
Conservative and entropy stable solid wall boundary conditions for the
compressible Navier–Stokes equations: Adiabatic wall and heat entropy

transfer

Lisandro Dalcina,1, Diego Rojasa,2, Stefano Zampinia,1, David C. Del Rey Fernándezb,c,3, Mark H.
Carpenterc,4, Matteo Parsania,5,∗

aKing Abdullah University of Science and Technology (KAUST), Computer Electrical and Mathematical Science
and Engineering Division (CEMSE), Extreme Computing Research Center (ECRC), Thuwal, Saudi Arabia

bNational Institute of Aerospace, Hampton, Virginia, United States
cComputational AeroSciences Branch, NASA Langley Research Center, Hampton, Virginia, United States

Abstract

We present a novel technique for the imposition of non-linear entropy conservative and entropy
stable solid wall boundary conditions for the compressible Navier–Stokes equations in the presence
of an adiabatic wall, or a wall with a prescribed heat entropy flow. The procedure relies on
the formalism and mimetic properties of diagonal-norm, summation-by-parts and simultaneous-
approximation-term operators, and is a generalization of previous works on discontinuous interface
coupling [1] and solid wall boundary conditions [2].

Using the method of lines, a semi-discrete entropy estimate for the entire domain is obtained
when the proposed numerical imposition of boundary conditions are coupled with an entropy-
conservative or entropy-stable discrete interior operator. The resulting estimate mimics the global
entropy estimate obtained at the continuous level. The boundary data at the wall are weakly
imposed using a penalty flux approach and a simultaneous-approximation-term technique for both
the conservative variables and the gradient of the entropy variables.

Discontinuous spectral collocation operators (mass lumped nodal discontinuous Galerkin oper-
ators), on high-order unstructured grids, are used for the purpose of demonstrating the robustness
and efficacy of the new procedure for weakly enforcing boundary conditions. Numerical simulations
confirm the non-linear stability of the proposed technique, with applications to three-dimensional
subsonic and supersonic flows. The procedure described is compatible with any diagonal-norm
summation-by-parts spatial operator, including finite element, finite difference, finite volume, dis-
continuous Galerkin, and flux reconstruction schemes.

Keywords: Compressible Navier–Stokes equations, Solid wall, Entropy conservation, Entropy
stability, Summation-by-parts operators, Simultaneous-approximation-terms

Preprint submitted to Elsevier August 20, 2019

ar
X

iv
:1

81
2.

11
40

3v
3

 [
m

at
h.

N
A

]
 1

9
A

ug
 2

01
9

1. Introduction

Next-generation numerical algorithms for use in large eddy simulations and direct numerical
simulations of computational fluid dynamics will rely on efficient, high-order formulations, that are
able to deliver better accuracy per degree of freedom than low-order methods, and that feature
much smaller numerical errors both in terms of dispersion and dissipation [3, 4]. While these
properties make high-order methods well suited for time-dependent simulations, these techniques
are more prone to instability when compared to their lower-order counterparts. This is because
numerical instabilities may occur if the flow contains discontinuities or under-resolved physical
features. Various stabilization strategies (e.g. filtering [5], artificial viscosity, over-integration,
and slope limiting [4] to cite a few) are commonly used to address these issues. However, such
stabilization techniques possess several drawbacks since i) they reduce accuracy [4], ii) they usually
require tuning parameters for each problem configuration, and iii) they do not guarantee that
solvers designed to be high-order accurate in space will not crash.

A very promising and mathematically rigorous alternative consists in focusing on discrete op-
erators that are non-linearly stable6 or, as in the case of the compressible Navier–Stokes equations,
entropy stable. These operators simultaneously conserve mass, momentum, and total energy. In
addition, they satisfy a discrete analogue to the conservation or dissipation of entropy which, with
positivity assumptions on temperature and density, guarantees an L2 bound on the conservative
variables [6, 7]. We remark that the idea of enforcing entropy stability in numerical methods is old
and commonly used for low-order operators, see e.g. [8, 9]. For extensions to high-order accurate
operators see [10–14].

Until recently, fully discrete entropy stability was mostly established for implicit time stepping
schemes. However, Ranocha and colleagues [15] developped and applied new explicit Runge–Kutta
schemes (i.e., relaxation Runge–Kutta schemes) to entropy conservative or entropy dissipative semi-
discretizations of any order for the compressible Euler and Navier–Stokes equations. The new time
integration schemes can conserve or dissipate any solution properties with respect to any convex
functional by the additional of a relaxation parameter that multiplies the Runge–Kutta update
at each step. The general technique is not limited to the compressible Euler and Navier–Stokes
equations setting but can be applied to many ordinary differential equations, and to both explicit
and implicit Runge–Kutta methods.

However, issues remain on the path towards complete entropy stability for the compressible
Navier–Stokes equations, e.g. shock capturing and bound-preserving limiter for high-order accurate
discretizations. One major obstacle is the need for boundary conditions that preserve the entropy
conservation or stability property of the interior operator. Practical experience indicates that
numerical instabilities frequently originate at domain boundaries; the interaction of shocks with

∗Corresponding author
Email addresses: dalcinl@gmail.com (Lisandro Dalcin), diego.rojasblanco@kaust.edu.sa (Diego Rojas),

stefano.zampini@kaust.edu.sa (Stefano Zampini), dcdelrey@gmail.com (David C. Del Rey Fernández),
mark.h.carpenter@nasa.gov (Mark H. Carpenter), matteo.parsani@kaust.edu.sa (Matteo Parsani)

1Research Scientist
2Ph.D. student
3Postdoctoral Fellow
4Senior Research Scientist
5Assistant Professor
6We use the term rigorous because, as we will see in the next sections, these operators can mimic at the discrete

level the results of the non-linear stability analysis at the continuous level.

2

these physical boundaries is particularly challenging for high-order formulations. An important
step towards entropy stable wall boundary conditions for the compressible Euler and Navier–Stokes
equations appears in [2, 16, 17]. More specifically, non-linearly stable wall boundary conditions for
the compressible Navier–Stokes equations are presented in [2]. Therein, it is shown that entropy
stability requires two conditions to be satisfied: i) Euler no-penetration, and ii) a prescribed value
for the product of temperature and the gradient of the temperature in the normal direction to
the wall. An additional term providing a controllable numerical dissipation has to be introduced
to impose a zero relative velocity at the wall, i.e. the no-slip condition. Therefore, the solid wall
boundary conditions proposed in [2] are entropy stable, but not entropy conservative. Note that
in [17] it is shown that demanding a bound on velocity gradients necessitates the use of the full
no-slip conditions, i.e. the thermal and the relative velocity boundary conditions.

In this work we present a general procedure for the development of point-wise entropy conser-
vative boundary conditions representing either an adiabatic solid wall or a wall with a prescribed
heat entropy flow for the compressible Navier–Stokes equations, discretized by using diagonal-norm,
summation-by-parts (SBP) and simultaneous-approximation-term (SAT) operators (i.e. SBP-SAT
operators). Entropy conservation is obtained by penalizing, using a SAT penalty, both the entropy
variables and their gradients in the normal direction to the wall, as in the local discontinuous
Galerkin approach [18]. The overall algorithm closely follows the treatment of the discontinuous
interior interfaces coupling presented in [1]; a single implementation, with different inputs, can be
used for interface penalization and imposition of boundary conditions. A controllable amount of
dissipation can be added to make the boundary conditions entropy stable. The new procedure can
be immediately applied to a moving wall, as will be shown in the theoretical and numerical results
sections.

The manuscript is organized as follows. A brief review concerning the derivation of continu-
ous entropy inequalities and the entropy analysis of the viscous wall boundary conditions for the
compressible Navier–Stokes equations is provided in Section 2. The weak, point-wise, imposition
of entropy conservative and entropy stable boundary conditions is carried out in Section 3 for an
adiabatic solid wall and for a wall with a prescribed heat entropy transfer. Section 5 presents
numerical results which confirm the accuracy and stability of the proposed boundary conditions.
Conclusions are drawn in Section 6. Finally, in AppendixA a Python script is provided that
symbolically verifies all proofs for curvilinear grids, while in AppendixB a simple and dimension-
agnostic implementation of the entropy stable solid wall boundary condition coded in FORTRAN
is presented.

2. A brief review of entropy stability theory

In this Section, we review the continuous entropy theory for the compressible Navier–Stokes
equations and the solid wall boundary conditions by closely following [2, 19].

2.1. The compressible Navier–Stokes equations

To keep the presentation simple but without loss of generality, we consider the three-dimensional
compressible Navier–Stokes equations in Cartesian coordinates (x1, x2, x3) for an ideal gas in a

3

bounded domain Ω with boundary Γ

∂Q
∂t

+

3∑

m=1

∂F (I)
xm

∂xm
=

3∑

m=1

∂F (V)
xm

∂xm
, ∀ (x1, x2, x3) ∈ Ω, t ≥ 0,

Q (x1, x2, x3, t) = G(B) (x1, x2, x3, t) , ∀ (x1, x2, x3) ∈ Γ, t ≥ 0,

Q (x1, x2, x3, 0) = G(0) (x1, x2, x3, 0) , ∀ (x1, x2, x3) ∈ Ω.

(1)

The vectors Q, F (I)
xm , and F (V)

xm respectively denote the conserved variables, the inviscid (I) fluxes,
and the viscous (V) fluxes. The boundary data, G(B), and the initial condition, G(0), are assumed
to be in L2(Ω), with the further assumption that G(B) will be set to coincide with linear well posed
boundary conditions and such that entropy conservation/stability is achieved.

The vector of conserved variables is given as

Q = [ρ, ρU1, ρU2, ρU3, ρE]> , (2)

where ρ denotes the density, U = [U1,U2,U3]> is the velocity vector, and E is the specific total
energy. The inviscid fluxes are given by

F (I)
xm = [ρUm, ρUmU1 + δm,1P, ρUmU2 + δm,2P, ρUmU3 + δm,3P, ρUmH]> , (3)

where P is the pressure, H is the specific total enthalpy, and δi,j is the Kronecker delta. The

viscous flux F (V)
xm is given as

F (V)
xm =

[
0, τ1,m, τ2,m, τ3,m,

3∑

i=1

τi,mUi − κ
∂T
∂xm

]>
, (4)

where κ = κ(T) is thermal conductivity, and the viscous stresses is given by

τi,j = µ

(
∂Ui
∂xj

+
∂Uj
∂xi
− δi,j

2

3

3∑

n=1

∂Un
∂xn

)
, (5)

where µ = µ(T) is the dynamic viscosity.
The required constitutive relations are

H = cPT +
1

2
U>U , P = ρRT , R =

Ru
Mw

,

where cP is the specific heat at constant pressure, T is the temperature, Ru is the universal gas
constant, and Mw is the molecular weight of the gas. Finally, the thermodynamic entropy is given
as

s =
R

γ − 1
log

(
T
T∞

)
−R log

(
ρ

ρ∞

)
, γ =

cP
cP −R

,

with T∞ and ρ∞ the reference temperature and density, respectively.
It is well known that the compressible Navier–Stokes equations given in (1) possess a convex

extension that, when integrated over the physical domain Ω, only depends on the boundary data.
Such an extension yields the entropy function

S = −ρs, (6)

4

which is a useful tool for proving stability in the L2 norm [6, 7]. We can then define the entropy
variables W = ∂S/∂Q, which for the compressible Navier–Stokes equations given in (1) are

W =

[
H− 1/2U>U

T
− s− U>U

T
,
U1

T
,
U2

T
,
U3

T
,− 1

T

]>
. (7)

We remark that the convexity of S guarantees the invertibility of the mapping between conservative
and entropy variables, provided that the temperature T and the density ρ are positive. In what
follows, we always assume that such positivity is preserved.

