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Abstract
A 3-D quantum transport solver based on the spectral element method (SEM) and perfectly matched
layer (PML) is introduced to solve the 3-D Schrödinger equation with a tensor effective mass. In this
solver, the influence of the environment is replaced with the artificial PML open boundary extended
beyond the contact regions of the device. These contact regions are treated as waveguides with known
incident waves from waveguide mode solutions. As the transmitted wave function is treated as a total
wave, there is no need to decompose it into waveguide modes, thus significantly simplifying the
problem in comparison with conventional open boundary conditions. The spectral element method
leads to an exponentially improving accuracy with the increase in the polynomial order and sampling
points. The PML region can be designed such that less than −100 dB outgoing waves are reflected
by this artificial material. The computational efficiency of the SEM solver is demonstrated by
comparing the numerical and analytical results from waveguide and plane-wave examples, and its
utility is illustrated by multiple-terminal devices and semiconductor nanotube devices.
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1 Introduction
Numerical solution of Schrödinger equation has become increasingly important because of the
increasing demand for design optimization of nanodevices where quantum effects are
significant. Various numerical methods have been developed for this purpose, for examples,
[1]. These numerical methods have been developed for one, two, and three dimensions. It has
been noted that some quantum effects can only be explained if a three-dimensional model is
used [2]. 3D numerical solutions of Schrödinger equation and self-consistent Schrödinger-
Poisson system have attracted much attention recently (see, for examples, [2,3,4,5,6,7]). The
objective of this work is to develop an alternative 3D numerical method that can effectively
account for open boundaries in Schrödinger equation.
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In nanoelectronic devices, states carrying current are important in considering current flowing
through a device region [8]. The calculation of these states are, however, complicated by the
influence of the external environment. The most popular numerical method to calculate these
states is to apply an open boundary condition to replace the influence of the environment. This
boundary condition enables the electron to transmit out of the devices without any reflection
from the environment.

Several open boundary conditions have been previously proposed [8,9,10]. The easiest way is
to apply an infinite barrier at the boundary, i.e. enforcing the total wave function to be zero
[9]. However, this method does not enforce the reflected wave to be zero at the boundary, thus
is not a true open boundary condition. In a more accurate quantum transmitting boundary
method (QTBM)[8,10], the contact region along the exterior environment is replaced by
outgoing waveguide modes with known transmitting characteristics [8,10,11]. This method
needs, however, to independently consider each mode of the incident, reflected and transmitted
waves from each terminal. The summation up to a large number of modes makes the
implementation, therefore, more complex. In addition, one PML absorber method was
introduced to solve the time-dependent Schrödinger equation [12]. It was also implemented in
a 2-D finite-element method with a diagonal effective mass matrix. On the other hand, the SEM
has been applied to fluid dynamics with the outflow boundary conditions [13]. However, to
our knowledge, such a method has never been implemented in the semiconductor field for 3-
D problems.

In this paper, an efficient 3-D quantum transport solver is introduced. It is based on the spectral
element method (SEM) and perfectly matched layer method to calculate the current-carrying
states in devices with arbitrary geometry. In this accurate open boundary based on the PML,
the contact regions of the device are extended into artificial PML media. The PML-modified
Schrödinger equation with complex stretched coordinates is formulated and solved by the
spectral element method. In the continuous limit, the interfaces between the PML and device
region have zero reflection, and outgoing waves attenuate rapidly into the PML region before
being terminated by an outer boundary. Consequently, the solution of Schrödinger equation
and thus the current in the original device region do not deviate from the correct solution in
the unbounded domain. Moreover, in this solver, the SEM is applied to achieve an error that
decreases exponentially with the increase in the polynomial order and sampling points, thus
significantly reducing the CPU time and memory requirement compared to conventional finite-
element and finite-difference methods [14,15]. In addition, the effective mass is implemented
as a full anisotropic mass tensor, which provides an excellent tool to study anisotropic effects
along any arbitrary orientation.

