used for all cases.

Method N × N × N L∞ error L2 error CPU (sec.)

cIIF2

10 × 10 ×10 9.9 ×10−1 7.7 × 10−1 11.2

20 × 20 × 20 2.5 × 10−1 1.9 × 10−1 89.9

40 × 40 × 40 5.1 × 10−2 4.9 × 10−2 723.3

80 × 80 × 80 1.3 × 10−2 1.2 × 10−2 5867.4

cIIF2 (AMR) 4-levels 1.4 × 10−2 1.3× 10−2 482.3
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