The vector of entropy variables simultaneously contracts all of the inviscid spatial fluxes F (I)
xm

as
∂S
∂Q

∂F (I)
xm

∂xm
=
∂S
∂Q

∂F (I)
xm

∂Q
∂Q
∂xm

=
∂Fxm
∂Q

∂Q
∂xm

=
∂Fxm
∂xm

, m = 1, 2, 3, (8)

where the scalar Fxm(Q) denotes the entropy flux in the m-th direction. By letting W take the
role as of a new set of independent variables, i.e. Q = Q(W), the entropy variables (7) symmetrize
the system (1) as [20]

∂Q
∂W

∂W
∂t

+
3∑

m=1

∂F (I)
xm

∂W
∂W
∂xm

=

3∑

m,j=1

∂

∂xm

(
Cm,j

∂W
∂xj

)
, (9)

where the viscous fluxes F (V)
xm have been recast in term of the entropy variables as

F (V)
xm =

3∑

j=1

Cm,j
∂W
∂xj

. (10)

For the definition of the symmetric and semi-definite Cm,j matrices see [2, 21].

Due to the symmetric nature of ∂Q/∂W and ∂F (I)
xm/∂W , there exist scalar functions in entropy

variables whose Jacobians represent the conservative variables Q and the inviscid fluxes F (I)
xm as

Q> =
∂Φ

∂W ,
(
F (I)
xm

)>
=
∂Ψxm
∂W . (11)

Φ is the potential, whereas the Ψxm functions are the potential fluxes in the xm direction, with
(Φ, Ψxm) the potential-potential flux pair [22]. A close relation between entropy and the potential-
potential flux pair is summarized in the following Theorem [23], which is due to Godunov (see also
[24]).

Theorem 2.1. If a system of conservation laws can be symmetrized by introducing new variables
W, and Q is a convex function of Φ, then an entropy function S = S(Q) is given by

Φ = W>Q− S, (12)

and the entropy fluxes Fxm(Q) satisfy

Ψxm = W>F (I)
xm −Fxm . (13)

5

By contracting the system of equations (1) with the entropy variables,

∂S
∂Q

∂Q
∂t

+
3∑

m=1

∂S
∂Q

∂F (I)
xm

∂xm
=

3∑

m=1

∂S
∂Q

∂F (V)
xm

∂xm
, (14)

and applying the relations given in (8), (9), and (10), we arrive at the differential form of the
(scalar) entropy equation

3∑

m=1

[
∂S
∂t

+
∂Fxm
∂xm

]
=

3∑

m=1

(
∂

∂xm

(
W>F (V)

xm

)
−
(
∂W
∂xm

)>
F (V)
xm

)

=
3∑

m=1

 ∂

∂xm

(
W>F (V)

xm

)
−

3∑

j=1

(
∂W
∂xm

)>
Cm,j

∂W
∂xj

 .

(15)

To obtain a global conservation statement for the entropy function S, we then integrate equation
(15) over the domain Ω

d

dt

∫

Ω
SdΩ ≤

3∑

m=1

∫

Γ

(
W>F (V)

xm −Fxm
)
nxmdΓ−

3∑

m,j=1

∫

Ω

(
∂W
∂xm

)>
Cm,j

∂W
∂xj

dΩ

=
3∑

m=1

∫

Γ

(
W>F (V)

xm −Fxm
)
nxmdΓ−DT,

(16)

where nxm is the m-th component of the outward facing unit normal and

DT =
3∑

m,j=1

∫

Ω

(
∂W
∂xm

)>
Cm,j

∂W
∂xj

dΩ.

We remark that viscous dissipation always introduces a negative rate of change in entropy,
since the −DT term in (16) is negative semi-definite. An increase in entropy within the domain
can only result from data that convects or diffuses through the boundaries Γ. For smooth flows,
we finally note that the inequality sign in (16) becomes an equality.

2.2. No-slip wall boundary conditions

For simplicity, we let the domain of interest be Ω = [0, 1]3 and we only consider entropy
conservation (i.e., the equality relation in (16)). Thus, expanding the notation in equation (16)

6

yields
d

dt

∫

Ω
S dx1 dx2 dx3 = −DT

+

∫

x1=0

[
+Fx1 − W>

(
C1,1

∂W
∂x1

+ C1,2
∂W
∂x2

+ C1,3
∂W
∂x3

)]
dx2 dx3

+

∫

x1=1

[
−Fx1 + W>

(
C1,1

∂W
∂x1

+ C1,2
∂W
∂x2

+ C1,3
∂W
∂x3

)]
dx2 dx3

+

∫

x2=0

[
+Fx2 − W>

(
C2,1

∂W
∂x1

+ C2,2
∂W
∂x2

+ C2,3
∂W
∂x3

)]
dx1 dx3

+

∫

x2=1

[
−Fx2 + W>

(
C2,1

∂W
∂x1

+ C2,2
∂W
∂x2

+ C2,3
∂W
∂x3

)]
dx1 dx3

+

∫

x3=0

[
+Fx3 − W>

(
C3,1

∂W
∂x1

+ C3,2
∂W
∂x2

+ C3,3
∂W
∂x3

)]
dx1 dx2

+

∫

x3=1

[
−Fx3 + W>

(
C3,1

∂W
∂x1

+ C3,2
∂W
∂x2

+ C3,3
∂W
∂x3

)]
dx1 dx2 .

(17)

Note that the plus and minus signs within the integrand terms of (17) account for the direction of
the outward facing normals on the six faces of the unit cube Ω.

Furthermore, without loss of generality, we consider the case of a wall placed at x1 = 0 such
that the normal vector is n = (−1, 0, 0)>, and we assume that all the other boundaries terms are
entropy conservative, which allows us to neglect their contributions. Then, estimate (17) reduces
to

d

dt

∫

Ω
S dx1 dx2 dx3 = −DT

+

∫

x1=0

[
Fx1 − W>

(
C1,1

∂W
∂x1

+ C1,2
∂W
∂x2

+ C1,3
∂W
∂x3

)]
dx2 dx3 .

(18)

Within the context of linear analysis for a solid viscous wall, the wall behaves like a subsonic
outflow [25], and four independent boundary conditions must be imposed to prove energy (linear)
stability [26–28] (see also [2] and the references therein). The first three correspond to the no-slip
boundary conditions U1 = U2 = U3 = 0 that impose a zero relative velocity with respect to the
wall. The fourth condition can be either imposed on the gradient of the temperature normal to the
wall (∂T /∂n)wall (Neumann boundary condition, e.g. the adiabatic wall), or to the temperature
at the wall Twall, (the Dirichlet or isothermal wall boundary condition), or a mixture of these two
(the Robin boundary condition) [27, 28].

In the non-linear case, entropy conservation and entropy stability in the adiabatic solid wall
case or a wall with a prescribed heat entropy flow are attained by means of the next two theorems.
These theorems provide the conditions that result in a bound on the time rate of change of the
entropy function in (18), and are point-wise valid [2]. The first theorem is a generalization of
Theorem 3.1 presented in [2] to a moving wall.

Theorem 2.2. The no-slip boundary conditions U1 = 0 and Um = Uwallm , m = 2, 3 bound the
inviscid contribution to the time derivative of the entropy in equation (18).

Proof. Equation (13) provides the following relation for the entropy flux

Fx1 = W>F (I)
x1 − Ψx1 = −ρsU1R, Ψx1 = −ρU1R. (19)

7

Substituting the no-slip conditions, into the definition of the inviscid flux, F (I)
x1 , (equation (3)) and

the condition U1 = 0 into the definition of Ψx1 , yields the desired result Fx1 = 0.

Remark 2.1. In a general setting, the no-slip boundary conditions read as U = Uwall with
Uwall · n = 0, where U , Uwall and n denote the velocity vector of the fluid, the velocity vec-
tor of the wall and the unit normal vector, respectively.

Theorem 2.3. The boundary condition

g(t) = κ
∂T
∂n

1

T
, (20)

where ∂T /∂n denotes the normal derivative of T , bounds the viscous contribution to the time
derivative of the entropy (18).

Proof. See Theorem 3.2 in [2].

Remark 2.2. The scalar value,

κ

(
∂T
∂x1

1

T

)
= W>

(
C1,1

∂W
∂x1

+ C1,2
∂W
∂x2

+ C1,3
∂W
∂x3

)
,

accounts for the change in entropy due to the wall heat flux at x1 = 0 [2] and is often denoted as
heat entropy transfer or heat entropy flow [29].

3. Entropy conservative and entropy stable solid wall boundary conditions for the
semi-discrete system

To discretize in space, we partition the physical domain Ω into non-overlapping hexahedral ele-
ments and we semi-discretize the system (1) using a multi-dimensional SBP operator, constructed
from a one-dimensional SBP operator by way of tensor products. The nodal distribution within
each element is based on N3 Legendre-Gauss-Lobatto (LGL) points [2, 12, 30, 31], where N is the
number of LGL point in one direction.

Here, we summarize the relevant SBP operators used to discretize (1), and to derive the new

8

procedure to impose the solid wall boundary conditions.

Dx1 = (DN ⊗ IN ⊗ IN ⊗ I5) , · · · Dx3 = (IN ⊗ IN ⊗ DN ⊗ I5) ,

Qx1 = (QN ⊗ IN ⊗ IN ⊗ I5) , · · · Qx3 = (IN ⊗ IN ⊗ QN ⊗ I5) ,

Bx1 = (BN ⊗ IN ⊗ IN ⊗ I5) , · · · Bx3 = (IN ⊗ IN ⊗ BN ⊗ I5) ,

∆x1 = (∆N ⊗ IN ⊗ IN ⊗ I5) , · · · ∆x3 = (IN ⊗ IN ⊗∆N ⊗ I5) ,

Px1 = (PN ⊗ IN ⊗ IN ⊗ I5) , · · · Px3 = (IN ⊗ IN ⊗ PN ⊗ I5) ,

Px1,x2 = (PN ⊗ PN ⊗ IN ⊗ I5) , · · · Px2,x3 = (IN ⊗ PN ⊗ PN ⊗ I5) ,

P = Px1,x2,x3 = (PN ⊗ PN ⊗ PN ⊗ I5) ,

(21)

DN , QN , BN , ∆N and PN are the one-dimensional SBP operators, and IN is the identity matrix
of dimension N . The matrices P(·) may be thought of as mass matrices in the context of the
discontinuous Galerkin finite element method. Herein, the focus is exclusively on diagonal-norm
SBP operators, based on fixed element-based polynomials of order p (p = N − 1). The matrices
D(·) are used to approximate the first derivatives and are defined as P−1

(·) Q(·). The nearly skew-
symmetric matrices Q(·) are undivided differencing operators where all rows sum to zero, and the
first and last column sum to −1 and 1 respectively. The matrices B(·) pick off the interface terms
in the respective directions. For the spectral element discretization considered in this paper, the
B(·) matrices take on a particularly simple form; as an example, consider Bx1 , which is given as

Bx1 = B+
x1 − B−x1 , B−x1 = diag (1, 0, . . . , 0)⊗ IN ⊗ IN ⊗ I5, B+

x1 = diag (0, . . . , 0, 1)⊗ IN ⊗ IN ⊗ I5.

For a high-order accurate scheme on a tensor product cell, they pick off the values of whatever
vector they act on (typically the solution or the flux) at the nodes of the two opposite faces
multiplied by the orthogonal component of the unit normal.

SBP operators can be recast in telescoping flux form [21]. For example,

Dx1f
(I)
x1 = P−1

x1 Qx1f
(I)
x1 = P−1

x1 ∆x1 I
x1
StoFf

(I)
x1 = P−1

x1 ∆x1 f̄
(I)
x1 ,

where f̄
(I)
x1 = Ix1StoFf

(I)
x1 and the one-dimensional telescoping operator, ∆N , is defined as

∆N =

−1 1 0 0 0 0
0 −1 1 0 0 0

0 0
. . .