The organization of this paper is as follows. In Section 2, we introduce the problem and the
PML-modified Schrödinger equation, and the SEM applied to solve this PML-modified
Schrödinger equation. In Section 3, we determine this solver's accuracy and efficiency by
waveguides and spherical quantum-dot examples. Moreover, the utility of this solver will be
illustrated by multiple-terminal devices and nanotube examples.

2 Formulation
2.1 Problem Statement and Overview of the PML Method

2.1.1 Problem Statement—The objective of this work is to solve 3-D Schrödinger equation
with a tensor effective mass in an unbounded domain. Although the solver and devices
considered are all three-dimensional, for the sake of presentation we use a 2-D geometry to
represent a cross section of a 3-D problem, as shown in Fig. 1. The entire device region is
partitioned into one (or more) semiconductor region(s)  and several contact regions

, where K is the number of the contacts connecting the device to the
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external environment. We extend each contact region  into an artificial PML region ,
with exactly the same material properties (such as the effective mass and potential energy) as
its original contact region at the interface, except that it satisfies a PML-modified Schrödinger
equation. The outer boundaries of the semiconductor region(s) and the contact regions are
denoted as  (n from 0 to K), and the outer boundaries of the PML regions are denoted as

 (n from 1 to K). The interfaces between the contact regions and PML media are denoted as
Γn (n from 1 to K), which are assumed as planes without loss of generality. Again, each region
of Ωn is a 3-D region and each boundary of Γn is a 2-D surface.

Our objective is to solve for the wave function in the device regions , n = 0, · ·
· , K that satisfies the following 3-D normalized Schrödinger equation with a mass tensor
[14,16]

(1)

where the differentiation operator ∇ and position coordinates have been normalized with r ̃=
r/d0, u(r)̃ = U(r)/E1 is the normalized potential energy, U(r) = −qV(r) the potential energy, V
(r) the potential, ∊ = E/E1,  (corresponding to the eigen energy of the ground
state in a rectangular infinite quantum well with well width d0), m0 the free-electron mass, and

 is defined as

where  is the normalized effective-mass tensor, and  is the effective-mass tensor.
The reason to normalize E by E1 is to obtain a well conditioned matrix. For simplicity and
without confusion, in the rest of this paper, we will choose d0 = 1 nm and use r to represent
the normalized spatial position.

2.1.2 Overview of the PML Method—We apply the scatter-field/total-field formulation
[17] to solve the scattered field in the PML region and the total field in the device region. The
PML method results in zero reflection coefficients at interfaces Γn, and outgoing waves that
attenuate rapidly into the PML region before reaching the PML outer boundary, which will be
proved both analytical and numerically in the next subsections. On all of the outer surfaces of
the simulation regions (all  and ), the zero Dirichlet boundary conditions or zero Neumann
boundary conditions will be applied for the unknowns. On the other hand, on those interfaces
between PML and device regions Γn, incident waves exist and the total field is chosen as the
unknown variable, and the wave function continuity and current continuity are applied at these
interfaces.

2.2 Principle of the PML Method
In this subsection, we will analytically prove that the reflection coefficients at interfaces Γn
are zero.

2.2.1 Modified Schrödinger Equation in PML—We have previously shown that the PML
as an open boundary condition for Schrödinger equation is identical to that for acoustic waves
in [18]. In this paper, we follow the complex coordinate stretching technique [19,20], and apply
the following PML transformation: ∂s ⇒ es∂s, where , and s = x, y, or z. In the
above, the scaling coefficient as is usually chosen as 1, because it will transform the modified
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Schrödinger equation to the regular Schrödinger equation at the boundary nodes Γn,  the
frequency in the solution of the time-dependent Schrödinger equation given by

(2)

and ωs the attenuation coefficient along s direction, that is nonzero only along the propagating
direction inside the PML region, expressed as

(3)

where δ = |s − s0|/L and s0 is the location of the interface Γn, and L is the PML thickness. By
experience, we found that L = 1.5λmin and ω0 = ω could achieve good enough performance
and require small computational size, where λmin is the wavelength corresponding to the
maximum energy of interest. The PML material parameters αmax and c determine the wave
function attenuation rate in the PML region. Their optimization will be explained in Section
3.

Applying the above transformation into (1), we obtain

(4)

as the PML-modified Schrödinger equation, where

Schrödinger equation in the device regions, given in (1), is a special form of (4) with ωs(s) =
0 and es = 1 (s = x, y, or z).

2.2.2 The Solution of the Modified Schrödinger Equation—For a homogeneous PML
medium, the modified Schrödinger equation in (4) has a plane-wave solution of the form

(5)

where k = (exkx, eyky, ezkz) and A a constant used to normalize the wave function. Substituting
(5) into (4) yields the dispersion relation

(6)

where κ2 = π2(∊ − u). For the special case of a diagonal mass tensor, (6) reduces to

(7)

Equation (7) is the equation of an ellipsoid in 3D and is satisfied by
(8)

(9)

(10)

where θ is the polar angle from the z-axis in a spherical coordinate, and ϕ the azimuthal angle
in the xy-plane from the x-axis.
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2.2.3 Reflection Coefficient of an Oblique Incident Wave at a PML Interface—
Zero reflection coefficients at the interfaces between PML and regular materials with full tensor
anisotropic material have been analytically proved for Maxwell's equations [21] and widely
applied in the field of electromagnetics [22,23]. As the properties of Maxwell's equations and
Schrödinger equation are both second order partial differential equations, the above analytical
proofs are also applicable for the solution of the Schrödinger equation in the semiconductor
field. For simplicity, here we only consider a diagonal mass tensor in the contact and PML
regions. Assume that a group of electrons with wave function ψ is obliquely incident on the
interface at z = 0, as shown in Fig. 2. According to the solution of the modified Schrödinger
equation, the incident waves ψi, the reflected waves ψr, and the transmitted waves ψt can be
expressed as

where krz = −k1z, and the subscripts 1 and 2 represent regions 1 and 2, respectively.

The continuity of the wave function at the interface z = 0 requires that
(11)

where R is the reflection coefficient and T is the transmission coefficient.

The continuity of the current at the interface at z = 0 requires the continuity of , i.e.
, which yields that

(12)

Thus, from (11) and (12), we can write that

(13)

2.2.4 Zero Reflection at a Perfectly Matched Interface—The phase matching condition
requires that e1xk1x = e2xk2x and e1yk1y = e2yk2y. Substituting these conditions into (8) and (9),
we obtain that

If we choose m1xx = m2xx, m1yy = m2yy, m1zz = m2zz, e1x = e2x, e1y = e2y, V1 = V2 (i.e. κ1 = κ2),
we can then obtain that θ1 = θ2, and ϕ1 = ϕ2, and therefore k1z = k2z. Thus, from (13), the
reflection coefficient R = 0 is always satisfied for any angle of incidence.

2.3 PML Implementation in the Spectral Element Method
In order to solve for the wave function using the spectral element method, we use the weak
form of (4). By multiplying both sides of (4) with a testing function ψi, and integrating by parts
over the computational domain, the weak form of (4) can be written as

(14)
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where q = exeyez(u−∊). Within the framework of the spectral element method introduced
previously [14,15], both the testing and basis functions are chosen as ψi, which we have selected
the Gauss-Lobatto-Legendre (GLL) polynomials defined on a cubic reference element. The
physical domain is divided into non-overlapping curved hexahedron elements conforming to
the problem geometry; each curved hexahedron element is mapped into the cubic reference
element. The unknown wave function is expanded in terms of the basis functions as

, where {φj} are the values of the unknown wave functions at the SEM nodal
points, and N is the number of the total grid points in the curved hexahedron elements. Next,
the SEM is applied to the device and PML regions, respectively.