. . . 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1

.

9

x1 x2 x3 x4 x5

x̄0 x̄1 x̄2 x̄3 x̄4 x̄5

u0 u1 u2 u3 u4

f1 f2 f3 f4 f5

f̄0 f̄1 f̄2 f̄3 f̄4 f̄5

−1 −9
10

−
√

3
7

−16
45

0−16
45

+16
45

+
√

3
7

+9
10

+1

Figure 1: The one-dimensional discretization for p = 4 Legendre collocation. Solution LGL points are denoted by •
and flux points are denoted by ×.

The operator Ix1StoF interpolates the flux at the solution nodes on to a set of flux nodes (see
Figure 1).

When applying any of these operators to the scalar entropy equation in space, a hat will be
used to differentiate the scalar operator from the full vector operator, e.g.

P̂ = (PN ⊗ PN ⊗ PN) .

We finally note that in the present work, the quadrature nodes and solution nodes are collocated.
Using an SBP operator and its equivalent telescoping form, the semi-discrete form of the three-

dimensional compressible Navier–Stokes equations (1) for Cartesian grids in each hexahedral ele-
ment reads (see, e.g. [2, 30])

∂q

∂t
+

3∑

m=1

(
P−1
xm∆xm f̄

(I)
xm − Dxmf

(V)
xm

)
=

3∑

m=1

P−1
xm

(
g(B)
xm + g(In)

xm

)
. (22)

We remark that we have omitted any term involved with the geometrical mapping of the elements
in order to simplify the discussion. The extension of the following analysis to curvilinear grids is
straightforward and all the theorems presented herein remain valid. The interested reader is referred
to the supplementary python script (see AppendixA) which symbolically verifies all the proofs for
the general case of curvilinear grids. Furthermore, a simple, dimension-agnostic implementation of
the entropy stable solid wall boundary conditions for the general case is provided in AppendixB.

The vectors g
(B)
xm in (22) enforce the boundary conditions, while g

(In)
xm patches interfaces together

using a SAT approach [1]. The derivatives appearing in the viscous fluxes f
(V)
xm are also computed

using the operators Dxm defined in (21).
The discrete no-slip wall boundary conditions constructed herein follows a local discontinuous

Galerkin-type approach [18], where also the gradient of the entropy variables is penalized. The
penalization of the gradient represents one of the main novelties in this work within the context of
SBP-SAT discretizations for the imposition of boundary conditions. In fact, this is a key difference
with respect to previous work [2] which introduced for the first time an entropy stable approach
to impose solid wall boundary conditions.

Following the same procedure based on local discontinuous Galerkin (LDG) and interior penalty
approach (IP) described in [1, 32], equation (22) can be recast as

∂q

∂t
+

3∑

m=1

P−1

xm∆xm f̄
(I)
xm −

3∑

j=1

Dxm [Cm,j] Θxj

 =

3∑

m=1

P−1
xm

(
g(B),q
xm + g(In),q

xm

)
(23a)

10

Θxm − Dxmw = P−1
xm

(
g(B),Θ
xm + g(In),Θ

xm

)
, m = 1, 2, 3, (23b)

where Θxm is the gradient of the entropy variables in the m-th direction, whereas g
(B),q
xm , g

(B),Θ
xm

and g
(In),q
xm , g

(In),Θ
xm are the SAT penalty boundary (B) and interface (I) terms on the conservative

variable q, and the gradient of the entropy variable Θ, respectively [32]. The contributions of the
interface penalty terms are non-zero only in the normal direction to the interface. The matrices
[Cm,j] are block diagonal matrices with blocks of size 5, corresponding to the viscous coefficients
at each solution point.

Remark 3.1. In order to build a high-order accurate entropy-conservative/stable spatial discretiza-
tion, the linear interpolation operation, IxmStoF is replaced with a non-linear interpolation operator
(or equivalently, the linear SBP operator is replaced with a non-linear SBP operator) [2, 21, 22, 30].

Critically, the resulting non-linear operator, P−1
xm∆xm f̄

(I)
xm,sc or P−1

xm∆xm f̄
(I)
xm,ssr (entropy conserva-

tive or entropy stable, respectively), has the property that when contracted with the entropy variables
and discretely integrated over the domain, the result is a discrete surface integral with respect to
the entropy flux; that is, for the entropy-conservative formulation, the operator telescopes in the
entropy flux. For example

w>PP−1
x1 ∆x1 f̄

(I)
x1,sc = 1>

(
P̂x2,x3B̂x1Fx1

)
≈
∫

x1=1
Fx1dx2dx3 −

∫

x1=0
Fx1dx2dx3,

where f̄
(I)
x1,sc is the vector that results from the entropy-conservative non-linear interpolation of

the flux (this flux is replaced with f̄
(I)
x1,ssr for the entropy-stable version), 1 is a vector of ones of

appropriate size, and Fx1 is a vector of the entropy flux in the x1 direction evaluated on the mesh
nodes.

To obtain an equation for the entropy of the system, we follow the entropy stability analysis pre-

sented in [30, 32]. Therefore, multiplying the two discrete equations by w>P and
(
[Cm,j] Θxj

)>
P,

respectively, the expression for the time derivative of the entropy function in each element is

d

dt
1>P̂S + DT + 1>

(
P̂x2,x3B̂x1Fx1 + P̂x1,x3B̂x2Fx2 + P̂x1,x2B̂x3Fx3

)

= w>
(
Px2,x3Bx1 [C1,j] Θxj + Px1,x3Bx2 [C2,j] Θxj + Px1,x2Bx3 [C3,j] Θxj

)

+ w>
(
Px2,x3

(
g(B),q
x1 + g(In),q

x1

)
+ Px1,x3

(
g(B),q
x2 + g(In),q

x2

)
+ Px1,x2

(
g(B),q
x3 + g(In),q

x3

))

+
(
[C1,j] Θxj

)>
Px2,x3

(
g(B),Θ
x1 + g(In),Θ

x1

)
+
(
[C2,j] Θxj

)>
Px1,x3

(
g(B),Θ
x2 + g(In),Θ

x2

)

+
(
[C3,j] Θxj

)>
Px1,x2

(
g(B),Θ
x3 + g(In),Θ

x3

)
,

(24)

where

DT =

∥∥∥∥
√

[Cm,j] Θj

∥∥∥∥
2

P

,

is a positive quadratic term in the approximation of the first derivative of the solution [2], 1 is the
unit vector of appropriate size, and Fxm the vector of the entropy flux in the m-th direction.

Equation (24) can be conveniently rewritten as

d

dt
1>P̂S + DT = Ξ. (25)

11

This compact notation will be useful in Section 5.
As in the continuous analysis, we assume that we have a hexahedral element with edge length

equal to one, and consider only the plane (0, x2, x3) as wall boundary face. Thus, we have g
(In),q
xm =

g
(In),Θ
xm = 0, ∀m. We also assume that all the points that lie on the other faces of the cube are

treated in an entropy stable fashion such that their contribution can be neglected. With these
assumptions, equation (24) reduces to

d

dt
1>P̂S + DT + 1>P̂x2,x3B̂

−
x1Fx1 = w>Px2,x3B

−
x1 [C1,j] Θxj

+ w>Px2,x3g
(B),q
x1 +

(
[C1,j] Θxj

)>
Px2,x3g

(B),Θ
x1 .

(26)

The penalty source term g
(B),q
x1 is composed of three design-order terms plus a source boundary

term

g(B),q
x1 = g(B,I),q

x1 + g(B,V),q
x1 + M(B,V) + L(B,V), (27)

where
g(B,I),q
x1 = −B−x1

(
fx1 − f sc

(
v,v(B,I)

))
, (28)

f sc
(
v,v(B,I)

)
is the entropy conservative flux vector, which is a function of the two arguments v

and v(B,I), and

g(B,V),q
x1 =

1

2
B−x1

(
[C1,j] Θxj − f (B,V)

x1

)
. (29)

For clarity of presentation, the expressions of M(B,V), which is used to add provably dissipation,
and of L(B,V) will be given and analyzed at the end of the Section.

The penalty g
(B),Θ
x1 contains a single design-order term

g(B),Θ
x1 =

1

2
B−x1

(
w −w(B,V)

)
. (30)

In each of the contributions, the first component (the numerical state) is constructed from the
numerical solution, while the second component (the boundary state) is constructed from a com-
bination of the numerical solution and four independent components of physical boundary data.

In what follows, we analyze each of these contributions from (26) separately. We further
restrict our analysis to a single solution point lying on the wall boundary face. Therefore, we will
no longer make use of the bold notation, which will be replaced by italics to denote the vector of
five components at the collocated point.

The term given in (28) enforces the Euler no-penetration wall condition through the inviscid
flux of the compressible Euler equations. The boundary state is formed by constructing an entropy
conservative flux based on the numerical state in primitive variables at the face point, v, and a
manufactured boundary state given by the vector of the primitive variables

v(B,I) = diag([1,−1, 1, 1, 1]), v = (ρ,−U1,U2,U3, T)> . (31)

The term defined in (29), together with the penalty (30), allow a weak imposition of the no-slip
condition

Um = Uwallm , Uwall1 = 0, m = 2, 3,

12

in an entropy conservative way, where Uwallm is the m-th component of the wall velocity. Further-

more, entropy flow is enforced if κ
(
∂T
∂x1

1
T

)
6= 0.

Using the following primitive variables

v(B,V) =
(
ρ,−U1,−U2 + 2Uwall2 ,−U3 + 2Uwall3 , T

)>
, (32)

we define the point-wise boundary viscous flux F (B,V)
x1 , the term M(B,V), and source term L(B,V)

as
F (B,V)
x1 = C

(B,V)
1,j Θ(B,V)

xj , (33)

M(B,V) = L
(
w − w(B,V)

)
, (34)

L(B,V) = −(0, 0, 0, 0, 1)> T g(t), (35)

where g(t) = κ ∂T∂x1
1
T is a given L2 function. Thus, in case of a boundary condition with imposed

non-zero heat flux, g(t) is non-zero. We remark that the vector v(B,V) is used to evaluate the

matrix of the viscous coefficients C
(B,V)
1,j , as well as to compute the penalty term in (30).

The manufactured gradient of the entropy variables at the boundary Θ
(B,V)
xj is constructed

using the following procedure:

• Rotate the gradient of the entropy variables Θxj to the gradient of the primitive variables, v,

Πxj =
∂V

∂W
Θxj , j = 1, 2, 3, (36)

where ∂V
∂W is the Jacobian of the transformation in primitive variables with respect to the

entropy variables evaluated at the face point.

• Construct the gradient of the primitive variables at the wall boundary point

Π(B,V)
xj = diag([−1, 1, 1, 1,−1]) Πxj , j = 1, 2, 3. (37)

This choice follows the imposition of Neumann boundary conditions in the context of the
nodal discontinuous Galerkin method [5].

• Rotate the gradient of the primitive variables Π
(B,V)
xj to the gradient of the entropy variables

Θ(B,V)
xj =

∂W

∂V

∣∣∣∣
(B)

Π(B,V)
xj , j = 1, 2, 3, (38)

where ∂W
∂V

∣∣
(B)

is the Jacobian of the entropy variables with respect to the primitive variables

evaluated using the state v(B,V) defined in (32).

Finally, the entropy variables w(B,V) needed in (30) are computed from the primitive variables
defined in expression (32) by using the relations in (7).

The matrix L in (34) is a negative semi-definite 5x5 matrix which is defined as

L = −β
C1,1 + C

(B,V)
1,1

2
, (39)

13

where C1,1 and C
(B,V)
1,1 are the positive semi-definite viscous coefficient matrices in the normal

direction (m = j = 1), respectively evaluated using the states v and v(B,V), and β is a positive
coefficient that modulates the strength of the penalty term. This coefficient has to scale as the
inverse of the typical element length7.