2.3.1 System Equations in the Device Region—The weak form equation for the device

region (including all contacts) can be obtained simply from (14) with  and ex = ey = ez =
1. To facilitate the interface between the PML and the contact regions within the total-field/

scattered-field formulation, we also expand the normal flux term  in terms of the basis
functions at this interface. Assuming that there are Nb SEM boundary nodes at the interfaces
between the PML and the contacts, we expand the normal flux term in the contacts at the PML

interface as , where cj denotes the value of the normal flux at the j-th
nodal point. The system equation in the device region can be written as

(15)

where {φj} are the unknown values of the wave functions at the nodal points defined on curved
hexahedron elements in the device region, KD the total number of volume hexahedron elements
partitioning the whole device region represented by ND unknown variables, Kb the total number
of surface elements on the interfaces {Γn} represented by Nb unknown variables. Again, each
of the curved volume hexahedron elements is mapped into a cubic reference element, and Je
and Jb are the Jacobian matrices in the volume element and in the boundary surface element,
respectively, and |Je| and |Jb| mean their corresponding determinants.

After applying the zero Dirichlet boundary conditions or zero Neumann boundary conditions
on all  in Fig. 1, the last term in (15) becomes zero and only the first term in the right-hand
side of (15) remains and is denoted as S1.

2.3.2 System Equations in the PML Region—In the PML regions, we use the scattered
field as the unknown variable in order to avoid the attenuation of the incident field from outside
the device. Similar to the formulation for the device region, by considering the zero Dirichlet
boundary condition or zero Neumann boundary condition for the scattered field at the outer
surfaces of the PML regions, then we can obtain the system equation for the PML regions as

(16)
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where  is the scattered wave function at the j-th node, and S2 is equal to

(17)

and  and  are the values of the normal flux at the j-th node corresponding to the scattered

and incident wave functions, respectively. The relation  is used in (17) since at the

interfaces between the PML and contacts we have . The definitions of
KP, NP, Kb, and Nb in the PML regions are similar to those in the device regions. The minus
signs in those terms on the right-hand of (17) result from the normal directions of the interface
for the PML regions opposite to the normal directions of the device regions.

Adding S1 and S2 yields to the source term S at the internal interfaces between the PML and
device regions

where  is  evaluated at the j-th nodal point.

2.3.3 System Equation in a Matrix Form—Now we are in a position to combine the
system equations for the device and PML regions by considering the boundary conditions at
the PML-device interfaces. To this end, we separate the unknowns in the interior nodes and
those at the PML-device interfaces. The system equation in the device regions can be rewritten
in a matrix form as

(18)

where φ and φb represent the wave functions on the inner and boundary nodal points in the
device regions.

Similarly, the system equation in the PML region can be rewritten in a matrix form as

(19)

where φs and  represent the scattered wave functions on the inner and boundary nodal points
in the PML regions.

With the boundary conditions at the interface Γn: ψs = ψ − ψi, (19) can be rewritten as

(20)

Combination of (18) and (20) results to the global matrix equation

(21)
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The specific expressions of the above matrix elements are given in the Appendix. This system
equation is solved by the conjugate-gradient method to obtain the unknown values of the wave
function at nodal points.

3 Numerical Results and Discussions
Below we first use numerical results of a waveguide and a spherical quantum dot to show the
validity and the exponential convergence of the SEM solver. We then apply this solver to a
multiple-terminal device and a carbon nanotube.

3.1 A Waveguide example
First, we consider a rectangular waveguide with an electron wave propagating from a PML
region into a device region and exiting via another PML region. The analytical solution
available for this problem will be used to test the validity of the PML method and the
convergence of the SEM method, and to optimize the PML parameters. The rectangular
waveguide shown schematically in Fig. 3 is divided into three SEM elements, each having a
size of 8 nm × 8 nm × 8 nm. The incident wave φi = sin(kyy) sin(kzz) exp (ikxx) with its
wavelength λ = 10 nm propagates along the +x direction from the left PML box, through the
device region, and then transmits into a right PML box. The zero Dirichlet boundary conditions
have been applied on all the outer surfaces.

3.1.1 Comparison with the Analytical Solution—We first apply a quadratic PML profile
(i.e. c = 2) with αmax = 6.5 in (3). The wave function along the x direction in the device region
is plotted in Fig. 4. The L2 error for all nodes in the device region at the sampling density SD
= 10 PPWs (points per wavelength) reaches 0.02%, which is within the acceptable error range.

3.1.2 Optimization of PML Profile Parameters and the SEM Convergence—We
use this example to optimize the PML profile parameters c and αmax, and to test the error
convergence of the SEM.

We choose c = 0, 1, 2 and 3, and apply different values of αmax to compare the error performance
for SD=14 PPWs, as shown in Fig. 5. This error is the difference between the calculated wave
function and the analytical solution within the central device region. It is observed that the
curve with c = 0 and αmax = 4.0 has the minimum error (L2 error = 3.16 × 10−8 = −150 dB).

From the above study, we obtain the optimal value of αmax for different profiles of c that give
the minimum error: αmax = 4.0, 6.5, 8.3 and 11.0 for c = 0 to 3 respectively. Using these optimal
values of αmax, we now test the error convergence with the increasing sampling density for c
= 0 to 3, as shown in Fig. 6. The error decreases exponentially with the increase of the sampling
density for all these profiles. Moreover, as expected, the smallest reachable error increases with
the increase of c.

Overall, the PML profile with c = 0 and αmax = 4.0 has the minimum error in the above
waveguide device simulations. The value c = 0 yields the smallest error because it does not
increase the polynomial order of the integrand of Bij in (A.1). The Gauss-Lobatto-Legendre
quadrature order to evaluate this integrand is, therefore, not required to be increased in the
SEM. On the other hand, αmax = 4.0 yields the smallest error because an increase in αmax will
speed up the decay rate inside the PML region, while large values of αmax will introduce
reflection because of the significant difference between the device material and PML material.
This optimal value of αmax may be problem-dependent, but the error achieved by this choice
is in general much smaller than that required by most engineering applications. In the remaining
examples, the values of c = 0 and αmax = 4.0 will be used.
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3.2 Plane-Wave Incidence on a Spherical Quantum Dot
Next, to test the SEM solver on curved structures, we simulate a spherical quantum dot with
plane-wave incidence.

The incident plane wave φi = exp(ikzz) propagates along the +z direction from a high potential
energy region (region 2, V2 = 0.014 V), and reaches a low potential energy quantum dot sphere
(Region 1, V1 = 0 V, radius r = 8 nm). Region 2 is unbounded, and thus should not produce
reflections. We truncated Region 2 with a cube (24 nm × 24 nm × 24 nm) and applied a PML
region with 8 nm thick outside the cube. The zero Neumann boundary conditions have been
applied on all outer surfaces. The energy for the incident wave is E = 0.166 eV and the effective
mass is m = m0. The geometry is shown in Fig. 7. The sphere being modeled by a cubic element
at the center and six curved hexahedron elements conforming to the spherical surface. The
sampling densities are approximately even in x, y, and z directions.

The differences of the real (a) and imaginary (b) parts of the wave function between numerical
results and analytical solutions at central y surface are shown in Fig. 8. In this example, basis
order N = 8, i.e. SD = 9 PPW. We found that the error is within acceptable range.

The error of the wave function difference between the analytical solution and numerical results
in the device region is shown in Fig. 9. The error decreases exponentially with the increase of
basis function order N. When N = 8 (i.e. SD = 8 PPWs), the error reaches 0.047%.

The results reported in the above subsections show that the PML method has been applied
effectively, as the reflection coefficient has been theoretically proved to be zero, and numerical
results are within an acceptable error range. In addition, we have implemented the SEM in the
waveguide and quantum-dot examples, yielding errors that decrease exponentially with the
increase of the sampling density SD. In the next subsections, we will utilize this solver to
calculate the electron concentration and transmission coefficient in semiconductor devices.

3.3 A Multiple-Terminal Device with Quantum Dots
In this example, we will simulate the electron concentration distribution in a multiple-terminal
device that includes several quantum dots. There are five contacts connecting the device to the
external environment, which can be treated as five terminals with each having an incident and
a reflected wave. This example can be easily transformed into a quantum coupler, a quantum
dot, or a MOSFET.