Summarizing, the penalty at the face point for the conservative variables q is the sum of two
terms:

• the difference between inviscid and entropy conservative fluxes in the normal direction,

• the difference between internal viscous and boundary viscous fluxes in the normal direction.

The penalty on the gradient of the entropy variables Θ is instead given by the difference between
the solution at the node and the data imposed at the boundary expressed in terms of entropy
variables.

The entropy conservation and stability of the penalty source terms (27) and (30) is demonstrated
in the following three theorems. The first theorem, which ensures entropy conservation for the
inviscid SAT penalty in (27), and which enforces the no penetration condition, is Theorem 5.1 in
[2]. The second, is a new theorem and it ensures entropy conservation or stability for the viscous
SAT penalty. The third theorem is also new and ensures that the term M(B,V) is a dissipative
entropy contribution.

Theorem 3.1. The penalty inviscid flux contribution in equation (27) is entropy conservative if
the vector v(B,I) is defined as in (31).

Proof. See Theorem 5.1 in [2].

Theorem 3.2. The penalty terms for the viscous flux on the conserved variables (27), together
with the viscous penalty on the gradient of the entropy variables (30), are

• entropy conservative if the wall is adiabatic, i.e. g(t) = 0,

• entropy stable in the presence of a heat flux, i.e. g(t) 6= 0, where g(t) is a given L2 function.

Proof. By substituting into (26) the expressions for g
(B),q
x1 with M(B,V) = 0 (i.e. no dissipation)

and g
(B),Θ
x1 given in (27) and (30), respectively, yields

d

dt
1>P̂S + DT = 1>P̂x2,x3 g(t).

For an adiabatic wall g(t) = 0 and therefore the proposed boundary conditions are entropy
conservative. For g(t) 6= 0 the boundary conditions are entropy stable because the contribution to
the time rate of change of the entropy function is only a function of the data g(t).

Theorem 3.3. The interior penalty term

M(B,V) = [L]
(
w −w(B,V)

)
(40)

added to the SAT (27) is entropy dissipative.

7This is done such that the scaling remains dimensionally consistent.

14

Proof. By expanding the contraction w>Px2,x3g
(B),q
x1 in (26), and by focusing on the dissipation

term only, we arrive at the following point-wise contribution to the time-rate of change of the
entropy function

w>L
(
w − w(B,V)

)
. (41)

Note that we have omitted an extra positive scaling factor corresponding to the entry of the matrix
Px2,x3 associated with a wall boundary point. Plugging in the definitions of the matrix L (39), w
and w(B,V) we obtain

w>L
(
w − w(B,V)

)
= −2βµ

3T

(
4U2

1 + 3
(
U2

2 − Uwall2

)2
+ 3

(
U2

3 − Uwall3

)2
)
,

which completes the proof.

Remark 3.2. In order to construct an entropy stable solid wall boundary condition for the Euler
equations, it is necessary to add provable entropy dissipation. One solution consists of replacing
the entropy conservative flux f sc in (27) with an entropy stable flux f ssr in (27) as described in
[2].

4. A common SAT procedure for the imposition of wall boundary conditions and
interior interface coupling

The proposed approach for imposing the solid wall boundary conditions allows for a SAT
implementation which is identical to the interface treatment shown in [1]. We can use a single
subroutine with different inputs corresponding to the imposition of the interior interface couplings,
or of the adiabatic solid wall or of the wall with a prescribed heat entropy flow. In fact, the interior
interface coupling can be written as (see equations (16a-16d) in [1])

∂ql
∂t

+
3∑

m=1

P−1

xm,l
∆xm,l f̄

(I)
xm,l
−

3∑

j=1

Dxm,l [Cm,j,l] Θxj ,l

 =

3∑

m=1

P−1
xm,l

g
(In),q
xm,l

, (42a)

Θxm,l − Dxm,lw = P−1
xm,l

g
(In),Θ
xm,l

, m = 1, 2, 3, (42b)

∂qr
∂t

+
3∑

m=1

P−1

xm,r ∆xm,r f̄
(I)
xm,r −

3∑

j=1

Dxm,r [Cm,j,r] Θxj ,r

 =

3∑

m=1

P−1
xm,r g

(In),q
xm,r , (42c)

Θxm,r − Dxm,rw = P−1
xm,r g

(In),Θ
xm,r , m = 1, 2, 3, (42d)

which have exactly the same structure as LDG-IP approach used for the imposition of the solid

wall boundary conditions except for the boundary penalty interface terms, g
(B),·
xm,r in equation (23),

which are replaced by the interior penalty interface coupling terms, g
(In),·
xm,r in equations (42).

15

5. Numerical results

In this section we present four three-dimensional test cases which demonstrate the robustness
of the new wall boundary conditions coupled with the family of high-order accurate entropy-stable
interior SBP-SAT algorithms developed in [1, 2, 12, 30]. The systems of ordinary differential
equations arising from the spatial discretizations are integrated using the fourth-order accurate
Dormand–Prince method [33] endowed with an adaptive time stepping technique based on digital
signal processing [34, 35]. We note that small enough tolerances are always used to make the
temporal error negligible.

The unstructured grid solver used herein has been developed at the Extreme Computing Re-
search Center (ECRC) at KAUST on top of the Portable and Extensible Toolkit for Scientific
computing (PETSc) [36], its mesh topology abstraction (DMPLEX) [37] and scalable ordinary
differential equation (ODE)/differential algebraic equations (DAE) solver library [38], and the
Message Passing Interface (MPI). Additionally, the numerical solver is based on the algorithms
proposed in [1, 2, 12, 30]. It uses a transformation from computational to physical space that
satisfies both the entropy conservation and the geometric conservation law at the semi-discrete
level [21]. Unless otherwise stated, the meshes used in this work have been generated using the
GMSH package [39].

We present the numerical results for five test cases:

• Laminar flow in a pipe with annular section to verify the accuracy of procedure for the
imposition of the solid wall boundary conditions;

• Laminar flow in a lid-driven cavity to validate the entropy conservation and entropy stability
properties of the interior discretization operator coupled with the boundary procedure;

• Laminar flow past a three-dimensional cylinder and a sphere to demonstrate the engineering
capabilities of the interior discretization operator coupled with the boundary procedure;

• Supersonic turbulent flow past a three-dimensional rod with square section to demonstrate the
robustness of the solver and solid wall boundary conditions (“standard” SBP-SAT operators
and procedure for imposing solid wall boundary conditions based on linear analysis crash).

5.1. Flow in pipe with annular cross-section

In this section we investigate the accuracy of the solid wall boundary conditions. The proposed
entropy stable no-slip wall boundary conditions do not force the numerical solution to exactly fulfill
the boundary conditions. Instead the effect can be described as a rubber-band pulling the solution
towards the boundary conditions. The computed boundary value (or numerical state) typically
deviates slightly from the prescribed value but the deviation is reduced as the grid is refined. To
verify the accuracy of the new procedure, we perform a grid convergence study for the flow in a
full three-dimensional pipe with annular cross-section. For an incompressible flow, this test case
has an analytical solution [40] for both the velocity distribution and the volume flux through the
annular pipe. The expression for the axial velocity distribution, U1, as a function of the radial
coordinate, r, is

U1(r) =
G

4µ

[(
R2
i − r2

)
+
(
R2
o −R2

i

) ln(r/Ri)

ln(Ro/Ri)

]
, (43)

16

where G is the pressure gradient forcing term and Ri and Ro are the inner and outer radii of
the pipe, respectively. Herein, we set Ro = 0.5, Ro/Ri = 4 and G/µ = 1. We highlight that we
have chosen this test problem because i) it has an analytical solution which cannot be represented
exactly by the polynomial space of the numerical solution, and ii) it requires the use of curved
boundary element faces to capture accurately the geometry of the annular section of the pipe.

The code that is used is a compressible code and in order to obtain results that are very close
to those found for the incompressible equations, a Mach number of M = 1.0e − 05 is considered.
Periodic boundary condition are used in the axial direction.

We run a grid convergence study for p = 2, 3, 4 with a sequence of nested grids generated using
rational Bezier basis functions such that the geometrical description of the pipe is preserved exactly
for each refinement level.

The error in the axial velocity profile are computed using discrete norms as follows:

Discrete L1 : ‖u‖L1 =
K∑

κ=1

1>NκPκJκabs (uκ) ,

Discrete L2 : ‖u‖2L2 =
K∑

κ=1

u>κ PκJκuκ,

Discrete L∞ : ‖u‖L∞ = max
κ=1...K

abs (uκ) ,

where Jκ is the metric Jacobian of the curvilinear transformation from physical space to com-
putational space of the k-th hexahedral element and K is the total number of non-overlapping
hexahedral elements in the mesh.

The results of the grid convergence study are shown in Tables 1, 2 and 3 where the numbering
the first column indicates the number of elements in the radial, angular and axial coordinates. It
can be seen that the computed order of accuracy is very close to the formal value of ∼ (p+ 1).

Grid L1 Rate L2 Rate L∞ Rate

4 8.77e-02 - 1.79e-01 - 5.69e-01 -

8 1.28e-02 -2.77 3.45e-02 -2.38 1.50e-01 -1.92

16 2.03e-03 -2.66 5.47e-03 -2.66 3.12e-02 -2.27

32 2.68e-04 -2.92 7.51e-04 -2.86 5.07e-03 -2.62

64 3.33e-05 -3.01 9.66e-05 -2.96 7.23e-04 -2.81

Table 1: Convergence study for the flow in a pipe with annular section; p = 2; error in the axial velocity.

.

5.2. Lid-driven cavity

Next, we validate the algorithm on the simple problem of the three-dimensional lid-driven
cavity with adiabatic solid walls. The domain is a cube with sides of length l discretized using
a Cartesian grid composed of eight elements in each direction. A velocity field is imposed on
one of the walls, corresponding to a rigid body rotation about the center of the wall at a speed
ω (see figure 2). Based on the rotation velocity and the length of the cavity, this example is

17

Grid L1 Rate L2 Rate L∞ Rate

4 2.04e-02 - 3.87e-02 - 1.54e-01 -

8 2.71e-03 -2.91 5.68e-03 -2.77 3.17e-02 -2.28

16 2.15e-04 -3.65 5.69e-04 -3.32 4.43e-03 -2.84

32 1.25e-05 -4.10 4.40e-05 -3.69 4.63e-04 -3.26

64 6.65e-07 -4.23 2.87e-06 -3.94 4.05e-05 -3.51

Table 2: Convergence study for the flow in a pipe with annular section; p = 3; error in the axial velocity.

.

Grid L1 Rate L2 Rate L∞ Rate

4 4.54e-03 - 9.55e-03 - 4.70e-02 -

8 4.48e-04 -3.34 9.58e-04 -3.32 6.31e-03 -2.90

16 1.89e-05 -4.57 5.68e-05 -4.08 5.14e-04 -3.66

32 5.98e-07 -4.98 2.34e-06 -4.60 2.76e-05 -4.22

64 2.22e-08 -4.75 7.65e-08 -4.95 1.13e-06 -4.61

Table 3: Convergence study for the flow in a pipe with annular section; p = 4; error in the axial velocity.

.

Figure 2: Driven cavity with rigid body rotation ω in one of its faces.