3.3.1 Geometry—The geometry of the device is shown in Fig. 10. Five cubic contact
terminals (Regions 1, 4, 5, 6, and 7, with V1 = V4 = V6 = V7 = −5.5 V, V5 = 5.9 V) carrying
waveguide modes ψi = cos(kaa) cos(kbb) exp (−ikcc) with energy E = 0.38 eV propagate into
a semiconductor region (Region 2, V2 = 0.38 V, 72 nm × 24 nm × 24 nm) with three inner
quantum-dot spheres (Region 3, V3 = −0.153 V, r = 5 nm), where a and b are the transverse
variables and c the longitudinal variable in the rectangular waveguides. These five contact
terminals are also the exit terminals of the device. All terminals have the same size of 8 nm ×
8 nm × 2 nm, where 8 nm is the transverse direction and 2 nm is the propagating direction. The
Fermi level in Regions 1 is chosen to be zero. Each contact region has been extended into a 2
nm thick PML region. The zero Neumann boundary conditions have been applied on all outer
surfaces.

The electron effective mass for all materials are assumed to be me = 0.5m0. This example can
be treated with terminal 1 as the gate region, terminals 4 and 5 as the source and drain regions,
and terminals 6 and 7 as the bulk region. It is easy to change the bias applied at each terminal.
Here, we assume that the potential distribution is known and is constant in each region, while
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the real potential distribution will be determined from a Poisson solver, which will be
investigated in a forthcoming paper.

3.3.2 Electron Concentration Distribution—The electron concentration distribution |
ψ|2 along the central z surface is shown in Fig. 11. As can be seen, the electrons are accumulated
in the quantum-dot low-energy regions. Moreover, as the geometry of the device and the bias
applied on this device is symmetric along x = 0, the electron distribution is also symmetric
along x = 0, as expected.

This multiple-terminal device example has proved the solver's ability to calculate the wave
function and electron concentration distribution in the quantum coupler, quantum dot and
MOSFET devices.

3.4 A Carbon Nanotube
Finally, we will simulate the wave function in a carbon nanotube. We will compare our results
with the transmission coefficient reported in [24].

We will only simulate the nanotube, source and drain regions in the geometry of [24], as shown
in Fig. 12, i.e. Rt = 0.63 nm, Lt = 20 nm, work function Φmetal = 4.5 V, χmetal = 10.0 eV, χCN
= 4.2 eV. A bias voltage VDS = 0.4 V is applied between the drain and source contacts. The
potential energy was obtained from Fig. 4(b) in [24].

3.4.1 Transmission Coefficients—Based on the geometry in Fig. 12, we simulated the
transmission coefficients with two different incident electron waves: (a) a constant wave front,

i.e., the first circular waveguide mode  (where Jm(x) is the Bessel
function of the m-th order,  is the n-th zero of the derivative of Jm(x), and A is the
amplitude of the wave function calculated from Landauer's equation [24]). This example is
used to compare the 1-D transmission coefficient with the result reported in [24]. (b) the second

circular waveguide mode , . This example is used
to calculate the 3-D transmission coefficient. These two examples are respectively denoted as
J01 and J11. In the J11 example, the incident wave does not propagate in the nanotube with
Rt = 0.63 nm, which leads to negligible transmission coefficients. In order to compare the 1-
D and 3-D transmission coefficients, in the J11 mode, we have chosen the radius Rt = 4.6 nm
whose propagating probability is large enough. To confirm the 1-D transmission coefficients
results, we also simulated a third example with a constant wave front (i.e. a square waveguide
mode ϕi = A cos(mπx/a) cos(nπy/b) exp(ikzz), denoted as “S00” for m = n = 0;

 on a square cylinder nanotube with the same cross section
surface area as the case with Rt = 0.63 nm. All three incident waves satisfy the Neumann
boundary conditions at the outer surface of the cylinders. The example we consider here only
has a source injection of electrons, as the opposite direction of the injection is analogous. In
order to obtain the same result as [24], we choose the effective mass for the carbon nanotube
as mCN = 0.0615m0. We calculated the transmission coefficient from both 1-D and 3-D models
for the above three examples. The 1-D transmission coefficient is defined as [24]