18

Figure 3: Lid-driven cavity. Left: discrete integral of the time rate of change of the entropy function, d
dt

1>P̂S, and
discrete dissipation term, DT (see equation (25)). Right: instantaneous entropy balance (see equation (25)).

characterized by a Reynolds number Re = l2ω/ν = 100 and a Mach number M = lω/c = 0.05.
All the dissipation terms used for the interface coupling [1] and the imposition of the boundary
conditions are turned off, including upwind and interior-penalty SAT terms. The two terms on
the left-hand side of equation (25), d

dt1
>P̂S + DT, are monitored at every time step. Note that

because we do not include any dissipation terms for the interface couplings and adiabatic wall
boundary conditions are used, Ξ in equation (25) is zero. The monitored values are reported in
Figure 3, left panel, together with the error committed in entropy conservation, right panel, which
is below machine (double) precision. Therefore, we have confirmed numerically that the newly
developed wall boundary conditions together with the interior discretization operator are entropy
conservative when all the entropy dissipative terms are turned off.

We also present the results of a modified version of the lid-driven cavity example by considering
non-adiabatic boundaries, and by imposing a nonzero entropy flux in a face adjacent to the rotating
face, given as g(t) = 10−4 sin(4πt) (see figure 4). Figure 5 shows the terms on the entropy balance
for this example, including the boundary contribution (left panel), and the error in the entropy
conservation (right), which is below machine (double) precision.

5.3. Subsonic flow past a cylinder

We further explore the engineering capabilities of the entropy-stable SBP-SAT operators and the
numerical procedure for the weak imposition of the solid wall boundary conditions by simulating
the flow around a cylinder, a canonical example of external flows with important applications
such as particle transport, fluid-structure interaction and bluff body aerodynamics, that has been
extensively studied both numerically [41–44] and experimentally [45–49].

We described the flow in a Cartesian coordinate system (x1,x2,x3), with the free-stream velocity
aligned in the x1 direction. A circle of diameter d is centered at the origin, with the domain
of interest delimited by a rectangular box that respectively extends 20d and 60d upstream and
downstream of the flow direction, and 30d in the x2 direction. Such a 2D domain is then extruded
a distance d in the x3 direction. We prescribe an adiabatic no-slip wall boundary condition on the
surface of the cylinder; periodic boundaries are applied in the x3 direction. The remaining faces of
the box are treated as a far field.

The domain is discretized as follows: we first mesh the (x1, x2) plane with second-order quadri-
lateral elements, and include a boundary layer around the cylinder wall as pictured in Figure 6.

19

Figure 4: Driven cavity with rigid body rotation ω in one of its faces and a time-dependent entropy flux g(t) on
and adjacent face.

Figure 5: Lid-driven cavity with nonzero entropy flux. Left: discrete integral of the time rate of change of the
entropy function, d

dt
1>P̂S, discrete dissipation term, DT, and discrete integral of the boundary data contribution,

Ξ = P̂x2,x3 g(t) (see equation (25)). Right: instantaneous entropy balance (see equation (25)).

20

Figure 6: Subsonic flow past a cylinder: mesh cut on the x3 plane, with a zoom of the boundary layer area.

We then extrude this mesh using three layers of elements in the x3 direction over the span of the
cylinder.

Considering the free-stream velocity u∞ and the diameter of the cylinder d, the free-stream
flow is characterized by a Mach number M∞ = 0.1 and a Reynolds number Re∞ = 300. Under
these conditions, the flow developed behind the cylinder is three-dimensional and results in vortex
shedding at a constant frequency.

In Table 4 we report the time average drag coefficient, c̄d, and the Strouhal number, St =
fd/u∞ based on the frequency of the vortex shedding, resulting from uniform p-refinements (with
polynomial orders for the solution space ranging from p = 2 to p = 5) and three levels of uniform
h-refinement of the initial mesh described below, resulting in 714 (denoted by rl = 0 in Table 4),
5,712 (rl = 1), and 45,969 (rl = 2) hexahedral elements respectively. Comparisons with results
reported in the literature for these aerodynamic coefficients [50] are also provided. From these
tables, it can be seen that in all cases the accuracy of the results improve by increasing the order
of accuracy of the scheme and the grid resolution. The fifth- (p = 4) and sixth-order (p = 5)
accurate entropy-stable schemes perform very well on the last level of h−refinement considered
(rl = 2), which is coarser compared to the typical grids used with second-order finite volume and
finite differences schemes.

5.4. Subsonic flow past a sphere

We then test our implementation within a more complicated setting represented by the flow
around a sphere. In this case, a sphere of diameter d is centered at the origin, and a box is
respectively extended 20d and 60d upstream and downstream of the flow direction; the box size is
30d in both the x2 and x3 directions. As boundary conditions, we consider adiabatic solid walls at
the surface of the sphere and far field on all faces of the box.

21

Poly. order rl = 0 rl = 1 rl = 2

p = 2
p = 3
p = 4
p = 5
[50]

c̄d St
1.579 0.1995
1.439 0.1997
1.458 0.1998
1.414 0.1999
1.381 0.2000

c̄d St
1.541 0.1998
1.439 0.1999
1.386 0.1999
1.382 0.1999
1.381 0.2000

c̄d St
1.443 0.1999
1.383 0.1999
1.384 0.1999
1.386 0.1999
1.381 0.2000

Table 4: Subsonic flow past a cylinder: mean drag coefficient and Strouhal number for different polynomial orders p
and uniform refinements rl, Re∞ = 300, M∞ = 0.1. Reference values are also provided.

Figure 7: Subsonic flow past a sphere. Left: mesh cut on the x3 plane, with a zoom of the boundary layer area.
Right panel, top: tetrahedral to hexahedral refinement. Right panel, bottom: prismatic to hexahedral refinement.

The surface of the sphere is first triangulated using second-order simplices and a boundary layer
composed of triangular prisms is extruded from the sphere surface for a total length of 3d. The rest
of the domain is meshed with an unstructured tetrahedral mesh. We then obtain an unstructured
conforming hexahedral mesh by uniformly splitting each tetrahedron in to four hexahedral elements,
and each prism in to three hexahedral elements, resulting in a total of 4,328 hexahedral elements.
A cut of the final mesh is illustrated in Figure 7, together with a representative splitting of a
tetrahedral and a prismatic cell.

The free-stream flow is characterized by a Mach number M∞ = 0.1 and a Reynolds number
Re∞ = 300. Under these conditions, the flow developed behind the sphere is non-axisymmetric,
with hairpin vortices shedding from the wake at a constant rate [51], inducing a total non-zero
lift force on the sphere. Figure 8 depicts these hairpin vortices with isocontours of the Q-criterion
colored by the vorticity magnitude at a given time instant.

As in the previous test case, we analyze the convergence of some quantities of interest under

22

Figure 8: Subsonic flow past a sphere: isocontour 0.02 of the Q-criterion colored by vorticity magnitude at t = 150,
Re∞ = 300, M∞ = 0.1. Solution with rl = 2 and p = 5. Notice the hairpin vortices with a nearly constant

orientation.

Poly. order rl = 0 rl = 1 rl = 2

p = 2
p = 3
p = 4
p = 5
[52]

c̄d c̄l θ St
1.125 0.095 -0.34 0.060
0.815 0.074 -0.18 0.120
0.688 0.069 0.14 0.140
0.650 0.066 0.39 0.140
0.656 0.069 - 0.137

c̄d c̄l θ St
0.843 0.076 -0.10 0.140
0.671 0.068 0.24 0.140
0.656 0.067 1.80 0.140
0.659 0.067 1.68 0.140
0.656 0.069 - 0.137

c̄d c̄l θ St
0.691 0.069 0.45 0.140
0.659 0.068 1.71 0.140
0.659 0.068 1.70 0.140
0.659 0.068 1.70 0.140
0.656 0.069 - 0.137

Table 5: Subsonic flow past a sphere: mean drag coefficient c̄d, mean lift coefficient c̄l and its orientation in the
x1 = 0 plane θ, and Strouhal number St for different polynomial orders p and uniform refinements l, Re∞ = 300,

M∞ = 0.1. Reference values are also provided.

p- and h-refinement. The number of elements in the sequence of nested grids considered are
4,328, 34,624 and 276,992 respectively; the polynomial order of the solution ranges from p = 2 to
p = 5. For this test, we monitor the time average drag coefficient of the sphere, c̄d, the average
lift coefficient, c̄l (with its orientation θ in the x3 − x2 plane), and the Strouhal number St based
on the frequency of the vortex shedding. We remark that c̄l is nonzero because of the asymmetric
flow features [51]. The results provided in Table 5 are in good agreement with those reported in
the literature [52] for sufficiently refined meshes (i.e. rl = 1 and rl = 2), and polynomial orders
greater than or equal to 3.

Figure 8 shows the 0.02 isocontour of the Q-criterion at t = 150 for the solution of the flow
around a sphere with rl = 2, and p = 5. At this time, the flow has reached a constant periodic
state. From this figure, it can be seen the asymmetric pattern of the flow, consistent with a nonzero
c̄l. Notice the heads of the hairpin vortices are almost aligned with the x2 axis, in agreement with
our reported value of θ for this solution.

5.5. Supersonic flow past a square cylinder

We finally provide further evidence of the robustness of the algorithm in the context of su-
personic flow around a square cylinder with Re∞ = 104 and M∞ = 1.5, which features shocks,
expansion regions and three-dimensional vortical structures [2]. We start with a square of side
s placed in the x1 − x2 plane, and construct an unstructured mesh around it, manually refined

23

Figure 9: Mesh used for the solution of the supersonic flow past a square cylinder.

in order to capture the main features of the flow (see Figure 9). We then extrude the mesh for
a total size s in the x3 direction using four elements; the final three-dimensional mesh used in
the study consists of 87,872 hexahedral elements. The boundary conditions imposed are adiabatic
solid wall on the square cylinder surfaces, periodic boundary conditions in the x3 direction, and
far field at the remaining boundaries. The problem is solved using a fourth-order accurate (p = 3)
discretization.

Figure 10 show the results for the supersonic square cylinder at t = 100. At this point in time,
the flow is fully unsteady and the shock in front of the cylinder has reached its final position. The
flow is characterized by the shock in front of the square cylinder and those in the near wake region.
There is also an unsteady wake populated by three-dimensional vortices shedding from the body.

We finally remark that the small oscillations near the shock region are caused by discontinuities
in the solution and are expected for this scheme. In fact, we are not using any shock capturing
method or reducing the order of scheme at the discontinuity. Nevertheless, the simulation remains
stable at all time, and the oscillations are always confined to small regions near the discontinuities.
This is a feat unattainable with several alternative approaches to wall boundary conditions based on
linear analysis which for this test problem lead to numerical instabilities and an almost immediate
crash of the solver.

6. Conclusions

We have used entropy stability and the summation-by-parts framework to derive entropy stable
wall boundary conditions for the three-dimensional compressible Navier–Stokes equations in the
presence of an adiabatic wall, or a wall with a prescribed heat entropy flow.

A point-wise entropy-stable numerical procedure has been presented for weakly enforcing these
solid wall boundary conditions at the semi-discrete level combining a penalty flux approach with a
simultaneous-approximation-term technique for the conservative variables and the variables repre-
senting the gradient of entropy. The resulting semi-discrete operator mimics exactly the behavior
at the continuous level, and the proposed non-linear boundary treatment provides a mechanism for
ensuring non-linear stability in the L2 norm of the continuous and semi-discretized compressible
Navier–Stokes equations.

24

Figure 10: Density, temperature, entropy and local Mach number contours for the supersonic flow around a square
cylinder with Re∞ = 104 and M∞ = 1.5 at t = 100.

The design order properties of the scheme are validated in the context of laminar flow in
a pipe with an annular section. Detailed viscous numerical computations in a three-dimensional
subsonic lid-driven cavity flow have been presented to assess the accuracy of the proposed numerical
techniques. The error in the entropy function balance showed an excellent agreement with the
theory with or without heat entropy flux.

Unsteady laminar flow past a cylinder and a sphere have been presented to highlight the efficacy
in computing aerodynamic forces; numerical simulations considering both p- and h-refinements
showed very good agreement with results available from the literature.