(22)

where kD and kS are the wave numbers along the propagation z direction in the drain and source
contacts, respectively,  and  the electron effective mass in the drain and source contacts,
respectively, and C and A the amplitudes of the wave functions at the drain and source contacts,
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respectively [24]. The 3-D transmission coefficient is defined in terms of the current density
ratio between the outermost interfaces at the drain and source contacts as

(23)

where JD and ψD are the current density and transmitted wave at the drain-contact exit interface,
respectively , JS and ψS the current density and incident wave at the source contact interface,

respectively,  and  the electron effective mass tensors in the drain and source contacts,
respectively.

The transmission coefficients obtained in this work and those reported in [24] (denoted as
“JCPP”) are compared in Fig. 13. The dotted line represents the T3D value using a constant
incident wave (S00 mode) passing through a square cylinder. The dash-dotted line represents
the T3D value using a constant incident wave (J01 mode, denoted as “C J01”) passing through
the circular cylinder. Our calculated 1-D transmission coefficients values T1D also agree with
the results of John et al. [24].

As can be seen in Fig. 13, when we use a constant incident wave, (i.e. J01 and S00 modes, same
as in [24]), the magnitudes of the T3D, the constructive and the destructive energies are almost
the same for the circular and the square nanotubes for all energies, and also agree well with
the results reported in [24]. The transmission coefficient results for the J11 incident wave on
the circular cylinder (denoted as “C J11”) with Rt = 4.6 nm shown in Fig. 13 have a little shift
in energy from the J01 and S00 fundamental modes. This shift is due to the wave number kz for
the J11 mode being smaller than kz = k for the J01 and S00 modes. Furthermore, as can be seen
in Fig. 13, small energy level ranges (E ∈ [−0.2, −0.07] eV) lead to almost zero propagation
probability, because kz in this energy range has an imaginary value, and the incident mode is
an evanescent one. This result is based on the enlarged radius Rt = 4.6 nm for obtaining real
value of kz for energies larger than −0.07 eV.

3.4.2 Electron Distribution at Different Interference Energies—From Fig. 13, we
choose a constructive interference at energy E = 0.1085 eV, a destructive energy at E = 0.1712
eV, an intermediate one at energy E = 0.14 eV based on the J01 example, and plot the normalized
electron concentration distribution along the central axial z direction of the coaxial CNFET in
Fig. 14. As can be seen, the peak of the electron concentration for E = 0.1085 eV is largest
among the three energies, which implies its constructive interference property. Moreover, the
peak of the electron concentration for the destructive interference at energy E = 0.1712 eV is
smallest among the three energies. Furthermore, at E = 0.14 eV, an intermediate electron
concentration is obtained in the nanotube.

3.4.3 Effects of the Mass Tensor Anisotropy—Finally, the solver is used to model the
effects of the mass tensor by comparing the transmission coefficient corresponding to a scalar
mass, a diagonal mass tensor, and a full mass tensor for the above example. The incident wave
is the fundamental J01 mode along a circular cylinder with a radius Rt = 0.63 nm (same as
above examples) for three different effective masses inside the CNFET region. In the first
example, mSM = 0.0615m0 is the same scalar mass as in the above example. In the second
example, the diagonal mass tensor
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has the same determinant as that of the scalar mass, i.e., , but the transverse
component has a 15% perturbation.

In the third example, the full mass tensor

is obtained by rotating the principal axis of the diagonal mass tensor by 30° along the z axis
then by 45° along the y axis. It also has the same determinant as the scalar mass.

Meanwhile, the effective mass inside the lead region is still chosen to be the same as in the
previous example, i.e., a scalar mass with value mlead = 0.0615m0.

The values of the transmission coefficients T3D obtained for the three mass tensors are
compared in Fig. 15. It is observed that the transmission coefficient peaks for the diagonal
mass tensor have large negative energy shifts from the corresponding ones for the scalar mass.
These shifts are caused by the increased kz value (thus decreased effective wavelength in the
z direction) because of the increased mzz, as can be seen in equation (7). Note that the decreased
values of mxx = myy have much less effect for this fundamental mode. For the case of a full
mass tensor, since the principal axis has been rotated, this anisotropy effect is reduced because
of the averaging effect caused by rotation, thus the negative shifts in the transmission
coefficient are less than the case of the diagonal mass tensor.

4 Conclusions
We have demonstrated both analytically and numerically that the reflection coefficients at the
interfaces between device regions and perfectly matched layers can be made smaller than −100
dB when we appropriately choose the parameters of the perfectly matched layers in the spectral
element method. Moreover, we have shown that this solver can achieve exponential
convergence, reaching 0.1% accuracy when the sampling density exceeds eight points per
wavelength, enabling us to significantly reduce the computational time and memory from
conventional finite-element and finite-difference methods [14,16]. Although we focused on a
Schrödinger solver in this article, it is natural for us to extend this solver to the self-consistent
Schrödinger-Poisson system in 3D in our future work, as has been done in the 1-D case [14].
Such a self-consistent solver has been done in the first author's thesis, and will be reported in
the near future. In our self-consistent solver, Schrödinger and Poisson equations are solved
iteratively by a nonlinear solver. Within each iteration of the nonlinear solution, both
Schrödinger and Poisson equations are linear, and thus can be solved by the SEM [25].
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A Expression of Each Term in the Global Matrix Equation
The global matrix equation is expressed in (21) as:

The expressions of the corresponding elemental matrices ,  and  are as follows:
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(A.1)

where i, j = 1, 2, · · · , ND, and ND is the number of nodes in each element in the device region,

(A.2)

where i, j = 1, 2, · · · , NP, and NP is the number of nodes in each PML element, and

(A.3)

where i = 1, 2, ..., Nb, and Nb is the number of nodes on each boundary element at the interfaces
between the PML and contacts.

For the global matrices, the range of i and j in each term of the above equation is as follows:

where,

NDt is the total nodes in the device regions, NPt is the total nodes in the PML regions, and
 is the total boundary nodes at the interfaces Γn.
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Fig. 1.
The problem geometry for a semiconductor device with K contact regions truncated by the
PML medium.

Cheng et al. Page 15

J Comput Phys. Author manuscript; available in PMC 2008 November 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Arbitrary angle electron incident on the plane z=0.
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Fig. 3.
The geometry for three-element PML Model.
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Fig. 4.
Comparison of SEM results and analytical solutions for the wave components versus x at the
center y and center z line in the device region.
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Fig. 5.
The error convergence with the change of αmax for c = 0 to c = 3 in the PML region.
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Fig. 6.
The error convergence with the increase of the sampling density.
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Fig. 7.
The geometry for a spherical quantum dot with plane wave incidence.
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Fig. 8.
The differences of the real (a) and imaginary (b) parts of the wave function at central y surface
between numerical results and analytical solutions.
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Fig. 9.
The error of the wave function between numerical results and analytical solutions for a sphere
quantum dot with plane wave incidence.
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Fig. 10.
The geometry for a device with three inner quantum dots, five incident terminals and five exit
terminals.
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Fig. 11.
The electron concentration distribution on the central z surface for a device with three inner
spherical quantum dots and five contact terminals. The unit for the electron concentration
shown in this figure is cm−3.
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Fig. 12.
The geometry for a coaxial Carbon nanotube FET device.
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Fig. 13.
The transmission coefficient comparison for a CNFET with different input energies and
different incident waves.
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Fig. 14.
The electron concentration along z direction of the coaxial CNFET with input energies E =
0.1085 eV, 0.1712 eV and 0.14 eV.
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Fig. 15.
Comparison of the transmission coefficient for three CNFETs with a scalar mass, diagonal
mass tensor and full mass tensor versus the input electron energy.
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