The robustness of the complete semi-discrete operator (i.e. the entropy-stable interior operator
coupled with the new boundary treatment) was demonstrated for the supersonic flow past a three-
dimensional square cylinder at Re∞ = 104 and M∞ = 1.5, as proposed in [2]. This test has been
successfully computed with a fourth-order accurate method without the need of introducing arti-
ficial dissipation, limiting techniques, or filtering, for the purpose of stabilizing the computations,
a feat unattainable with several alternative approaches based on linear analysis only.

Although the robustness and efficacy of the techniques presented in this work have been vali-
dated using discontinuous spectral collocation operators on unstructured grids, the new boundary
conditions can be applied to a very broad class of spatial discretizations and they are compati-
ble with any diagonal-norm summation-by-parts spatial operator, including finite element, finite
difference, finite volume, discontinuous Galerkin, and flux reconstruction schemes.

Acknowledgments

The research reported in this paper was funded by King Abdullah University of Science and
Technology. We are thankful for the computing resources of the Supercomputing Laboratory and

25

the Extreme Computing Research Center at King Abdullah University of Science and Technology.

References

[1] Parsani, M., Carpenter, M. H., and Nielsen, E. J., “Entropy stable discontinuous interfaces coupling for the three-
dimensional compressible Navier–Stokes equations,” Journal Computational Physics, Vol. 290, 2015, pp. 132–
138.

[2] Parsani, M., Carpenter, M. H., and Nielsen, E. J., “Entropy stable wall boundary conditions for the three-
dimensional compressible Navier–Stokes equations,” Journal of Computational Physics, Vol. 292, 2015, pp. 88–
113.

[3] Hesthaven, J. S., Numerical methods for conservation laws: From analysis to algorithms, Computational Science
and Engineering. 18, SIAM Publishing, Philadelphia, 2017.

[4] Wang, Z., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert,
K., Huynh, H., Kroll, N., May, G., Persson, P.-O., Leer, B., and Visbal, M., “High-order CFD methods: current
status and perspective,” International Journal for Numerical Methods in Fluids, Vol. 72, No. 8, pp. 811–845.

[5] Hesthaven, J. S. and Warburton, T., Nodal discontinuous Galerkin methods: Algorithms, analysis, and applica-
tions, Texts in Applied Mathematics, Springer, 2008.

[6] Dafermos, C. M., Hyperbolic conservation laws in continuum physics, Springer-Verlag, Berlin, 2010.
[7] Svärd, M., “Weak solutions and convergent numerical schemes of modified compressible Navier–Stokes equa-

tions,” Journal Computational Physics, Vol. 288, 2015, pp. 19–51.
[8] Hughes, T. J. R., Franca, L. P., and Mallet, M., “A new finite element formulation for computational fluid

dynamics: K. Symmetric forms of the compressible Euler and Navier–Stokes equations and the second law of
thermodynamics,” Computer Methods in Applied Mechanics and Engineering , Vol. 54, 1986, pp. 223 – 234.

[9] Tadmor, E., “The numerical viscosity of entropy stable schemes for systems of conservation laws. I,” Mathematics
of Computation, Vol. 49, 1987, pp. 91–103.

[10] Fisher, T. C. and Carpenter, M. H., “High-order entropy stable finite difference schemes for nonlinear conser-
vation laws: finite domains,” Journal Computational Physics, Vol. 252, 2013, pp. 518–557.

[11] Carpenter, M. H. and Fisher, T. C., “High-order entropy stable formulations for computational fluid dynamics,”
21st AIAA Computational Fluid Dynamics Conference, AIAA 2013-2868, American Institute of Aeronautics and
Astronautics (AIAA), 2013.

[12] Carpenter, M. H., Parsani, M., Nielsen, E. J., and Fisher, T. C., “Towards an entropy stable spectral ele-
ment framework for computational fluid dynamics,” 54th AIAA Aerospace Sciences Meeting , AIAA 2016-1058,
American Institute of Aeronautics and Astronautics (AIAA), 2016.

[13] Friedrich, L., Winters, A. R., Del Rey Fernandéz, D. C., Gassner, G. J., Parsani, M., and Carpenter, M. H.,
“An entropy stable h/p non-conforming discontinuous Galerkin method with the summation-by-parts property,”
Journal of Scientific Computing , 2018.

[14] Chan, J., “On discretely entropy conservative and entropy stable discontinuous Galerkin methods,” Journal of
Computational Physics, Vol. 362, 2018, pp. 346 – 374.

[15] Ranocha, H., Sayyari, M., Dalcin, L., Parsani, M., and Ketcheson, D. I., “Relaxation Runge–Kutta Methods:
Fully-Discrete Explicit Entropy-Stable Schemes for the Euler and Navier–Stokes Equations,” 05 2019, Submitted
to SIAM Journal on Scientific Computing.

[16] Svärd, M. and Özcan, H., “Entropy-stable schemes for the Euler equations with far-field and wall boundary
conditions,” Journal of Scientific Computing , Vol. 58, No. 1, 2014, pp. 61–89.

[17] Svärd, M., Carpenter, M. H., and Parsani, M., “Entropy stability and the no-slip wall boundary condition,”
SIAM Journal on Numerical Analysis, Vol. 56, No. 1, 2018, pp. 256–273.

[18] Cockburn, B. and Shu, C.-W., “The Local Discontinuous Galerkin Method for Time-Dependent Convection-
Diffusion Systems,” SIAM Journal on Numerical Analysis, Vol. 35, No. 6, 1998, pp. 2440–2463.

[19] Carpenter, M. H., Parsani, M., Fisher, T. C., and Nielsen, E. J., “Entropy stable staggered grid spectral
collocation for the Burgers’ and the compressible Navier–Stokes equations,” NASA TM-2015-218990 , 2015.

[20] Dutt, P., “Stable boundary conditions and difference schemes for Navier–Stokes equations,” SIAM Journal on
Numerical Analysis, Vol. 25, No. 2, 1988, pp. 245–267.

[21] Fisher, T. C., High-order L2 stable multi-domain finite difference method for compressible flows, Ph.D. thesis,
Purdue University, 2012.

[22] Tadmor, E., “Entropy stability theory for difference approximations of nonlinear conservation laws and related
time-dependent problems,” Acta Numerica, Vol. 12, 2003, pp. 451–512.

26

[23] Godunov, S. K., “An interesting class of quasilinear systems,” Dokl. Akad. Nauk SSSR, Vol. 139, No. 3, 1961,
pp. 521–523.

[24] Harten, A., “On the symmetric form of systems of conservation laws with entropy,” Journal of Computational
Physics, Vol. 49, No. 1, 1983, pp. 151–164.

[25] Nordström, J. and Svärd, M., “Well-posed boundary conditions for the Navier–Stokes equations,” SIAM Journal
on Numerical Analysis, Vol. 43, No. 3, 2005, pp. 1231–1255.

[26] Kreiss, H.-O. and Lorenz, J., Initial boundary value problems and the Navier–Stokes equations, Academic Press,
New York, 1989.

[27] Svärd, M. and Nordström, J., “A stable high-order finite difference scheme for the compressible Navier–Stokes
equations: No-slip wall boundary conditions,” Journal of Computational Physics, Vol. 227, No. 10, 2008,
pp. 4805–4824.

[28] Berg, J. and Nordström, J., “Stable Robin solid wall boundary conditions for the Navier–Stokes equations,”
Journal of Computational Physics, Vol. 230, No. 19, 2011, pp. 7519–7532.

[29] Bejan, A., Entropy generation minimization, CRC, Boca Raton, New York, 1st ed., 1996.
[30] Carpenter, M., Fisher, T., Nielsen, E., and Frankel, S., “Entropy Stable Spectral Collocation Schemes for the

Navier–Stokes Equations: Discontinuous Interfaces,” SIAM Journal on Scientific Computing , Vol. 36, No. 5,
2014, pp. B835–B867.

[31] Del Rey Fernández, D. C., Carpenter, M. H., Fredrich, L., Winters, A. R., Gassner, G. J., Dalcin, L., and
Parsani, M., “Entropy stable non-conforming discretizations with the summation-by-parts property for curvi-
linear coordinates,” NASA TM-2018-, 2018.

[32] Parsani, M., Carpenter, M. H., and Nielsen, E. J., “Entropy stable wall boundary conditions for the compressible
Navier–Stokes equations,” NASA TM 218282 , 2014.

[33] Dormand, J. R. and Prince, P. J., “A family of embedded Runge–Kutta formulae,” Journal of Computational
and Applied Mathematics, Vol. 6, No. 1, 1980, pp. 19 – 26.

[34] Söderlind, G., “Digital Filters in Adaptive Time-stepping,” ACM Transactions on Mathematical Software,
Vol. 29, No. 1, 2003, pp. 1–26.

[35] Söderlind, G. and Wang, L., “Adaptive time-stepping and computational stability,” Journal of Computational
and Applied Mathematics, Vol. 185, No. 2, 2006, pp. 225–243.

[36] Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout,
V., Gropp, W. D., Kaushik, D., Knepley, M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K.,
Sanan, P., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H., “PETSc Users Manual,” Tech. Rep. ANL-95/11
- Revision 3.10, Argonne National Laboratory, 2018.

[37] Knepley, M. G. and Karpeev, D. A., “Mesh Algorithms for PDE with Sieve I: Mesh Distribution,” Scientific
Programming , Vol. 17, No. 3, 2009, pp. 215–230.

[38] Abhyankar, S., Brown, J., Constantinescu, E. M., Ghosh, D., Smith, B. F., and Zhang, H., “PETSc/TS: A
Modern Scalable ODE/DAE Solver Library,” arXiv preprint arXiv:1806.01437 , 2018.

[39] Geuzaine, C. and Remacle, J.-F., “Gmsh: A 3-D finite element mesh generator with built-in pre-and post-
processing facilities,” International journal for numerical methods in engineering , Vol. 79, No. 11, 2009,
pp. 1309–1331.

[40] Rosenhead, L., Laminar boundary layers; an account of the development, structure, and stability of laminar
boundary layers in incompressible fluids, together with a description of the associated experimental techniques.,
Oxford [England] Clarendon Press, 1st ed., 1963.

[41] Karniadakis, G. E. and Triantafyllou, G. S., “Three-dimensional dynamics and transition to turbulence in the
wake of bluff objects,” Journal of Fluid Mechanics, Vol. 238, 1992, pp. 1–30.

[42] Barkley, D. and Henderson, R. D., “Three-dimensional Floquet stability analysis of the wake of a circular
cylinder,” Journal of Fluid Mechanics, Vol. 322, 1996, pp. 215–241.

[43] Henderson, R. D., “Nonlinear dynamics and pattern formation in turbulent wake transition,” Journal of Fluid
Mechanics, Vol. 352, 1997, pp. 65–112.

[44] Park, J., Kwon, K., and Choi, H., “Numerical solutions of flow past a circular cylinder at Reynolds numbers up
to 160,” KSME International Journal , Vol. 12, No. 6, Nov 1998, pp. 1200–1205.

[45] Williamson, C. H. K., “Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low
Reynolds numbers,” Journal of Fluid Mechanics, Vol. 206, 1989, pp. 579–627.

[46] Norberg, C., “An experimental investigation of the flow around a circular cylinder: influence of aspect ratio,”
Journal of Fluid Mechanics, Vol. 258, 1994, pp. 287–316.

[47] Zhang, H., Fey, U., Noack, B. R., Knig, M., and Eckelmann, H., “On the transition of the cylinder wake,”
Physics of Fluids, Vol. 7, No. 4, 1995, pp. 779–794.

27

[48] Williamson, C. H. K., “Three-dimensional wake transition,” Journal of Fluid Mechanics, Vol. 328, 1996, pp. 345–
407.

[49] Prasad, A. and Williamson, C. H. K., “The instability of the shear layer separating from a bluff body,” Journal
of Fluid Mechanics, Vol. 333, 1997, pp. 375–402.

[50] Henderson, R. D., “Details of the drag curve near the onset of vortex shedding,” Physics of Fluids, Vol. 7, No. 9,
1995, pp. 2102–2104.

[51] Mittal, R., Dong, H., Bozkurttas, M., Najjar, F., Vargas, A., and von Loebbecke, A., “A versatile sharp interface
immersed boundary method for incompressible flows with complex boundaries,” Journal of Computational
Physics, Vol. 227, No. 10, 2008, pp. 4825 – 4852.

[52] JOHNSON, T. A. and PATEL, V. C., “Flow past a sphere up to a Reynolds number of 300,” Journal of Fluid
Mechanics, Vol. 378, 1999, pp. 1970.

AppendixA. Python script for the verification of the proofs in three dimension using
curvilinear grids

The following python script can be used to verify all the theorems and corresponding proofs used
to construct the entropy-conservative and entropy-stable solid wall boundary conditions proposed
herein. The script takes into account the general case of curvilinear grids.

1 import numpy as np

2 from sympy import *

3 init_printing ()

4

5

6 # Define few utility routines

7

8 def zeros(* shape):

9 return np.zeros(shape , dtype=object)

10

11 def dot(a, b):

12 a = np.array(a)

13 b = np.array(b)

14 return np.dot(a, b)

15

16 def tensordot(a, b, axes =2):

17 a = np.array(a)

18 b = np.array(b)

19 return np.tensordot(a, b, axes)

20

21 def matmul(a, b):

22 a = np.array(a)

23 b = np.array(b)

24 return np.dot(a, b)

25

26 def outer(a, b):

27 a = np.array(a)

28 b = np.array(b)

29 return np.outer(a, b)

30

31

32 # Viscosity and Conductivity are functions of temperature

33 Mu = symbols(’mu’, real=True , positive=True , cls=Function)

34 Kappa = symbols(’kappa ’, real=True , positive=True , cls=Function)

35

36 # All these are constants for the analysis

37 R = symbols(’R’, real=True , positive=True)

38 gamma = symbols(’gamma ’, real=True , positive=True)

39 cp = R*gamma/(gamma -1)

40 cv = R/(gamma -1)

41 rho_inf = symbols(’rho_inf ’, real=True , positive=True)

28

42 T_inf = symbols(’T_inf ’, real=True , positive=True)

43

44 def pressure(rho , T):

45 return rho*R*T

46

47 def specific_energy(T):

48 return cv*T

49

50 def specific_enthalpy(T):

51 return cp*T

52

53 def specific_entropy(rho , T):

54 s = cv*log(T/T_inf) - R*log(rho/rho_inf)

55 return s

56

57 def kinetic_energy(u):

58 return dot(u,u)/2

59

60 def EntropyVars(V):

61 rho = V[0] # density

62 u = V[1:4] # velocity

63 T = V[4] # temperature

64 h = specific_enthalpy(T)

65 s = specific_entropy(rho , T)

66 k = kinetic_energy(u)

67 W = zeros (5)

68 W[0] = h/T - k/T - s

69 W[1:4] = u/T

70 W[4] = -1/T

71 return W

72

73 def PrimitiveVars(W):

74 T = -1/W[4]

75 u = W[1:4]*T

76 h = specific_enthalpy(T)

77 k = kinetic_energy(u)

78 s = h/T - k/T - W[0]

79 rho = rho_inf*exp((cv*log(T/T_inf) - s)/R)

80 V = zeros (5)

81 V[0] = rho

82 V[1:4] = u

83 V[4] = T

84 return V

85

86 def dWdV(Vs):

87 V = zeros (5)

88 V[0] = symbols(’rho’, real=True , positive=True)

89 V[1:4] = symbols(’u0:3’, real=True)

90 V[4] = symbols(’T’, real=True , positive=True)

91 W = EntropyVars(V)

92 mat = zeros(5, 5)

93 for a in range (5):

94 for b in range (5):

95 mat[a,b] = W[a].diff(V[b]). subs(zip(V, Vs))

96 return mat

97

98 def dVdW(Vs):

99 mat = Matrix(dWdV(Vs)).inv()

100 return np.array(mat.tolist ())

101

102 def InviscidFlux(n, V):

103 rho = V[0] # density

104 u = V[1:4] # velocity

105 T = V[4] # temperature

106 p = pressure(rho , T)

29

107 h = specific_enthalpy(T)

108 k = kinetic_energy(u)

109 H = h + k # total enthalpy

110 fI = zeros (5)

111 fI[0] = rho*dot(n, u)

112 fI[1:4] = fI[0]*u + p*n

113 fI[4] = fI[0]*H

114 return fI

115

116 def LogAverage(a, b):

117 if a == b: return a

118 return (b-a)/log(b/a)

119

120 def EntropyConsistentFlux(n, Vl , Vr):

121 # Ismail & Roe , doi :10.1016/j.jcp .2009.04.021

122 gp1og = (gamma +1)/ gamma

123 gm1og = (gamma -1)/ gamma

124

125 sqrtT_l = sqrt(Vl[4])

126 sqrtT_r = sqrt(Vr[4])

127

128 z1_l = 1/ sqrtT_l

129 z1_r = 1/ sqrtT_r

130 z1_avg = z1_l + z1_r

131 z1_avg_inv = 1/ z1_avg

132 z1_log = LogAverage(z1_l , z1_r)

133

134 z3_l = sqrtT_l * Vl[0]

135 z3_r = sqrtT_r * Vr[0]

136 z3_log = LogAverage(z3_l , z3_r)

137

138 rho_hat = z1_avg * z3_log / 2

139 p_hat = R * z1_avg_inv * (z3_l + z3_r)

140 u_hat = z1_avg_inv * (z1_l * Vl[1:4] + z1_r * Vr [1:4])

141 T_hat = 1/ rho_hat * (gp1og * z3_log/z1_log + gm1og/R * p_hat)/2

142

143 h_hat = specific_enthalpy(T_hat)

144 k_hat = kinetic_energy(u_hat)

145 H_hat = h_hat + k_hat # total enthalpy

146

147 fI = zeros (5)

148 fI[0] = rho_hat * dot(n, u_hat)

149 fI[1:4] = fI[0] * u_hat + p_hat * n

150 fI[4] = fI[0] * H_hat

151 return fI

152

153 def ViscousFlux(n, V, Theta):

154 u = V[1:4] # velocity

155 T = V[4] # temperature

156 mu, kappa = Mu(T), Kappa(T) # mu and kappa depend on temperature

157 Pi = matmul(dVdW(V), Theta) # rotate gradient to primitive vars

158 grad_u = Pi[1:4 ,:] # gradient of velocity

159 grad_T = Pi[4,:] # # gradient of temperature

160 div_u = np.trace(grad_u) # divergence of velocity

161 I = eye (3) # identity tensor

162 epsilon = zeros (3,3) # rate -of -strain tensor

163 for i in range (3):

164 for j in range (3):

165 epsilon[i,j] += (grad_u[i,j] + grad_u[j,i])/2

166 tau = mu * (2* epsilon - Rational (2 ,3)* div_u*I) # Cauchy stress tensor

167 fV = zeros (5) # normal viscous flux

168 fV[0] = sympify (0)

169 fV[1:4] = dot(n, tau)

170 fV[4] = dot(n, dot(u, tau)) + kappa * dot(n, grad_T)

171 return fV

30

172

173 # From now on , we use the following conventions:

174 # * (-) and ’_m’ refers to internal state at a point within a cell boundary face

175 # * (w) and ’_w’ refers to given boundary values , superscript (wall) in the paper

176 # * (+) and ’_p’ refers to manufactured state , superscript (B) in the paper

177

178 # Unit face normal

179 nrm = symbols(’n0:3’, real=True)

180 nrm = np.array(nrm)

181 nrm = nrm / sqrt(dot(nrm , nrm))

182

183 # Index ’k’ identifying the boundary face.

184 # If k is None , use an arbitrary face normal.

185 # Otherwise , set k from 1 to 6 to assume a regular hexahedron [0 ,1]^3

186 # (unit volume , unit face areas). In the paper we pick k = 1 for the sake

187 # of simplicity , in here we default to k = None to proof the general case.

188 k = None

189 if k == 1: nrm[:] = sympify ([-1,0,0])

190 if k == 2: nrm[:] = sympify ([+1 ,0 ,0])

191 if k == 3: nrm[:] = sympify ([0,-1,0])

192 if k == 4: nrm[:] = sympify ([0 ,+1 ,0])

193 if k == 5: nrm[:] = sympify ([0,0,-1])

194 if k == 6: nrm[:] = sympify ([0 ,0 ,+1])

195

196 # Wall velocity , satisfies dot(nrm , u_w) == 0, Remark 2.1

197 u_w = symbols(’u0:3^(wall)’, real=True)

198 u_w = np.array(u_w)

199 u_w = u_w - dot(u_w , nrm) * nrm

200

201 # Wall entropy flux function , Equation 20

202 g = symbols(’g’, real=True , cls=Function)

203 t = symbols(’t’, real=True) # time

204

205 # State (-) at a point in the face

206 V_m = zeros (5)

207 V_m [0] = symbols(’rho’, real=True , positive=True)

208 V_m [1:4] = symbols(’u0:3’, real=True)

209 V_m [4] = symbols(’T’, real=True , positive=True)

210

211 # Gradient (-) at a point in the face

212 Theta_m = Matrix(MatrixSymbol(’Theta’, 5, 3))

213

214 # --------------------------------

215 # --- Proof for Inviscid Terms ---

216 # --------------------------------

217

218 # Manufactured (+) state at a point in the face

219 V_p = zeros (5)

220 u_m = V_m [1:4] # velocity at (-)

221 wn = dot(u_w , nrm) # normal wall velocity , wn == 0, Remark 2.1

222 un = dot(u_m , nrm) # normal flow velocity

223 V_p [0] = V_m[0] # \

224 V_p [1] = V_m[1] + 2 * (wn - un) * nrm[0] # |

225 V_p [2] = V_m[2] + 2 * (wn - un) * nrm[1] # | Equation 31

226 V_p [3] = V_m[3] + 2 * (wn - un) * nrm[2] # |

227 V_p [4] = V_m[4] # /

228

229 W_m = EntropyVars(V_m) # entropy vars at (-)

230

231 fI_m = InviscidFlux(nrm , V_m)

232 fI_s = EntropyConsistentFlux(nrm , V_m , V_p)

233 sat_I = fI_m - fI_s # inviscid penalty term , Equation 28

234

235 rho_m , u_m = V_m[0], V_m [1:4] # density and temperature at (-)

236 Psi_m = R * rho_m * dot(nrm , u_m)

31

237 F_m = dot(W_m , fI_m) - Psi_m # entropy flux in LHS of Equation 26

238

239 # Inviscid contributions to the RHS of Equation 26

240 RHS_I = (

241 - F_m

242 + dot(W_m , sat_I)

243)

244

245 RHS_I = ratsimp(RHS_I) # simplify expressions

246 RHS_I = expand(RHS_I) # trigger cancellations

247 assert RHS_I == 0 # Entropy -conservative BC! Q.E.D.

248

249

250 # --------------------------------

251 # --- Proof for Viscous Terms ----

252 # --------------------------------

253

254 # Manufactured (+) state at a point in the face

255 # Note that this way u^(w) = 1/2*(u^(-) + u^(+))

256 V_p = zeros (5)

257 V_p [0] = +V_m[0] # \

258 V_p [1] = -V_m[1] + 2 * u_w[0] # |

259 V_p [2] = -V_m[2] + 2 * u_w[1] # | Equation 32

260 V_p [3] = -V_m[3] + 2 * u_w[2] # |

261 V_p [4] = +V_m[4] # /

262

263 # Manufactured (+) gradient at a point in the face

264 Pi_p = zeros(5, 3)

265 Pi_m = matmul(dVdW(V_m), Theta_m) # Equation 36

266 Pi_p [0,:] = -Pi_m [0,:] # \

267 Pi_p [1,:] = +Pi_m [1,:] # |

268 Pi_p [2,:] = +Pi_m [2,:] # | Equation 37

269 Pi_p [3,:] = +Pi_m [3,:] # |

270 Pi_p [4,:] = -Pi_m [4,:] # /

271 Theta_p = matmul(dWdV(V_p), Pi_p) # Equation 38

272

273 W_m = EntropyVars(V_m) # entropy vars at (-)

274 W_p = EntropyVars(V_p) # entropy vars at (+)

275

276 fV_m = ViscousFlux(nrm , V_m , Theta_m)

277 fV_p = ViscousFlux(nrm , V_p , Theta_p) # Equation 33

278 sat_V = -(fV_m -fV_p)/2 # viscous penalty term , Equation 29

279

280 # Source heat flux corresponding to g(t)

281 src_L = zeros (5)

282 T_m = V_m [4] # temperature at (-)

283 src_L [4] = -T_m * g(t) # Equation 35

284

285 # Volume viscous flux to contract with gradient Equation 23b

286 fV = zeros (5,3)

287 fV[:,0] = ViscousFlux ([1,0,0], V_m , Theta_m)

288 fV[:,1] = ViscousFlux ([0,1,0], V_m , Theta_m)

289 fV[:,2] = ViscousFlux ([0,0,1], V_m , Theta_m)

290 # Gradient penalty term

291 sat_Theta = -Rational (1,2) * outer(W_m - W_p , nrm) # Equation 30

292

293 # Viscous contributions to the RHS of Equation 26

294 RHS_V = (

295 + dot(W_m , fV_m)

296 + dot(W_m , sat_V)

297 + dot(W_m , src_L)

298 + tensordot(fV, sat_Theta)

299)

300

301 RHS_V = ratsimp(RHS_V) # simplify expressions

32

302 RHS_V = expand(RHS_V) # trigger cancellations

303 assert RHS_V == g(t) # Entropy -conservative BC! Q.E.D.

304

305

306 # --------------------------------

307 # --- Proof for IP dissipation ---

308 # --------------------------------

309

310 # This constant is the IP strength factor

311 beta = symbols(’beta’, real=True , positive=True)

312

313 # Proof using viscous flux evaluations and normal entropy jumps ,

314 # this is the practical way to implement the IP dissipation.

315 # This proof holds for any normal vector and wall velocity. Note

316 # that in the paper , and for the sake of simplicity , we express the

317 # IP dissipation in terms of the # viscous C_jj , j=1,2,3 and we

318 # assume normal vectors aligned with the Cartesian coordinate directions.

319

320 dWn = outer(W_m - W_p , nrm)

321 fm = ViscousFlux(nrm , V_m , dWn)

322 fp = ViscousFlux(nrm , V_p , dWn)

323 M = -beta * (fm + fp)/2 # Equation 40

324 RHS_IP = dot(W_m , M) # Equation 41

325

326 RHS_IP = expand(RHS_IP)

327 RHS_IP = simplify(RHS_IP)

328

329 # Now we check that the IP term is non -positive

330 u_m = V_m [1:4]

331 T_m = V_m [4]

332 du = u_m - u_w

333 N = outer(nrm , nrm) # rank 1, symmetric , semi -PD matrix

334 RHS_IP_explicit = (

335 -2*beta*Mu(T_m)/(3* T_m) * (# this factor is negative

336 + dot(du, matmul(N, du)) # this term is non -negative

337 + 3*dot(du,du)*dot(nrm ,nrm) # this term is non -negative

338) # then this is non -positive and thus dissipative

339)

340 RHS_IP_explicit = expand(RHS_IP_explicit)

341 RHS_IP_explicit = simplify(RHS_IP_explicit)

342 assert expand(RHS_IP - RHS_IP_explicit) == 0 # Q.E.D

343

344 # Proof using the C_jj , j=1,2,3 viscous matrices ,

345 # this is the usual form we use in proofs.

346 # This proof DOES NOT HOLD for any normal vector and wall velocity ,

347 # it assumes that the normal vector is aligned with the Cartesian

348 # coordinate directions and dot(nrm , u_w) == 0.

349

350 def C_11(V):

351 rho ,u1 ,u2,u3,T = V

352 mu, kappa = Mu(T), Kappa(T)

353 C = zeros (5,5)

354 C[1,1] = Rational (4 ,3)*T*mu

355 C[1,4] = Rational (4 ,3)*T*mu*u1

356 C[2,2] = T*mu

357 C[2,4] = T*mu*u2

358 C[3,3] = T*mu

359 C[3,4] = T*mu*u3

360 C[4,1] = C[1,4]

361 C[4,2] = C[2,4]

362 C[4,3] = C[3,4]

363 C[4,4] = T**2* kappa+Rational (1,3)*T*mu*(4*u1 **2+3* u2 **2+3* u3**2)

364 return C

365

366 def C_22(V):

33

367 rho ,u1 ,u2,u3,T = V

368 mu, kappa = Mu(T), Kappa(T)

369 C = np.zeros ([5,5], dtype=object)

370 C[1,1] = T*mu

371 C[1,4] = T*mu*u1

372 C[2,2] = Rational (4 ,3)*T*mu

373 C[2,4] = Rational (4 ,3)*T*mu*u2

374 C[3,3] = T*mu

375 C[3,4] = T*mu*u3

376 C[4,1] = C[1,4]

377 C[4,2] = C[2,4]

378 C[4,3] = C[3,4]

379 C[4,4] = T**2* kappa+Rational (1,3)*T*mu*(3*u1 **2+4* u2 **2+3* u3**2)

380 return C

381

382 def C_33(V):

383 rho ,u1 ,u2,u3,T = V

384 mu, kappa = Mu(T), Kappa(T)

385 C = zeros(5, 5)

386 C[1,1] = T*mu

387 C[1,4] = T*mu*u1

388 C[2,2] = T*mu

389 C[2,4] = T*mu*u2

390 C[3,3] = Rational (4 ,3)*T*mu

391 C[3,4] = Rational (4 ,3)*T*mu*u3

392 C[4,1] = C[1,4]

393 C[4,2] = C[2,4]

394 C[4,3] = C[3,4]

395 C[4,4] = T**2* kappa+Rational (1,3)*T*mu*(3*u1 **2+3* u2 **2+4* u3**2)

396 return C

397

398 if k is not None:

399

400 if k in (1, 2):

401 C_m = C_11(V_m)

402 C_p = C_11(V_p)

403 if k in (3, 4):

404 C_m = C_22(V_m)

405 C_p = C_22(V_p)

406 if k in (5, 6):

407 C_m = C_33(V_m)

408 C_p = C_33(V_p)

409

410 L = -beta * (C_m + C_p)/2 # Equation 39

411 M = dot(L, W_m - W_p) # Equation 40

412 RHS_IP_v2 = dot(W_m , M) # Equation 41

413 RHS_IP_v2 = expand(RHS_IP_v2)

414 RHS_IP_v2 = simplify(RHS_IP_v2)

415

416 assert RHS_IP == RHS_IP_v2

AppendixB. FORTRAN code for the implementation of the boundary conditions on
curvilinear grids

In this appendix we provide a simple but yet general FORTRAN implementation of the proposed
entropy stable wall boundary conditions on curvilinear grids. The following piece of code receives
as input the primitive variables, V , and outputs the primitive variables of the ghost state. It is
supposed to be called for each collocated point lying on the wall boundary face.

1 module WallBC

2

34

3 integer , parameter :: d = 3 ! dimension in {2,3}

4 integer , parameter :: c = d+2 ! components

5 integer , parameter :: I1 = 1 ! index of density

6 integer , parameter :: I2(d) = (/(i,i=1,d)/)+1 ! index of velocity

7 integer , parameter :: I3 = c ! index of temperature

8

9 integer , parameter :: dp = selected_real_kind (15, 307)

10

11 contains

12

13 pure subroutine WallBCInviscid(Snrm ,u_wall ,V_m ,V_p)

14 real(kind=dp), intent(in) :: Snrm(d) ! normal vector

15 real(kind=dp), intent(in) :: u_wall(d) ! wall velocity vector

16 real(kind=dp), intent(in) :: V_m(c) ! primitive vars

17 real(kind=dp), intent(out) :: V_p(c) ! primitive vars

18 real(kind=dp) :: nrm(d) ! unit normal

19 real(kind=dp) :: wn ! normal velocity of wall

20 real(kind=dp) :: un ! normal velocity of fluid

21

22 nrm = Snrm/sqrt(dot_product(Snrm ,Snrm))

23 wn = dot_product(nrm ,u_wall)

24 un = dot_product(nrm ,V_m(I2))

25

26 V_p(I1) = V_m(I1)

27 V_p(I2) = V_m(I2) + 2 * (wn - un) * nrm

28 V_p(I3) = V_m(I3)

29

30 end subroutine WallBCInviscid

31

32 pure subroutine WallBCAdiabatic(u_wall ,V_m ,dWdX_m ,V_p ,dWdX_p)

33 real(kind=dp), intent(in) :: u_wall(d) ! wall velocity vector

34 real(kind=dp), intent(in) :: V_m(c) ! primitive vars

35 real(kind=dp), intent(in) :: dWdX_m(c,d) ! gradient of entropy vars

36 real(kind=dp), intent(out) :: V_p(c) ! primitive vars

37 real(kind=dp), intent(out) :: dWdX_p(c,d) ! gradient of entropy vars

38 real(kind=dp) :: dVdX_m(c,d) ! gradient of primitive vars

39 real(kind=dp) :: dVdX_p(c,d) ! gradient of primitive vars

40

41 V_p(I1) = +V_m(I1)

42 V_p(I2) = -V_m(I2) + 2 * u_wall

43 V_p(I3) = +V_m(I3)

44

45 dVdX_m = matmul(dVdW(V_m),dWdX_m)

46 dVdX_p(I1 ,:) = -dVdX_m(I1 ,:)

47 dVdX_p(I2 ,:) = +dVdX_m(I2 ,:)

48 dVdX_p(I3 ,:) = -dVdX_m(I3 ,:)

49 dWdX_p = matmul(dWdV(V_p),dVdX_p)

50

51 end subroutine WallBCAdiabatic

52

53 pure function dWdV(V)

54 real(kind=dp), intent(in) :: V(c)

55 real(kind=dp) :: dWdV(c,c)

56 dWdV = ... ! Fill -in with proper values: exercise left to the reader

57 end function dWdV

58

59 pure function dVdW(V)

60 real(kind=dp), intent(in) :: V(c)

61 real(kind=dp) :: dVdW(c,c)

62 dVdW = ... ! Fill -in with proper values: exercise left to the reader

63 end function dVdW

64

65 end module WallBC

35

	1 Introduction
	2 A brief review of entropy stability theory
	2.1 The compressible Navier–Stokes equations
	2.2 No-slip wall boundary conditions

	3 Entropy conservative and entropy stable solid wall boundary conditions for the semi-discrete system
	4 A common SAT procedure for the imposition of wall boundary conditions and interior interface coupling
	5 Numerical results
	5.1 Flow in pipe with annular cross-section
	5.2 Lid-driven cavity
	5.3 Subsonic flow past a cylinder
	5.4 Subsonic flow past a sphere
	5.5 Supersonic flow past a square cylinder

	6 Conclusions
	AppendixA Python script for the verification of the proofs in three dimension using curvilinear grids
	AppendixB FORTRAN code for the implementation of the boundary conditions on curvilinear grids

